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Abstract 

In this paper we evaluate the accuracy of warping of neuro-images using brain deformation 
predicted by means of patient-specific biomechanical model against the registration using 
BSpline-based free form deformation algorithm. Unlike the Bspline algorithm, biomechanics-
based registration does not require a very expensive to acquire intra-operative MR image. Only 
sparse intra-operative data on the brain surface is sufficient to compute deformation for the whole 
brain. In this contribution the deformation fields obtained from both methods are qualitatively 
compared and overlaps of Canny edges extracted from the images are examined. We also define 
an edge based Hausdorff distance metric to quantitatively evaluate the accuracy of registration for 
these two algorithms. The qualitative and quantitative evaluations indicate that biomechanics-
based registration algorithm, despite using much less input data, has higher registration accuracy 
than that of the BSpline algorithm. 

Keywords: Non-rigid registration, Image-guided neurosurgery, Intra-operative MRI, Biomechanics, 

BSpline, Edge detection, Hausdorff distance, Evaluation of accuracy. 
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1. Introduction 

Our overall objective is to significantly improve the efficacy and efficiency of image-guided 

neurosurgery for brain tumours by incorporating realistic computation of brain deformations, based on 

a fully non-linear biomechanical model, in a system to improve intra-operative visualisation, navigation 

and monitoring.  The system will create an augmented reality visualisation of the intra-operative 

configuration of the patient’s brain merged with high resolution pre-operative imaging data, including 

functional magnetic resonance imaging and diffusion tensor imaging, in order to better localise the 

tumour and critical healthy tissues.     

In this paper we are especially interested in image-guided surgery of cerebral gliomas. 

Neurosurgical resection is the primary therapeutic intervention in their treatment (Black, 1998). Near-

total surgical removal is difficult due to the uncertainty in visual distinction of gliomatous tissue from 

adjacent healthy brain tissue. More complete tumour removal can be achieved through image-guided 

neurosurgery that uses intra-operative MRIs for improved visualization (Warfield, 2005). The 

efficiency of intra-operative visualization and monitoring can be significantly improved by fusing high 

resolution pre-operative imaging data with the intra-operative configuration of the patient’s brain. This 

can be achieved by updating the pre-operative image to the current intra-operative configuration of the 

brain through registration. However, brain shift occurs during craniotomy (due to several factors 

including the loss of cerebrospinal fluid (CSF), changing pressure balances due to the impact of 

physiological factors and the effect of anaesthetics, and mechanical effects such as the impact of 

gravity on the brain tissue, and resection of tissue) and hence should be accounted for while registering 

the images.      

Intra-operative MRI scanners are very expensive and often cumbersome. Hardware limitations 

of these scanners make it infeasible to achieve frequent whole brain imaging during surgery. The pre-
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operative MRI must be updated frequently during the course of the surgical intervention as the brain is 

changing. An alternative approach is to acquire very rapid sparse intra-operative data and predict the 

deformation for the whole brain. To achieve this we developed a suite of algorithms based on brain 

tissue biomechanics for real-time estimation of the whole brain deformation from sparse intra-operative 

data (Joldes et al., 2010, Joldes et al., 2011).    

The aim of this report is to demonstrate that our new algorithms, due to their utilisation of 

fundamental physics of brain deformation, and their efficient realisation in software, should enable at 

least as accurate registration of high quality pre-operative images onto the intra-operative position of 

the brain as is now possible with intra-operative MRI and state of the art non-rigid registration 

algorithm. We compare the accuracy of registration results obtained from two algorithms – (1) 

biomechanics-based Total Lagrangian Explicit dynamics (TLED) algorithm (Joldes et al., 2009b, 

Joldes et al., 2010, Joldes et al., 2011), that uses only the intra-operative position of the exposed surface 

of the brain; and (2) BSpline-based free form deformation (FFD) algorithm (Rueckert et al., 1999) as 

implemented in 3D Slicer, that uses an intra-operative MRI as a target image. We present results for 

thirteen neurosurgery cases that represent different situations which may occur during surgery as 

characterized by tumours located in different parts of the brain. The accuracy of these algorithms is 

compared qualitatively by viewing and exploring the calculated deformation fields and overlap of 

edges detected from MRI images. In addition, the registration error for each algorithm is also estimated 

quantitatively by means of a novel edge-based Hausdorff distance measure (Garlapati et al., 2012).  
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2. Methods 

2.1.  Non-rigid pre-operative to intra-operative registration using BSpline algorithm 

Free form deformation (FFD) is a powerful tool for modelling 3D deformable objects and widely used 

in image morphing(Lee et al., 1995) and scattered data interpolation (Lee et al., 1997, Ruprecht and 

Muller, 1993). The basic idea of FFD is to deform an object by manipulating the underlying grid of 

control points (Rueckert et al., 1999). In order to smoothly propagate the user specified values at the 

control points throughout the domain of the image, a BSpline based FFD algorithm was proposed by 

Lee et al.(Lee et al., 1997) The BSpline algorithm was later adapted by (Rueckert et al., 1999) for non-

rigid registration of medical images. Since then the BSpline algorithm has become one of the most 

widely used non-rigid registration algorithm for medical images (Kybic et al., 2000, Kybic and Unser, 

2003, Rohlfing et al., 2003, Schnabel et al., 2001).  

The basic components of an image-based registration algorithm (Hill and Batchelor, 2001), 

used also by BSpline–based methods, are presented in Fig. 1. The moving (pre-operative) image (M ) is 

transformed using the chosen transformation T (in this case the displacements of control points) to 

obtain the transformed image T(M) . The transformed image is then compared with the fixed (intra-

operative) image (F) based on a chosen similarity measure S. This similarity metric is used by an 

optimizer to find the parameters of the transform that minimizes the difference between the moving and 

fixed image. An optimization loop is therefore required, which changes the transform parameters to 

find the best agreement between the fixed and moving image.    
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Figure 1. Basic components of a general image based registration process.  

Below the implementation of this algorithm in 3D Slicer is described briefly. A number of 

factors influencing the registration results for image guided-neurosurgery are also discussed in the 

following subsection.  

Estimation of probability densities: The most commonly used similarity measure (similarityC ) in 

multi-modal non-rigid registration is mutual information. Calculation of mutual information between 

the target and the transformed source image requires the values of the marginal and joint probability 

densities (PDF) of image intensities.  These probability densities are usually not readily known; 

therefore they must be estimated from discrete image data. In 3D Slicer the probability densities are 

estimated using Parzen windows (Thevenaz and Unser, 1997). In this scheme, the densities are 

constructed by taking limited number of intensity samples iS  from the images and super-imposing a 

kernel function K centred on iS . 

Implementation of similarity measure: The similarity measure used in 3D Slicer BSpline 

registration module is the definition of mutual information used in (Mattes et al., 2001). In this 

implementation, the joint and marginal probability densities are estimated from a set of intensity 

samples drawn from the images. A zero-order BSpline kernel is used to estimate the PDF of the target 

image intensities. On the other hand, cubic BSpline kernel is used to estimate the source image PDF 

(Mattes et al., 2003). 
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2.1.1    BSpline registration for image-guided neurosurgery 

In the case of image-guided neurosurgery where the pre-operative image is required to be registered 

with the intra-operative (after craniotomy is performed) image, the Bspline registration algorithm faces 

a number of challenges. First of all, the large difference in intensities between the pre-operative and 

intra-operative MRI often influences the registration result. Intensity normalization between the source 

and target image is required to achieve decent registration results. Secondly, the presence of skull in the 

intra-operative image makes the registration process difficult and can induce large error in the 

registration of soft tissues. In order to achieve good alignment skull must be stripped from both the pre- 

and intra-operative images. In addition, setting an appropriate set of parameters (density of control 

point grid, number of spatial samples and number of histogram bins) for a particular registration case 

requires expert knowledge. Without performing proper pre-processing steps and appropriate parameter 

setting it is extremely difficult to obtain reasonable results from a BSpline registration algorithm. We 

carried out a single study to find the effects of the pre-processing steps on the registration results as 

well as to select the appropriate control point mesh density. Effect of these factors on the quality of 

registration is demonstrated below on a patient-specific case.   

Effect of skull stripping: Fig. 2 shows the effect of skull stripping (through segmentation) on 

the registration result. When no stripping is performed (Fig. 2a), large misalignment between the intra-

operative and registered pre-operative brain contours can be observed. However, the contours of the 

ventricles show higher degree of alignment.  On the other hand when stripping is performed (Fig. 2b), 

the misalignment between brain contours decreases but the misalignment between ventricle contours 

increases. It is an indication that the BSpline registration favours larger anatomical regions (brain 

parenchyma) over smaller regions (ventricles and tumours).  
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Figure 2. Effect of skull segmentation on registration result: (a) Before skull segmentation and (b) 

After skull degmentation. The intra-operative and pre-operative contours are overlayed on the intra-

operative axial slice. Colour codes: Light blue shade – ventricles in the intra-operative image; Light 

blue contour – outline of parenchyma in the intra-operative image; Majenta contours – outlines of 

parenchyma and ventricles in the pre-operative image before registration; White contours - outlines of 

parenchyma and ventricles in the pre-operative image after registration. 50000 spatial samples and a 10 

x 10 x 10 control point grid is used for both cases.    

Effect of control point mesh density: Fig. 3 shows the effect of control point mesh density on 

registration result. As the control point mesh density is increased, the alignment of brain contours 

improves but the alignment of ventricle contours decreases. At a 20 x 20 x 20 control grid (Fig. 3c) the 

alignment of brain contours is very good, but the alignment of ventricles is very poor. This result again 

indicates the bias of the registration algorithm towards larger anatomic regions. We concluded that a 10 

x 10 x 10 control point grid yields best results.  
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Figure 3. Effect of control point mesh density on registration result: (a) Mesh Density 5 x 5 x 5, (b) 

Mesh Density 10 x 10 x 10 and (c) Mesh Density 20 x 20 x 20. The intra-operative and pre-operative 

contours are overlayed on the intra-operative axial slice. Colour codes: Light blue shade – ventricles in 

the intra-operative image; Light blue contour – outline of parenchyma in the intra-operative image; 

Majenta contours – outlines of parenchyma and ventricles in the pre-operative image before 

registration; White contours - outlines of parenchyma and ventricles in the pre-operative image after 

registration. In all three cases skulls are stripped. 50000 spatial samples are used for all three cases. 

Effect of intensity normalization: In this pre-processing step the intensity of the images were 

normalized by N4 algorithm(Tustison et al., 2010) for bias field correction followed by histogram 

equalization. Although intensity normalization does not affect the alignment of brain contours much, it 

significantly improves the alignment of the ventricle contours (Fig. 4b).  
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Figure 4. Effect of intensity normalization on registration result: (a) and (b). The intra-operative and 

pre-operative contours are overlayed on the intra-operative axial slice. Colour codes: Light blue shade 

– ventricles in the intra-operative image; Light blue contour – outline of parenchyma in the intra-

operative image; Majenta contours – outlines of parenchyma and ventricles in the pre-operative image 

before registration; White contours - outlines of parenchyma and ventricles in the pre-operative image 

after registration. In both cases skulls are stripped. 50000 spatial samples and 10 x 10 x 10 control grid 

are used for both cases.   

2.2.  Biomechanics-based prediction of deformations using only the information of the exposed 

brain surface 

Unlike the BSpline registration algorithm, biomechanics-based registration methods do not require an 

intra-opearive image to update the pre-operative image (see Fig. 5). The pre-operative image is 

segmented first to extract the antomical features of interest. Based on this segmentation (which can be 

acquired days before the surgery) a computational grid (mesh) is generated. A biomechanical model 

further is defined by incorporating boundary conditions (contact between skull and brain for example) 

and  material properties for each tissue types. The model is completed by defining the loading 

conditions. This loading informations are generally obtained from sparse intra-operative information 
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(such as surface deformation at the area of craniotomy). Once the model is constructed, a solver (finite 

element or meshless) is used to compute the transform, which is then applied to warp the pre-operative 

image. The warping procedure requires the mapping of points in the moving (pre-operative) image to 

new locations in the transformed image. The intensity of the points in the transformed image is 

determined by interpolating intensities of the corresponding points in the moving image. In the 

following subsections the non-linear finite element algorithm proposed by Joldes et al (Joldes et al., 

2009b) to predict the intra-operative brain shift is briefly described.  

 

 

Figure 5. Registration process based on a biomechanical model. 

2.2.1.   Construction of finite element mesh for patient-specific brain models 

A three dimensional (3D) surface model of each patient’s brain was created from segmented pre-

operative magnetic resonance image (MRI). The segmentation was done using the region growing 

algorithm implemented in 3D slicer.  The meshes were constructed using low-order elements (linear 

tetrahedron or hexahedron) to meet the computation time requirement. To prevent volumetric locking 

the tetrahedral elements with average nodal pressure (ANP) formulation (Joldes et al., 2009d) was 
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used. The meshes were generated using IA-FEMesh (Grosland et al., 2009) and HyperMesh 

(commercial FE mesh generator by Altair of Troy, MI, USA).  A typical mesh (Case 1) is shown in 

Fig. 6. This mesh consists of 14447 hexahedral elements, 13563 tetrahedral elements and 18806 nodes. 

Each node in the mesh has three degrees of freedom.   

 

Figure 6. Typical example (Case 1) of a patient-specific mesh built for this study.   

2.2.2.   Displacement loading 

The models were loaded by prescribing displacements on the exposed part (due to craniotomy) of the 

brain surface. At first the pre-operative and intra-operative coordinate systems were aligned by rigid 

registration. Then the displacements at the mesh nodes located in the craniotomy region were estimated 

with the interpolation algorithm we described in previous publication (Joldes, 2009d). 

2.2.3   Boundary conditions 

The stiffness of the skull is several orders of magnitude higher than that of the brain tissue. Therefore, 

in order to define the boundary conditions for the unexposed nodes of the brain mesh, a contact 

interface (Joldes et al., 2008d) was defined between the rigid skull model and the deformable brain. 

The interaction was formulated as a finite sliding, frictionless contact between the brain and the skull. 

This contact formulation prevents the brain surface form penetrating the skull by checking the nodes of 

the brain mesh for penetration (Joldes et al., 2008d).    
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2.2.4.   Mechanical properties of the intracranial constituents 

If geometric non-linearity is considered (Wittek et al., 2009), the predicted deformation field within the 

brain is only weakly affected by the constitutive model of the brain tissue. Therefore, for simplicity a 

hyper-elastic Neo-Hookean model was used (Joldes et al., 2009a). The Young’s modulus of 3000 Pa 

was selected for parenchyma (Miller and Chinzei, 2002). The Young’s modulus for tumour was 

assigned two times larger than that for parenchyma, keeping it consistent with the experimental data of 

(Sinkus et al., 2005). As the brain tissue is almost incompressible, Poisson’s ratio 0.49 was chosen for 

the parenchyma and tumour (Wittek et al., 2007). Following (Wittek et al., 2007) The ventricles were 

assigned properties of a very soft compressible elastic solid with Young’s modulus of 10 Pa and 

Poisson’s ratio of 0.1.     

2.2.5.   Solution algorithm 

An efficient algorithm for integrating the equations of solid mechanics has been developed by Joldes et 

al (Miller et al., 2007). The computational efficiency of this algorithm is achieved by using - 1) Total 

Lagrangian (TL) formulation (Miller et al., 2007) for updating the calculated variables; and 2) Explicit 

Integration in the time domain combined with mass proportional damping. In the TL formulation, all 

the calculated variables (such as displacements and strains) are referred to the original configuration of 

the analyzed continuum (Joldes et al., 2009c). The decisive advantage of this formulation is that all 

derivatives with respect to spatial coordinates can be pre-computed. The Total Lagrangian formulation 

also leads to a simplification of material law implementation as these material models can be easily 

described using the deformation gradient (Joldes et al., 2009b).  

The integration of equilibrium equations in time domain was performed using explicit method. 

In explicit time integration, the displacement at time t+ ∆t (where ∆t is the time step) is solely based on 

the equilibrium at time t. Therefore, no matrix inversion and iterations are required when solving 



16 

 

nonlinear problems. Application of explicit time integration scheme reduces the time required to 

compute the brain deformations by two orders of magnitude in comparison to implicit integration 

typically used in commercial finite element codes like ABAQUS (ABAQUS, 1998). This algorithm is 

also implemented in GPU (NVIDIA Tesla C1060 installed on a PC with Intel Core2 Quad CPU) for 

real-time computation (Joldes et al., 2010) so that the entire model solution takes less than four seconds 

on a commodity hardware.  

2.3.  Methods for evaluation of registration accuracy 

2.3.1.   Qualitative evaluation 

Deformation field: The physical plausibility of the registration results are verified by examining the 

computed displacement vector at each voxel of the pre-operative image domain. The deformations are 

computed at voxel centres only for a region of interest near the tumour.  

Overlap of edges: To obtain a qualitative assessment of the degree of alignment after 

registration, one must examine the overlap of corresponding anatomical features of the intra-operative 

and registered pre-operative image. For this purpose, tumours and ventricles in both registered pre-

operative and intra-operative images can be segmented and their surfaces can be compared (Wittek et 

al., 2010).  Image segmentation is time consuming, not fully automated and not suitable for comparing 

a large number of image pairs (Fedorov et al., 2008). Therefore in this paper Canny edges (Canny, 

1986) are used as feature points. Edges are regarded as useful and easily recognizable features, and 

they can be detected using techniques that are automated and fast. Canny edges obtained from the intra-

operative and registered pre-operative image slices are labelled in different colours and overlaid (as 

shown in Section 3.1.2).  
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2.3.2.   Quantitative evaluation 

Edge-based Hausdorff distance: The Hausdorff distance is a popular measure to calculate similarities 

between two images (Huttenlocher, 1993).  It is defined to compare two sets of feature points A and B

. We begin with a definition of the traditional point-based Hausdorff distance (HD) between two 

intensity images I  and J. Let I and J be the binary edge images derived from I  and J respectively, and 

},,{ n1 aa L====A and }{ n1 ,b,b L====B are the set of non-zero points corresponding to the non-zero pixels 

on the edge images. The directed distance between them ),( BAh is defined as the maximum distance 

from any of the points in the first set to the second one: 

(1)argminargmax),(
2



 −=

∈∈
bah

ba BA

BA  

(2)argminargmax),(
2



 −=

∈∈
abh

ab AB

AB  

The HD between the two sets ),( BAH is defined as the maximum of these two directed 

distances: 

)3()),(),,((max),( ABBABA hhH =  

Several improvements of the directed distance have been proposed (Zhao et al., 2005). One of 

them is the percentile Hausdorff distance, which is very useful to delete outliers, and the directed 

distance is defined as: 

(4)argminP),(
2

th

P 



 −=

∈∈
bah

ba BA

BA  

where Pis the Pth percentile of 




 −

∈
2

argmin ba
b B

.  

The above definition of Hausdorff distance sets an upper-limit on the dissimilarities between 

two images. It implies that the value indicated by Eq. 3 generally comes from a single pair of points. 
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The other point pairs have a distance less than or equal to that value. Such a measure is very useful for 

template based image matching. However, while measuring the misalignments between two medical 

images, it is desirable to calculate the distance between local features (in the case of brain MRI contour 

lines of tumour, ventricles etc.) in two images that correspond to each other. To calculate such a 

distance we define the edge-based Hausdorff distance. 

We define directed distance between two sets of edges as 

(5)argminargmax),( 






 −=
∈∈

e

j

e

i
ba

ee

e bah
ee

j
ee

i BA

BA  

where }{ e
m

e
1

e ,a,a L====A and }{ e
n

e
1

e ,b,b L====B are two sets of edges. 

The quantity e
j

e
i ba −−−− in Eq. 5 is nothing but the point based Hausdorff distance between two 

point sets }{ p1 ,m,m L====M  and }{ q1 ,t,t L====T representing edges eia  and e
ib  respectively, 

)6()),(),,((max)(: TMMT hhbadba e

j

e

i

e

j

e

i =−=−  

Now the edge-based Hausdorff Distance is defined as  

)7()),(),,((max),( ee

e

ee

e

ee

e hhH ABBABA =  

Similar to the percentile point-based Hausdorff distance, one can construct a percentile edge-

based Hausdorff distance:  

(8)argminP),( th

P 






 −=
∈∈

e

j

e

i
ba

ee

e bah
ee

j
ee

i BA

BA  

This percentile edge-based Hausdorff distance (Eq. 8) is not only useful for removing outlier 

edge-pairs, but also can be interpreted in a different way. The Pth percentile Hausdorff distance, ‘D’, 

between two images means that ‘P’ percent of total edge pairs have a Hausdorff distance below D. 

Therefore, instead of reporting only one Hausdorff distance value (using Eq. 7), Eq. 8 can be used to 
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report Hausdorff distance values for different percentiles. A plot of the Hausdorff distance values at 

different percentiles (see Section 3.2) immediately reveals the percent of edges that have 

misalignments below an acceptable error.   

In order to obtain those curves of Hausdorff distance values at different percentiles, each image 

volume was cropped into a region-of-interest (ROI) which encloses the tumour (as mentioned in the 

previous section). These ROI sub-volumes were then super-sampled (0.5 mm x 0.5 mm x 0.5 mm) to 

obtain isotropic voxels. This was done to improve the precision of Canny edge detection(Canny, 1986) 

used in the registration accuracy evaluation process. The sub-volumes were also re-sliced along the 

sagittal plane in an effort to capture misalignments in a direction orthogonal to the axial slices. Then 

the edge-based Hausdorff distance (HD) was used to calculate the misalignment between slices along 

both axial and sagittal directions. The directed distances for all edge pairs (see Eq. 6) were recorded 

and the edge-based Hausdorff distance values at different percentile of directed distances were plotted.  

Pre-processing - Outlier Removal: Although edges are supposed to be representative of 

consistent features present in two separate images, outliers are very common if the intensity ranges of 

the images are different. It is often the case in multi-modal image registration. Therefore, pre-

processing of the extracted edges is required to remove outliers before the edge-based Hausdorff 

distance could be calculated. We used a pre-processing step (Garlapati et al., 2012), called the “round-

trip consistency” procedure that removes the pixels of one image that do not correspond to the other 

image. 
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3. Results  

3.1.  Qualitative evaluation of registration results 

3.1.1   Deformation field 

The deformation fields predicted by the biomechanical model and obtained from the BSpline transform 

are compared in Fig. 7. These deformation fields are three dimensional. However, for clarity, only 

arrows representing 2D vectors (x and y component of displacement) are shown overlaid on 

undeformed pre-operative slices. Each of these arrows represents the displacement of a voxel of the 

pre-operative image domain. In general the displacements fields calculated by the BSpline registration 

algorithm are similar to the predicted displacements by the biomechanical model at the outer surface of 

the brain.  But in the interior of the brain volume the displacements vectors differ in both magnitude 

and direction. In three of the cases (cases 8, 11 and 12) the difference in the displacement fields is 

smaller compared to the other cases.   

3.1.2.   Overlap of Canny edges  

From Fig. 8 we can see that misalignments between the edges detected from the intra-operative images 

and the edges from the pre-operative images updated to the intra-operative brain geometry are much 

lower for the biomechanics-based warping than for BSpline registration. The edges obtained from the 

images warped with both registration algorithms have higher similarity for cases 8, 11 and 12 than the 

other cases. It is due to the fact that the deformation fields predicted using the biomechanical model 

and BSpline registration have higher similarity for these three cases. For instance, large misalignments 

between the edges obtained from the intra-operative image and edges from the pre-operative image 

registered using BSpline algorithm can be observed for Case 2. For this case there was a large intra-  
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Figure 7. The predicted deformation fields overlaid on an axial slice of pre-operative image. An arrow 

represents a 2D vector consisting of the x (R-L) and y (A-P) components of displacement at a voxel 

centre. Green arrows: deformation field predicted by biomechanical model. Red arrows: deformation 

field calculated by BSpline algorithm. The number on each image denotes a particular neurosurgery 

case.    
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Figure 8. Canny edges extracted from intra-operative and the registered pre-operative image slices 

overlaid on each other. Red colour represents the non-overlapping pixels of the intra-operative slice 

and blue colour represents the non-overlapping pixels of the pre-operative slice. Green colour 

represents the overlapping pixels. The number on each image denotes a particular neurosurgery case. 

For each case, the left image shows edges for the biomechanics-based warping and the right image 

shows edges for the BSpline-based registration. 
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operative brain shift (8mm) and the deformation field obtained using BSpline algorithm significantly 

differs from deformation predicted using biomechanical model. It is an indication that the 

biomechanics-based warping may perform more reliably than the BSpline registration algorithm if 

large deformations are involved.  

3.2. Quantitative evaluation of registration results 

The percentile vs. Hausdorff distance (HD) curve provides an estimation of the percentage of edges 

that were successfully registered in the registration process. As accuracy of the edge detection is 

limited within the image resolution, an alignment error smaller than two times the original in-plane 

resolution of the intra-operative image (which is 0.8594 mm for the thirteen cases considered) is 

difficult to avoid. Hence, for thirteen clinical cases analyzed here, we considered any edge pair having 

HD value less than 1.7 mm be successfully registered. It is obvious from Fig. 9 and 10 that 

biomechanical warping was able to successfully register more edges than the BSpline registration for 

all thirteen cases. 

Percentiles of edges successfully registered by two registration algorithms (i.e. warping using 

biomechanical model and BSpline registration) for each analyzed case are listed in Table 1. The 

percentile of successfully registered edge is slightly higher for image warping using biomechanical 

model than that for BSpline registration (with an exception for Case 7). It can be noted that the 

Hausdorff distance values in the sagittal plane are generally higher than those in the axial plane. This is 

most likely caused by the interpolation artefact (due to the poor resolution in the sagittal plane) 

introduced in the re-slicing process. 

For all thirteen cases, the percentiles vs. HD curves tend to rise steeply around 90 percentile. 

Hence, it can be safely assumed that most edge pairs that lie between 91 and 100 percentile do not have 
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any correspondence (possible outliers).  The 90-percentile HD values for five cases are listed in Table 

2. 

Table 1.  Percentile of edges successfully registered for thirteen patient specific cases. 

Case 
Percentile of edges successfully registered 

Axial Slices Sagittal Slices  
Biomechanics BSpline Biomechanics BSpline 

‘1’ 70 63 61 47 
‘2’ 56 45 38 41 
‘3’ 54 29 54 33 
‘4’ 66 54 67 46 
‘5’ 58 45 54 33 

‘6’  59 51 58 53 

‘7’  75 81 61 76 

‘8’  75 70 69 65 

‘9’  52 43 52 46 

‘10’  61 55 61 57 

‘11’  82 77 81 62 

‘12’  63 59 58 60 

‘13’  81 67 82 62 
 

Table 2.  90 percentile Hausdorff distance values for five patient specific cases. 

Case 
Non-rigid registration algorithm 

Axial Slices Sagittal Slices 
Biomechanics BSpline Biomechanics BSPline 

‘1’ 2.43 mm 2.75 mm 2.75 mm 3.54 mm 
‘2’ 2.43 mm 3.36 mm 2.72 mm 3.87 mm 
‘3’ 2.19 mm 3.10 mm 2.43 mm 3.44 mm 

‘4’ 2.15 mm 2.75 mm 2.15 mm 2.61 mm 
‘5’ 2.58 mm 3.36 mm 2.58 mm 3.87 mm 

‘6’  3.14 mm 3.44 mm 3.32 mm 3.75 mm 

‘7’  2.34 mm 2.15 mm 2.39 mm 2.34 mm 

‘8’  2.34 mm 2.73 mm 2.34 mm 2.96 mm 

‘9’  3.00 mm 4.03 mm 3.66 mm 4.32 mm 

‘10’  2.73 mm 3.14 mm 2.85 mm 3.41 mm 

‘11’  1.99 mm 2.52 mm 2.10 mm 2.65 mm 

‘12’  2.81 mm 3.28 mm 3.14 mm 3.78 mm 

‘13’  1.99 mm 2.85 mm 1.99 mm 2.65 mm 
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Figure 9. The plot of Hausdorff distance between intra-operative and registered pre-operative images 

against the percentile of edges for axial slices. The horizontal line is the 1.7 mm mark.  
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Figure 10. The plot of Hausdorff distance between intra-operative and registered pre-operative images 

against the percentile of edges for sagittal slices. The horizontal line is the 1.7 mm mark. 
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4. Discussions 

From the results presented in Section 3 it is evident that application of the intra-operative deformation 

predicted using patient-specific biomechanical model (Wittek et al., 2010) to warp pre-operative 

images ensures slightly higher registration accuracy than that of 3D Slicer BSpline registration module. 

Biomechanical models are especially effective in neurosurgery cases where intra-operative brain shift 

is large (Case 2 for instance). Another distinctive advantage of the biomechanical algorithm is that it 

does not need the intra-operative image at all to compute deformation. Only the displacement of a 

limited number of points on the exposed (during craniotomy) intra-operative brain surface is required. 

Such displacement can be determined from 3D ultrasound or 3D laser range imaging (Ji et al., 2011), or 

even measured during the surgery using a tracked pointer tool available e.g. within the Stealth system 

(Medtronic, 2010), with which the surgeon can touch a number of points on the brain surface. For 

image warping using the intra-operative brain deformation predicted from patient-specific 

biomechanical model, the required amount of intra-operative data points is reduced by four orders of 

magnitude compared to BSpline registration (see Table 3).  

Table 3.  Number of points of intra-operative geometry required for numerical computation. 

Case 
Data Requirement (No. of points) 

Biomechanics BSpline 
‘1’ 322 3.932x106 

‘2’ 328 3.932x106 

‘3’ 171 3.932x106 
‘4’ 134 3.932x106 
‘5’ 63 3.932x106 

‘6’  228 3.932x106

 ‘7’  348 3.932x106

 ‘8’  511 3.932x106

 ‘9’  223 3.932x106

 ‘10’  363 3.932x106

 ‘11’  276 3.932x106

 ‘12’  312 3.932x106

 ‘13’  138 3.932x106
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We chose widely used BSpline implementation available in 3D Slicer. It may be argued that 

better implementations exist. However, without a doubt 3D Slicer’s implementation is widely used and 

considered reliable. To strengthen the conclusions of this work an alternative implementation and 

alternative algorithms for image-based alignment should be evaluated in future work. 

We believe that the results presented in this paper have the potential to significantly advance the 

way imaging is used to guide the resection of brain tumours. Presently, our experience has 

demonstrated the great utility of intra-operative MRI in ensuring complete resection, particularly of low 

grade tumours. However, this often comes at the expense of significantly longer operating times, as 

well as being resource intense.  For example, the decision to acquire a new volumetric image requires 

expertise from technologists, radiologists, and others. At hospitals that have at their disposal the intra-

operative MRI, the ability to know when imaging is needed, as well as the potential reduction in the 

number of imaging acquisitions promises to make intra-operative MRI a much more effective and 

efficient technique. 

Even more importantly, we believe that the use of comprehensive biomechanical computations 

in the operating theatre may present a viable and economical alternative to intra-operative MRI. The 

brain deformation modelling algorithms proposed here may lead the way towards allowing updated 

representations of the brain position even without intra-operative MRI and therefore bring the success 

of image-guided neurosurgery to much wider population of sufferers. 
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