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Abstract

In this paper we evaluate the accuracy of warpihgneuro-images using brain deformation
predicted by means of patient-specific biomechdnioadel against the registration using
BSpline-based free form deformation algorithm. Walithe Bspline algorithm, biomechanics-
based registration does not require a very expertshacquire intra-operative MR image. Only
sparse intra-operative data on the brain surfasaffgcient to compute deformation for the whole
brain. In this contribution the deformation fieldbtained from both methods are qualitatively
compared and overlaps of Canny edges extracted tlienmages are examined. We also define
an edge based Hausdorff distance metric to qutinéila evaluate the accuracy of registration for
these two algorithms. The qualitative and quantigaevaluations indicate that biomechanics-
based registration algorithm, despite using mush iIeput data, has higher registration accuracy
than that of the BSpline algorithm.

Keywords: Non-rigid registration, Image-guided neurosurgdntra-operative MRI, Biomechanics,

BSpline, Edge detection, Hausdorff distance, Exalnaof accuracy.
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1. Introduction

Our overall objective is to significantly improvénet efficacy and efficiency of image-guided
neurosurgery for brain tumours by incorporatindistia computation of brain deformations, based on
a fully non-linear biomechanical model, in a systenmprove intra-operative visualisation, navigati
and monitoring. The system will create an augntentmlity visualisation of the intra-operative
configuration of the patient’s brain merged witlgthiresolution pre-operative imaging data, including
functional magnetic resonance imaging and diffudiemsor imaging, in order to better localise the
tumour and critical healthy tissues.

In this paper we are especially interested in irg@gded surgery of cerebral gliomas.
Neurosurgical resection is the primary therapeitiervention in their treatment (Black, 1998). Near
total surgical removal is difficult due to the urnteenty in visual distinction of gliomatous tisstrem
adjacent healthy brain tissue. More complete tunmtearoval can be achieved through image-guided
neurosurgery that uses intra-operative MRIs for rowpd visualization (Warfield, 2005). The
efficiency of intra-operative visualization and nitonng can be significantly improved by fusing hig
resolution pre-operative imaging data with theardperative configuration of the patient’s braihisT
can be achieved by updating the pre-operative in@agiee current intra-operative configuration oé th
brain through registration. However, brain shiftcacs during craniotomy (due to several factors
including the loss of cerebrospinal fluid (CSF)aobing pressure balances due to the impact of
physiological factors and the effect of anaestisetand mechanical effects such as the impact of
gravity on the brain tissue, and resection of 83snd hence should be accounted for while register
the images.

Intra-operative MRI scanners are very expensivedateh cumbersome. Hardware limitations

of these scanners make it infeasible to achievquért whole brain imaging during surgery. The pre-



operative MRI must be updated frequently duringdberse of the surgical intervention as the brain i
changing. An alternative approach is to acquirey vapid sparse intra-operative data and predict the
deformation for the whole brain. To achieve this dexeloped a suite of algorithms based on brain
tissue biomechanics for real-time estimation ofwle brain deformation from sparse intra-opegativ
data (Joldes et al., 2010, Joldes et al., 2011).

The aim of this report is to demonstrate that oew ralgorithms, due to their utilisation of
fundamental physics of brain deformation, and tleéficient realisation in software, should enahie a
least as accurate registration of high quality guerative images onto the intra-operative positbn
the brain as is now possible with intra-operativ&klVand state of the art non-rigid registration
algorithm. We compare the accuracy of registratiesults obtained from two algorithms — (1)
biomechanics-based Total Lagrangian Explicit dymam(TLED) algorithm (Joldes et al., 2009Db,
Joldes et al., 2010, Joldes et al., 2011), that asly the intra-operative position of the exposedace
of the brain; and (2) BSpline-based free form defatton (FFD) algorithm (Rueckert et al., 1999) as
implemented in 3D Slicer, that uses an intra-opegatIR| as a target image. We present results for
thirteen neurosurgery cases that represent diffesgnations which may occur during surgery as
characterized by tumours located in different paftshe brain. The accuracy of these algorithms is
compared qualitatively by viewing and exploring tb@lculated deformation fields and overlap of
edges detected from MRI images. In addition, tlygsteation error for each algorithm is also estiedat

guantitatively by means of a novel edge-based Hatfsdistance measure (Garlapati et al., 2012).



2. Methods

2.1. Non-rigid pre-operative to intra-operative registration using BSpline algorithm

Free form deformation (FFD) is a powerful tool fapodelling 3D deformable objects and widely used
in image morphing(Lee et al., 1995) and scatter@d thterpolation (Lee et al., 1997, Ruprecht and
Muller, 1993). The basic idea of FFD is to deformabject by manipulating the underlying grid of
control points (Rueckert et al., 1999). In orderstooothly propagate the user specified valueseat th
control points throughout the domain of the imagdSpline based FFD algorithm was proposed by
Lee et al.(Lee et al., 1997) The BSpline algorithas later adapted by (Rueckert et al., 1999) for- no
rigid registration of medical images. Since thea BSpline algorithm has become one of the most
widely used non-rigid registration algorithm for digal images (Kybic et al., 2000, Kybic and Unser,
2003, Ronhlfing et al., 2003, Schnabel et al., 2001)

The basic components of an image-based registralgorithm (Hill and Batchelor, 2001),
used also by BSpline—based methods, are presemnkegl. il. The moving (pre-operative) image ) is
transformed using the chosen transformaflofin this case the displacements of control poitds)
obtain the transformed imaggM). The transformed image is then compared with bkedf (intra-
operative) imageH) based on a chosen similarity meas8reThis similarity metric is used by an
optimizer to find the parameters of the transfolnat iminimizes the difference between the moving and
fixed image. An optimization loop is therefore reeqd, which changes the transform parameters to

find the best agreement between the fixed and ngawage.
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Figure 1. Basic components of a general image based registiatocess.

Below the implementation of this algorithm in 3Dic8l is described briefly. A number of
factors influencing the registration results forage guided-neurosurgery are also discussed in the
following subsection.

Estimation of probability densities: The most commonly used similarity measu@, (., ) in
multi-modal non-rigid registration is mutual infoaton. Calculation of mutual information between
the target and the transformed source image rexjthee values of the marginal and joint probability
densities (PDF) of image intensities. These pribibaldensities are usually not readily known;
therefore they must be estimated from discrete @rdamta. In 3D Slicer the probability densities are

estimated using Parzen windows (Thevenaz and Urd$97). In this scheme, the densities are

constructed by taking limited number of intensiggymples S from the images and super-imposing a
kernel functionK centred or§ .

Implementation of similarity measure: The similarity measure used in 3D Slicer BSpline
registration module is the definition of mutual anhation used in (Mattes et al., 2001). In this
implementation, the joint and marginal probabildgnsities are estimated from a set of intensity
samples drawn from the images. A zero-order BSMareel is used to estimate the PDF of the target
image intensities. On the other hand, cubic BSpteamel is used to estimate the source image PDF

(Mattes et al., 2003).



2.1.1 BSpline registration for image-guided resurgery

In the case of image-guided neurosurgery wheregtheoperative image is required to be registered
with the intra-operative (after craniotomy is peni@d) image, the Bspline registration algorithmefac
a number of challenges. First of all, the largdedénce in intensities between the pre-operativee an
intra-operative MRI often influences the regiswatresult. Intensity normalization between the seur
and target image is required to achieve decenstragjon results. Secondly, the presence of skithe
intra-operative image makes the registration podifficult and can induce large error in the
registration of soft tissues. In order to achiesedjalignment skull must be stripped from bothphe
and intra-operative images. In addition, settingappropriate set of parameters (density of control
point grid, number of spatial samples and numbdristogram bins) for a particular registration case
requires expert knowledge. Without performing prope-processing steps and appropriate parameter
setting it is extremely difficult to obtain reasdia results from a BSpline registration algoritiivie
carried out a single study to find the effects lté pre-processing steps on the registration reaslts
well as to select the appropriate control point Imdensity. Effect of these factors on the quality o
registration is demonstrated below on a patientifipease.

Effect of skull stripping: Fig. 2 shows the effect of skull stripping (through segta@on) on
the registration result. When no stripping is perfed fig. 2a), large misalignment between the intra-
operative and registered pre-operative brain coatcan be observed. However, the contours of the
ventricles show higher degree of alignment. Ondtier hand when stripping is performédg( 2b),
the misalignment between brain contours decreasethb misalignment between ventricle contours
increases. It is an indication that the BSplineistegtion favours larger anatomical regions (brain

parenchyma) over smaller regions (ventricles anabturs).



Figure 2. Effect of skull segmentation on registration res(dt) Before skull segmentation and (b)

After skull degmentation. The intra-operative amd-pperative contours are overlayed on the intra-
operative axial slice. Colour codes: Light bluedsha ventricles in the intra-operative image; Light
blue contour — outline of parenchyma in the intp@mtive image; Majenta contours — outlines of
parenchyma and ventricles in the pre-operative @rtafore registration; White contours - outlines of
parenchyma and ventricles in the pre-operative evedter registration. 50000 spatial samples and a 1

x 10 x 10 control point grid is used for both cases

Effect of control point mesh density: Fig. 3shows the effect of control point mesh density on
registration result. As the control point mesh dgnis increased, the alignment of brain contours
improves but the alignment of ventricle contoursrdases. At a 20 x 20 x 20 control gridg. 3¢ the
alignment of brain contours is very good, but thgnanent of ventricles is very poor. This resulbay
indicates the bias of the registration algorithmvacds larger anatomic regions. We concluded tH4t a

x 10 x 10 control point grid yields best results.
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Figure 3. Effect of control point mesh density on registrati@sult: (a) Mesh Density 5 x 5 x 5, (b)
Mesh Density 10 x 10 x 10 and (c) Mesh Density 2Z20xx 20. The intra-operative and pre-operative
contours are overlayed on the intra-operative astiaé. Colour codes: Light blue shade — ventriates
the intra-operative image; Light blue contour —lioet of parenchyma in the intra-operative image;
Majenta contours — outlines of parenchyma and wd@e$ in the pre-operative image before
registration; White contours - outlines of parermolayand ventricles in the pre-operative image after

registration. In all three cases skulls are strp»®000 spatial samples are used for all threescas

Effect of intensity normalization: In this pre-processing step the intensity of thages were
normalized by N4 algorithm(Tustison et al., 2016) bias field correction followed by histogram
equalization. Although intensity normalization doex affect the alignment of brain contours muth, i

significantly improves the alignment of the venticontours Fig. 4b).
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Figure 4. Effect of intensity normalization on registratioesult: (a) and (b). The intra-operative and
pre-operative contours are overlayed on the inperative axial slice. Colour codes: Light blue shad
— ventricles in the intra-operative image; Lightidlcontour — outline of parenchyma in the intra-
operative image; Majenta contours — outlines oepenyma and ventricles in the pre-operative image
before registration; White contours - outlines afgmchyma and ventricles in the pre-operative image
after registration. In both cases skulls are sath®b0000 spatial samples and 10 x 10 x 10 cogtidl

are used for both cases.

2.2. Biomechanics-based prediction of deformations using only the information of the exposed

brain surface

Unlike the BSpline registration algorithm, biomentts-based registration methods do not require an
intra-opearive image to update the pre-operativagen(seeFig. 5. The pre-operative image is
segmented first to extract the antomical featufdaterest. Based on this segmentation (which can b
acquired days before the surgery) a computationdl (ghesh) is generated. A biomechanical model
further is defined by incorporating boundary coiulis (contact between skull and brain for example)
and material properties for each tissue types. iMoelel is completed by defining the loading

conditions. This loading informations are generalbtained from sparse intra-operative information
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(such as surface deformation at the area of cramipt Once the model is constructed, a solvertéini
element or meshless) is used to compute the tnanstehich is then applied to warp the pre-operative
image. The warping procedure requires the mappimmpmts in the moving (pre-operative) image to
new locations in the transformed image. The intgnef the points in the transformed image is
determined by interpolating intensities of the esponding points in the moving image. In the
following subsections the non-linear finite elemaigorithm proposed by Joldes et al (Joldes et al.,

2009b) to predict the intra-operative brain stafbriefly described.

Boundary
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Figure 5. Registration process based on a biomechanical model

2.2.1. Construction of finite element mesh fdrgra-specific brain models

A three dimensional (3D) surface model of eachegndts brain was created from segmented pre-
operative magnetic resonance image (MRI). The satatien was done using the region growing
algorithm implemented in 3D slicer. The meshesenaynstructed using low-order elements (linear
tetrahedron or hexahedron) to meet the computaitioa requirement. To prevent volumetric locking

the tetrahedral elements with average nodal pres@ikP) formulation (Joldes et al., 2009d) was
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used. The meshes were generated using IA-FEMesbsl@gad et al., 2009) and HyperMesh
(commercial FE mesh generator by Altair of Troy,, MISA). A typical mesh (Case 1) is shown in
Fig. 6. This mesh consists of 14447 hexahedral elem2BE&53 tetrahedral elements and 18806 nodes.

Each node in the mesh has three degrees of freedom.
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Figure 6. Typical example (Case 1) of a patient-specific mash for this study.

2.2.2. Displacement loading

The models were loaded by prescribing displacemamtthe exposed part (due to craniotomy) of the
brain surface. At first the pre-operative and irdpeerative coordinate systems were aligned by rigid
registration. Then the displacements at the medesitocated in the craniotomy region were estimated
with the interpolation algorithm we described ieyous publication (Joldes, 2009d).

2.2.3 Boundary conditions

The stiffness of the skull is several orders of miagle higher than that of the brain tissue. Thaeef

in order to define the boundary conditions for theexposed nodes of the brain mesh, a contact
interface (Joldes et al., 2008d) was defined betwibe rigid skull model and the deformable brain.
The interaction was formulated as a finite slidifigztionless contact between the brain and thédl.sku
This contact formulation prevents the brain surflacen penetrating the skull by checking the nodies o

the brain mesh for penetration (Joldes et al., 2D08
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2.2.4. Mechanical properties of the intracranganstituents

If geometric non-linearity is considered (Wittekagt 2009), the predicted deformation field witlie
brain is only weakly affected by the constitutivedsl! of the brain tissue. Therefore, for simplicty
hyper-elastic Neo-Hookean model was used (Joldes.,e2009a). The Young's modulus of 3000 Pa
was selected for parenchyma (Miller and ChinzeiQ2)0 The Young's modulus for tumour was
assigned two times larger than that for parenchy®eping it consistent with the experimental ddta o
(Sinkus et al., 2005). As the brain tissue is alnmsompressible, Poisson’s ratio 0.49 was chosen f
the parenchyma and tumour (Wittek et al., 2007)loang (Wittek et al., 2007) The ventricles were
assigned properties of a very soft compressiblstielsolid with Young’s modulus of 10 Pa and
Poisson'’s ratio of 0.1.

2.2.5. Solution algorithm

An efficient algorithm for integrating the equatsoaf solid mechanics has been developed by Jotdes e
al (Miller et al., 2007). The computational effio@y of this algorithm is achieved by using - 1) dlot
Lagrangian (TL) formulation (Miller et al., 2007rfupdating the calculated variables; and 2) Explic
Integration in the time domain combined with masspprtional damping. In the TL formulation, all
the calculated variables (such as displacementstaaiths) are referred to the original configuratad
the analyzed continuum (Joldes et al., 2009c). démsive advantage of this formulation is that all
derivatives with respect to spatial coordinates leampre-computed. The Total Lagrangian formulation
also leads to a simplification of material law implentation as these material models can be easily
described using the deformation gradient (Joldes. €2009b).

The integration of equilibrium equations in timenokn was performed using explicit method.
In explicit time integration, the displacementiatat+ At (whereAt is the time step) is solely based on

the equilibrium at timd. Therefore, no matrix inversion and iterations egquired when solving
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nonlinear problems. Application of explicit timetegration scheme reduces the time required to
compute the brain deformations by two orders of mtage in comparison to implicit integration
typically used in commercial finite element codiés IABAQUS (ABAQUS, 1998). This algorithm is
also implemented in GPU (NVIDIA Tesla C1060 instdllon a PC with Intel Core2 Quad CPU) for
real-time computation (Joldes et al., 2010) so tiatentire model solution takes less than fouoisés

on a commodity hardware.

2.3. Methodsfor evaluation of registration accuracy

2.3.1. Qualitative evaluation

Deformation field: The physical plausibility of the registration rasuare verified by examining the
computed displacement vector at each voxel of theoperative image domaifihe deformations are
computed at voxel centres only for a region ofreéénear the tumour.

Overlap of edges: To obtain a qualitative assessment of the degifealignment after
registration, one must examine the overlap of apwading anatomical features of the intra-operative
and registered pre-operative image. For this papasnours and ventricles in both registered pre-
operative and intra-operative images can be segdeamd their surfaces can be compared (Wittek et
al., 2010). Image segmentation is time consumog fully automated and not suitable for comparing
a large number of image pairs (Fedorov et al., 20U0Berefore in this paper Canny edges (Canny,
1986) are used as feature points. Edges are rehasleseful and easily recognizable features, and
they can be detected using techniques that arenated and fast. Canny edges obtained from the intra
operative and registered pre-operative image skreslabelled in different colours and overlaid (as

shown inSection 3.1.2
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2.3.2. Quantitative evaluation

Edge-based Hausdorff distanceThe Hausdorff distance is a popular measure taltzke similarities
between two images (Huttenlocher, 1993). It israbef to compare two sets of feature poiAtand B

. We begin with a definition of the traditional pbibased Hausdorff distance (HD) between two
intensity images$ andJ. Letl andJ be the binary edge images derived froandJ respectively, and

A ={a,,---,a,} and B ={b,,--- ,b,} are the set of non-zero points corresponding tatrezero pixels
on the edge images. The directed distance betwesn (A,B)is defined as the maximum distance

from any of the points in the first set to the setone:

h(A,B) = argﬂrya{ar%ﬂr?in” a—b||2} (1)

h(B,A) = arggga{argﬂr/pin” b—a||2} 2)

The HD between the two setid (A,B)is defined as the maximum of these two directed
distances:
H(A,B) = max(h(A,B),h(B,A)) &)
Several improvements of the directed distance teesn proposed (Zhao et al., 2005). One of
them is the percentile Hausdorff distance, whiclvasy useful to delete outliers, and the directed

distance is defined as:
h,(A,B) =P" [argmin” a—b||2} (4)
alA bOB

where Pis the P percentile ov{argmin” a—b||2]

bOB
The above definition of Hausdorff distance setsupper-limit on the dissimilarities between

two images. It implies that the value indicatedHxy. 3 generally comes from a single pair of points.
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The other point pairs have a distance less thagoal to that value. Such a measure is very usaful
template based image matching. However, while megsithe misalignments between two medical
images, it is desirable to calculate the distarete/éen local features (in the case of brain MRkaon
lines of tumour, ventricles etc.) in two imagesttiarrespond to each other. To calculate such a
distance we define the edge-based Hausdorff distanc

We define directed distance between two sets oéd®dg

h,(A°,B°) :argma{argmin‘ a’—b’ } 5)
bfOB®

aflA°

where A® ={a},---,a%}andB® ={b;,--- b} are two sets of edges.
1 m 1 n

The quantity

a’ —bf

in Eq. 5is nothing but the point based Hausdorff distapesveen two

point setsM ={m, ,---,m,} and T ={t, ,---,t,} representing edges® andb’® respectively,

Now the edge-based Hausdorff Distance is defined as

a’—b’|:=d(a -b) =max(h(T,M),h(M,T)) 6)

H.(A®,B*) = max (h,(A*,B*),h,(B*,A%)) )
Similar to the percentile point-based Hausdorftatise, one can construct a percentile edge-

based Hausdorff distance:

3’ -b;

h,.(A%,B%) = P" {argmin‘ } (8)
a'lA®l  bOB®

This percentile edge-based Hausdorff distart® @) is not only useful for removing outlier
edge-pairs, but also can be interpreted in a diffewvay. The B percentile Hausdorff distance, ‘D,
between two images means that ‘P’ percent of tedigle pairs have a Hausdorff distance below D.

Therefore, instead of reporting only one Hausddigtance value (usingq. 7), Eg. 8 can be used to
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report Hausdorff distance values for different patdes. A plot of the Hausdorff distance values at
different percentiles (see&ection 3.2 immediately reveals the percent of edges thatehav
misalignments below an acceptable error.

In order to obtain those curves of Hausdorff diseamalues at different percentiles, each image
volume was cropped into a region-of-interest (R@ijich encloses the tumour (as mentioned in the
previous section). These ROI sub-volumes were fuper-sampled (0.5 mm x 0.5 mm x 0.5 mm) to
obtain isotropic voxels. This was done to imprdwe precision of Canny edge detection(Canny, 1986)
used in the registration accuracy evaluation pmcé&éhe sub-volumes were also re-sliced along the
sagittal plane in an effort to capture misalignmseinta direction orthogonal to the axial sliceseifh
the edge-based Hausdorff distance (HD) was usedltulate the misalignment between slices along
both axial and sagittal directions. The directestatices for all edge pairs (Séq. 6) were recorded
and the edge-based Hausdorff distance valuesfatatit percentile of directed distances were pibtte

Pre-processing - Outlier Removal:Although edges are supposed to be representative of
consistent features present in two separate imagigers are very common if the intensity rangés o
the images are different. It is often the case inltiimodal image registration. Therefore, pre-
processing of the extracted edges is required taove outliers before the edge-based Hausdorff
distance could be calculated. We used a pre-primgestep (Garlapati et al., 2012), called the “rdun
trip consistency” procedure that removes the pixélsne image that do not correspond to the other

image.
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3. Results

3.1. Qualitative evaluation of registration results

3.1.1 Deformation field

The deformation fields predicted by the biomechalnicodel and obtained from the BSpline transform
are compared irig. 7. These deformation fields are three dimensionaweler, for clarity, only
arrows representing 2D vectors (x and y componéniisplacement) are shown overlaid on
undeformed pre-operative slices. Each of thesenarm@presents the displacement of a voxel of the
pre-operative image domain. In general the dispherds fields calculated by the BSpline registration
algorithm are similar to the predicted displaceradt the biomechanical model at the outer surfdce o
the brain. But in the interior of the brain volurtiee displacements vectors differ in both magnitude
and direction. In three of the cases (cases 8,ntil12) the difference in the displacement fields is

smaller compared to the other cases.

3.1.2. Overlap of Canny edges

FromFig. 8 we can see that misalignments between the edgestel@ from the intra-operative images

and the edges from the pre-operative images updatéte intra-operative brain geometry are much
lower for the biomechanics-based warping than f8plBhe registration. The edges obtained from the
images warped with both registration algorithmsenbigher similarity for cases 8, 11 and 12 than the
other cases. It is due to the fact that the deftondields predicted using the biomechanical model
and BSpline registration have higher similarity foese three cases. For instance, large misaligismen
between the edges obtained from the intra-operatnsge and edges from the pre-operative image

registered using BSpline algorithm can be obsefoe@ase 2. For this case there was a large intra-
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Figure 7. The predicted deformation fields overlaid on arabslice of pre-operative image. An arrow
represents a 2D vector consisting of the x (R-LJ &n(A-P) components of displacement at a voxel
centre. Green arrows: deformation field predictgdolomechanical model. Red arrows: deformation
field calculated by BSpline algorithm. The number @ach image denotes a particular neurosurgery

case.
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Figure 8. Canny edges extracted from intra-operative andréiggstered pre-operative image slices
overlaid on each other. Red colour represents timeoverlapping pixels of the intra-operative slice
and blue colour represents the non-overlapping Ipix# the pre-operative slice. Green colour
represents the overlapping pixels. The number ch @aage denotes a particular neurosurgery case.
For each case, the left image shows edges for itmaechanics-based warping and the right image
shows edges for the BSpline-based registration.

22



operative brain shift (8mm) and the deformationdfiebtained using BSpline algorithm significantly
differs from deformation predicted using biomeclecahi model. It is an indication that the
biomechanics-based warping may perform more relizdivhn the BSpline registration algorithm if

large deformations are involved.

3.2. Quantitative evaluation of registration results

The percentile vs. Hausdorff distance (HD) curvevptes an estimation of the percentage of edges
that were successfully registered in the regisimaforocess. As accuracy of the edge detection is
limited within the image resolution, an alignmemtoe smaller than two times the original in-plane
resolution of the intra-operative image (which i8394 mm for the thirteen cases considered) is
difficult to avoid. Hence, for thirteen clinical ®as analyzed here, we considered any edge pamdavi
HD value less than 1.7 mm be successfully regidtefe is obvious fromFig. 9 and 10 that
biomechanical warping was able to successfullystegimore edges than the BSpline registration for
all thirteen cases.

Percentiles of edges successfully registered byregestration algorithms (i.e. warping using
biomechanical model and BSpline registration) fache analyzed case are listedTiable 1 The
percentile of successfully registered edge is #igghigher for image warping using biomechanical
model than that for BSpline registration (with axception for Case 7). It can be noted that the
Hausdorff distance values in the sagittal planegareerally higher than those in the axial planas Th
most likely caused by the interpolation artefactigdo the poor resolution in the sagittal plane)
introduced in the re-slicing process.

For all thirteen cases, the percentiles vs. HD esitend to rise steeply around 90 percentile.

Hence, it can be safely assumed that most edge thait lie between 91 and 100 percentile do no¢ hav
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any correspondence (possible outliers). The 90egmite HD values for five cases are listedlable
2.

Table 1. Percentile of edges successfully registeredhiioieien patient specific cases.

Percentile of edges successfully registered
Case Axial Slices Sagittal Slices
Biomechanics BSpline Biomechanics BSpline
‘1 70 63 61 47
2’ 56 45 38 41
‘3’ 54 29 54 33
‘4 66 54 67 46
‘5’ 58 45 54 33
‘6’ 59 51 58 53
‘7 75 81 61 76
‘8’ 75 7C 69 65
‘9’ 52 43 52 46
‘10’ 61 58 61 57
‘1 82 77 81 62
‘12’ 63 5¢ 58 60
‘13’ 81 67 82 62

Table 2. 90 percentile Hausdorff distance values for fratient specific cases.

Non-rigid registration algorithm
Case Axial Slices Sagittal Slices
Biomechanics BSpline Biomechanics| BSPline
‘1 2.43 mm 2.75 mm 2.75 mm 3.54 mm
‘2 2.43 mm 3.36 mm 2.72 mm 3.87 mm
‘3 2.19 mm 3.10 mm 2.43 mm 3.44 mm
q 2.15 mm 2.75 mm 2.15 mm 2.61 mm
‘5’ 2.58 mm 3.36 mm 2.58 mm 3.87 mm
‘6’ 3.14 mn 3.44 mn 3.32 mn 3.75 mn
7 2.34 mn 2.15mn 2.39 mn 2.34 mn
‘g’ 2.34 mn 2.73 mn 2.34 mn 2.96 mn
‘9’ 3.00 mn 4.03 mn 3.66 mn 4.32 mn
‘10’ 2.73 mn 3.14 mn 2.85 mn 3.41 mmr
‘11 1.99 mn 2.52 mn 2.10 mn 2.65 mn
‘12’ 2.81 mn 3.28 mn 3.14 mn 3.78 mn
‘13’ 1.99 mn 2.85 mn 1.99 mn 2.65 mn
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Figure 9. The plot of Hausdorff distance between intra-ofpeeaand registered pre-operative images
against the percentile of edges for axial slicés horizontal line is the 1.7 mm mark.
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Figure 10. The plot of Hausdorff distance between intra-ofreeaand registered pre-operative images

against the percentile of edges for sagittal sli¢ée horizontal line is the 1.7 mm mark.
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4. Discussions

From the results presented in Section 3 it is enideat application of the intra-operative deforioat
predicted using patient-specific biomechanical nho@®ittek et al., 2010) to warp pre-operative
images ensures slightly higher registration acguthan that of 3D Slicer BSpline registration magul
Biomechanical models are especially effective inrasurgery cases where intra-operative brain shift
is large (Case 2 for instance). Another distincinvantage of the biomechanical algorithm is that i
does not need the intra-operative image at alloimpute deformation. Only the displacement of a
limited number of points on the exposed (duringh@Bmy) intra-operative brain surface is required.
Such displacement can be determined from 3D ulimag@r 3D laser range imaging (Ji et al., 2011), or
even measured during the surgery using a trackedgodool available e.g. within the Stealth system
(Medtronic, 2010), with which the surgeon can toachumber of points on the brain surface. For
image warping using the intra-operative brain defation predicted from patient-specific
biomechanical model, the required amount of inpparative data points is reduced by four orders of

magnitude compared to BSpline registration (Eakle 3).

Table 3. Number of points of intra-operative geometry rieegh for numerical computation.

Case . Data quuirement (No. of poin.ts)
Biomechanics BSpline

‘0 322 3.932x16

2’ 328 3.932x16

3’ 171 3.932x16

‘4 134 3.932x16

‘5’ 63 3.932x16

‘6’ 22¢ 3.932x16

7 34¢ 3.932x16

‘g’ 511 3.932x16

‘o 202 3.932x16

10’ 362 3.932x16
11 27€ 3.932x16
12’ 312 3.932x16
13 13¢ 3.932x16
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We chose widely used BSpline implementation avélab 3D Slicer. It may be argued that
better implementations exist. However, without alsta3D Slicer’'s implementation is widely used and
considered reliable. To strengthen the conclusioinghis work an alternative implementation and
alternative algorithms for image-based alignmewousth be evaluated in future work.

We believe that the results presented in this phpee the potential to significantly advance the
way imaging is used to guide the resection of braimours. Presently, our experience has
demonstrated the great utility of intra-operativR Nin ensuring complete resection, particularlya
grade tumours. However, this often comes at theeres® of significantly longer operating times, as
well as being resource intense. For example, #ugsin to acquire a new volumetric image requires
expertise from technologists, radiologists, ancerghAt hospitals that have at their disposal teat
operative MR, the ability to know when imagingnseded, as well as the potential reduction in the
number of imaging acquisitions promises to makeanoperative MRI a much more effective and
efficient technique.

Even more importantly, we believe that the usearhgrehensive biomechanical computations
in the operating theatre may present a viable aothanical alternative to intra-operative MRI. The
brain deformation modelling algorithms proposedehsray lead the way towards allowing updated
representations of the brain position even withotra-operative MRI and therefore bring the success

of image-guided neurosurgery to much wider popaoiatf sufferers.
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