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Abstract 

Residual stress has a great influence on the mechanical behaviour of arterial walls. The 

Uniform Stress Hypothesis has been used to allow the inclusion of the effects of residual 

stress when computing stress distributions in the arterial wall of abdominal aortic aneurysms. 

Nevertheless, the existing methods for including the effects of residual stress are very 

computationally expensive, due to their iterative nature.  

In this paper we present a new method for including the effects of residual stress. Also based 

on the Uniform Stress Hypothesis, the new method is based on the averaging of stresses 

across the thickness of the arterial wall. Being just a post-processing method for computed 

stress distributions, the new method is computationally inexpensive, being better suited for 

clinical applications. The resulting stress distributions and values are very similar to the ones 

returned by the existing iterative methods.  

 

Keywords: Abdominal Aortic Aneurysm; Residual Stress; Finite Element Method; Wall 

Stress  
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1. Introduction and motivation 

 

In this report we present an efficient method to include Residual Stress (RS) in patient 

specific Abdominal Aortic Aneurysm (AAA) wall stress calculations based on the Uniform 

Stress Hypothesis (USH).  

 

An AAA is the consequence of pathogenic remodelling of the lower aortic wall, resulting in a 

gradual ballooning and possible rupture. The most common criterion for surgical repair is a 

diameter exceeding 55 mm. However, the simplicity of this measure masks the complexity of 

the mechanical environment of real AAAs, and in particular it disregards complex additional 

factors such as haemodynamics or wall stress state. In practice, correspondingly, it is a 

relatively poor indicator of rupture likelihood, and can lead to inaccurate and misinformed 

diagnoses (1). It has been found, for example, that 60% of AAAs with diameters larger than 

55 mm do not rupture, while rupture can occur in some AAAs with diameters less than 55 

mm (2,3). Conversely, biomechanics-derived criteria, such as Peak Wall Stress and Peak 

Rupture Risk, may constitute more accurate predictors of AAA rupture (4,5).  

 

RS in arterial walls and its effect on the biomechanical response have been well documented 

(6–9). It is theorised that it develops as a result of wall remodelling wherein 

mechanotransducing cells react to applied loads and, through various cell signalling 

processes, vary wall residual stress through altering protein fibers (commonly elastin and 

collagen) and increase smooth muscle tone to aid in bearing the circulatory pressure (10). As 

a result, the RS in healthy arterial walls is most prominent in the circumferential direction, 

with only a small component in the longitudinal direction. The magnitude of the 

circumferential RS is commonly measured ex vivo using opening angle tests whereby a thin 

segment of the cylindrical wall is cut longitudinally and the angle is measured, as in Figure 1; 

larger opening angles thus indicate higher RS (11,12).  
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Figure 1. Schematic of cross-section of vessel wall during opening angle experiment. The 

wall is cut along the dot-dash line and the corresponding angle θ is measured. 

 

RS is an important component of the wall stress distribution. It must therefore be included for 

wall stress to be an accurate predictor of AAA rupture and, in turn, to replace aneurysm 

diameter as a criterion for surgical repair. In an AAA, the complicated geometry and 

corresponding pathogenic remodelling result in a complex RS distribution, which opening 

angle tests would not accurately capture. In addition, for assessment of AAA rupture in 

patients, non-invasive measurement of RS is required. To this end, Polzer et al. proposed an 

algorithm for patient-specific RS estimation based on the assumption that remodelling-

derived RS results in an even stress distribution across the vessel wall, according to the 

Uniform Stress Hypothesis (USH) (13,14).  Their algorithm estimates residual strains 

iteratively for patient-specific AAAs at given times by using a staggered two-field solution 

approach based on the concept of isotropic volumetric growth. The amount of growth is set 

such as to minimise the stress difference across the wall. In the present work we propose a 

new method for calculating RS based on the USH that is considerably less computationally 

costly, but which achieves similar accuracy to the earlier method. Motivated by the stress 

distribution found by Polzer et al. for a cylindrical artery (13), we assume that RSs act to 

evenly distribute bending stresses across the arterial wall thickness. As bending stresses vary 

asymmetrically, averaging the stress across the wall thickness will create a uniform stress 

field and account for RS in the process (Figure 2). 

θ 

Vessel cut along line 

Artery wall 
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In the following, we detail the USH and Polzer et al.’s approach to RS estimation that derives 

from it. Subsequently, we describe our proposed new approach. We then present our results 

and compare them to those of Polzer et al. Finally, we discuss the results and associated 

conclusions.  

 

Figure 2. Depiction of the vessel wall without and with RS, according to the uniform stress 

hypothesis. 

 

2. Methods 

 

2.1. Hypothesis regarding influence of residual stress on the stress distribution in the 

AAA wall 

The uniform stress hypothesis (USH) states that vascular tissue remodels itself toward a 

preferred stress-strain state, which, in turn, leads to homogenization of stress components 

across the wall (15). This bears similarities to Wolff’s law for bone tissue that states that the 

structure and density of cancellous bone reflect the loads placed on it (16). Various studies 

have supported the USH. Lu et al. introduced a unit step change in blood flow in rat femoral 

arteries to investigate the effect on wall remodeling (17). They found that greater growth in 

the vessel outer wall compared to in the inner wall resulted in the wall opening angle 

decreasing, which is consistent with nonuniform remodeling in the USH. Methods similar to 

those used in opening angle studies have also revealed that circumferential stretches of <1 

and >1 exist at the inner and outer arterial surfaces, respectively (6,18,19), similar to the 

depiction in Figure 1.   

 

 

With RS 
Uniform stress 
across vessel 

wall 

No RS  
Stress increases 
from outer to 

inner wall 
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2.2. Initial estimation of wall stress 

 

The present study used seven AAA patients that underwent Computer Tomography-

Angiography (CT-A) at St. Anne's University Hospital, Brno, Czech Republic, at an in-plane 

resolution of 0.5 mm and a slice thickness of 3 mm. Deformable (active) contour models 

(A4research vers.4.0, VASCOPS GmbH, Austria) were used to reconstruct the 3D geometry 

of AAAs from CT data. After aneurysm segmentation Stereo Lithography (STL) files 

representing the AAA’s geometry (luminal surface, exterior surface, and wall-ILT interface) 

were exported to ICEM CFD (Ansys Inc., US) for FE mesh generation.  The aneurysm wall 

was meshed with tri-linear hexahedral elements (element type SOLID 185, surface element 

size of 3mm, four elements across the thickness) while the ILT was meshed with linear 

tetrahedral elements (element type SOLID 285, element size of 3mm). The very fine ILT 

mesh aimed at overcoming locking phenomena known from linear tetrahedral elements. The 

wall thickness was assumed homogeneous with 𝑡𝑡 = 2𝑚𝑚𝑚𝑚. Mesh generation required 

significant manual interaction and took between four to eight hours for one case.  FE meshes 

were then exported to ANSYS (Ansys Inc., US) for FE computation. 

AAA wall mechanical response differs from healthy arterial wall due to the pathogenic 

remodeling processes altering the density and structure of protein fibers. The AAA wall 

shows more pronounced strain-stiffening and has reduced anisotropy (20).  We therefore 

utilize an incompressible fifth-order Yeoh strain energy density function to capture AAA wall 

mean population properties (21): 

Ψ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = �𝑐𝑐𝑖𝑖(𝐼𝐼1 − 3)𝑖𝑖
5

𝑖𝑖=1

, (1) 

with 𝐼𝐼1 denoting the first invariant of the right Cauchy-Green deformation tensor and 𝑐𝑐𝑖𝑖 being 

stress-like material constants (Table 1). This model was used previously for modeling AAA 

rupture risk with RS (14). The AAA intraluminal thrombus (ILT) has a far more linear stress-

strain response that was previously captured using an Ogden-like strain energy density 

function (14), which we used here also: 

Ψ𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑐𝑐�𝜆𝜆𝑖𝑖4 − 1�,
3

𝑖𝑖=1

 (2) 
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where 𝜆𝜆𝑖𝑖 is the 𝑖𝑖th principal stretch and 𝑐𝑐 is a stress-like material parameter. The ILT is stiffer 

at the luminal than the abluminal side, which is accounted for in this study using the 

parameter values in (Table 1) (22).  

Table 1. Constitutive parameters used in finite element analysis of AAA wall (5th order Yeoh 

model) and ILT (Ogden-like model). 

Wall (kPa) 

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 

5 0 0 2200 13740 

ILT 

𝑐𝑐 (Luminal) 𝑐𝑐 (Abluminal) 

2.62 1.73 

 

The AAA was fixed at the levels of the renal arteries and the aortic bifurcation. The blood 

pressure was gradually increased up to medium arterial pressure (MAP), while, at the same 

time, the zero-pressure configuration was predicted, which typically required about 10 

iterations. 

CT-A modality records the aorta at pulsatile blood pressure, and the images provided, of  

course, do not reflect AAA zero-pressure geometry which is however required for FE 

computation. In order to estimate AAA zero-pressure configuration from CT-A-recorded 

geometry, we used the backward incremental method (23) as modified by (24). Briefly, 

successive intermediate reference configurations were constructed by subtracting the 

computed FE-mesh nodal displacements from the previous reference configuration, i.e. until 

the MAP-loaded model matched the CT-A-recorded geometry.  
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2.3. Existing method of accounting for the influence of residual stress  

Residual stresses can be taken into the account by several approaches. We have slightly 

improved previously published algorithm which is based on multiplicative decomposition of 

the deformation gradient tensor: 

𝐅𝐅 = 𝐅𝐅e𝐅𝐅g (3) 

where Fe and Fg represent elastic and volumetric growth deformation gradients, respectively. 

Furthermore, for Fg it also holds   

𝐅𝐅g = (1 + c)𝐈𝐈, (4) 

where c is an engineering-like growth strain which needs to be prescribed in each iteration to 

minimize stress differences between inner and outer surface. Consequently, the elastic 

deformation gradient is related to the total deformation gradient 𝐅𝐅 according to 

𝐅𝐅e = 𝐅𝐅𝐅𝐅g−1 (5) 

Finally, using standard arguments the Cauchy stress tensor σ  for hyperelastic and 

mechanically incompressible materials reads: 

𝝈𝝈 = 2𝐅𝐅𝐞𝐞
𝜕𝜕 𝛹𝛹
𝜕𝜕𝐂𝐂e

𝐅𝐅eT − 𝑝𝑝𝐈𝐈  , (6) 

where 𝐂𝐂𝐞𝐞 = 𝐅𝐅eT𝐅𝐅e is the elastic right Cauchy-Green deformation tensor, 𝛹𝛹 is the strain energy 

density function and 𝑝𝑝 is the hydrostatic stress. For the considered incompressible material, 

i.e. 𝐽𝐽 = det𝐅𝐅𝐞𝐞 = 1, the hydrostatic pressure is determined by the boundary value problem. 

We modified this algorithm as follow: The stress difference in 1st  iteration at the k-th node 

𝛥𝛥1𝑘𝑘 is used to estimate the growth deformation at the 𝑘𝑘-th node according to 𝑐𝑐2𝑘𝑘 = 0.15 ∙

𝛥𝛥1𝑘𝑘. The growth deformation at the 𝑘𝑘-th node in the i-th iteration is now estimated as a linear 

interpolation of known stress differences resulted from growth prescribed in (i-1) and (i-2) 

iterations: 

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐(𝑖𝑖−1)𝑘𝑘 −
𝑐𝑐(𝑖𝑖−2)𝑘𝑘 − 𝑐𝑐(𝑖𝑖−1)𝑘𝑘

𝛥𝛥(𝑖𝑖−2)𝑘𝑘 − 𝛥𝛥(𝑖𝑖−1)𝑘𝑘
∙ 𝛥𝛥(𝑖𝑖−1)𝑘𝑘 (7) 
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Using Eq. (7) usually results in faster convergence of the residual stress algorithm. The same 

mean stress differences can be obtained in average by 2 iterations faster than when original 

algorithm is used. 

 

2.4. Proposed new method of incorporating the effects of residual stress in the AAA 

wall stress estimation 

The proposed method aims to simplify the above approach by replacing the tissue growth and 

inverse procedure with a simple single step calculation. Considering the simple wall cross-

section shown in Figure 1, in the absence of any RS, the stress along the wall thickness has 

two components: the hoop stress, created by the hoop forces, and the bending stress, 

generated by the bending moments. The average bending stress along the wall thickness is 

zero (as it is created by moments). According to the USH, the stress along the wall thickness 

is constant due to the inclusion of RS. At the same time, the equilibrium of forces has to be 

satisfied; therefore the internal wall forces created by this constant stress have to be the same 

as the hoop forces obtained without the inclusion of RS:  

� 𝜎𝜎�
𝑅𝑅2

𝑅𝑅1
d𝑟𝑟 = � 𝜎𝜎(𝑟𝑟)

𝑅𝑅2

𝑅𝑅1
d𝑟𝑟, (8) 

Therefore, in order to compute the constant stress according to the USH, stresses found 

through finite element analysis are averaged across the vessel wall according to  

𝜎𝜎� =
1
𝑇𝑇
� 𝜎𝜎(𝑟𝑟)
𝑅𝑅2

𝑅𝑅1
d𝑟𝑟, (9) 

where 𝑇𝑇 = 𝑅𝑅2 − 𝑅𝑅1 is the wall thickness and 𝜎𝜎(𝑟𝑟) is the stress component being averaged, 

which is a function of the radial coordinate 𝑟𝑟.  

With a more complicated 3D geometry, the above equations do not really apply. 

Nevertheless, under the assumption that the AAA wall is relatively thin, the hoop stress is the 

main stress occurring in the wall, and the one potentially responsible for the wall rupture. 

Therefore, we apply Eq. (9) to the maximum principal stress component in order to find the 

value of the maximum wall stress under the USH. 

In order to obtain an accurate value of the average stress, the integral term in Eq. (9) is 

computed as a sum of piece-wise integrals evaluated on several smaller sub-intervals of the 

wall thickness, such that 
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𝜎𝜎� =
1
𝑇𝑇
�� 𝜎𝜎(𝑟𝑟)d𝑟𝑟

𝑀𝑀𝑘𝑘

𝑀𝑀𝑘𝑘−1

𝑛𝑛

𝑘𝑘=1

, (10) 

where 𝑀𝑀𝑘𝑘 is the coordinate of the outer boundary of interval 𝑘𝑘 (see Figure 3), and 𝑛𝑛 is the 

number of sub-intervals. We use equal-sized sub-intervals, meaning their lengths are 𝑇𝑇/𝑛𝑛, 

and boundary coordinates are given by: 

𝑀𝑀𝑘𝑘 = �1 −
𝑘𝑘
𝑛𝑛
�𝑅𝑅1 +

𝑘𝑘
𝑛𝑛
𝑅𝑅2. (11) 

On each sub-interval, a two-point Gauss rule is employed, yielding: 

𝜎𝜎� ≈
1
𝑇𝑇
�

𝑀𝑀𝑘𝑘 −𝑀𝑀𝑘𝑘−1

2
�𝜎𝜎𝑘𝑘𝑖𝑖
2

𝑖𝑖=1

𝑛𝑛

𝑘𝑘=1

=
1

2𝑛𝑛
��𝜎𝜎𝑘𝑘𝑖𝑖

2

𝑖𝑖=1

𝑛𝑛

𝑘𝑘=1

, (12) 

where 𝜎𝜎𝑘𝑘𝑖𝑖  is the stress value at Gauss point 𝑖𝑖 within interval 𝑘𝑘. Gauss point coordinates in 

interval 𝑘𝑘 are obtained with standard interval scaling formulae: 

𝐺𝐺𝑘𝑘1 = (1 − 𝑡𝑡)𝑀𝑀𝑘𝑘−1 + 𝑡𝑡𝑀𝑀𝑘𝑘  

𝐺𝐺𝑘𝑘2 = 𝑡𝑡𝑀𝑀𝑘𝑘−1 + (1 − 𝑡𝑡)𝑀𝑀𝑘𝑘  
(13) 

with the position of the points controlled by: 

𝑡𝑡 =
1 −�1

3
2

 
(14) 

 

Figure 3. Schematic detailing the Gauss integration procedure to calculate the average stress 

across the vessel wall. The wall inner radius is given by 𝑹𝑹𝟏𝟏 and the outer radius 𝑹𝑹𝟐𝟐. Sub-

interval 𝒌𝒌 is bounded by coordinates 𝑴𝑴𝒌𝒌−𝟏𝟏 and 𝑴𝑴𝒌𝒌, and 𝝈𝝈𝒌𝒌𝟏𝟏, 𝝈𝝈𝒌𝒌𝟐𝟐 are the stresses interpolated 

at the Gauss points (𝑮𝑮𝒌𝒌𝟏𝟏, 𝑮𝑮𝒌𝒌𝟐𝟐) of this sub-interval. 
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3. Results  

We have analyzed 5 cases of AAA with and without the inclusion of residual stresses. The 

effect of residual stresses has been included using the newly proposed method (Section 2.4), 

as well as the existing method (Section 2.3). In the new method, we used 4 sub-intervals 

across the thickness for accurate integration of stress.  

The effect of including the residual stress in an AAA analysis using the existing method 

(Section 2.3) is shown in Figure 4. This method reduces the differences in stress between the 

interior and exterior walls of the AAA, but does not create a completely uniform stress 

distribution across the wall thickness. 

The newly proposed method assumes a completely uniform stress distribution across the wall 

thickness. A comparison between the results obtained using the existing method and the 

proposed method for handling RS is presented in Figure 5. The results show that the new 

method predicts very similar distributions and levels of stress (Table 2) as the existing 

method. 

 

Figure 4. The effect of including the residual stress in an AAA analysis. Maximum principal 

stress distribution without (left) and with (right) considering residual stress. The residual 

stress has been included using the existing method described in Section 2.3. 
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Figure 5. Stress distributions obtained using the new method for RS inclusion (left), the 

existing method for RS inclusion (middle) and without RS inclusion (right) for 5 cases.  
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Table 2. Maximum stress values (MPa) obtained using the new method for RS inclusion, the 

existing method for RS inclusion and without RS inclusion. 

Case number RS inclusion method 
New method Existing method No RS 

1 0.22 0.21 0.64 
2 0.39 0.39 1.04 
3 0.29 0.35 0.69 
4 0.21 0.21 0.52 
5 0.21 0.19 0.58 

 

4.  Discussion and conclusions 

By using the Uniform Stress Hypothesis, we developed a new method for including the 

effects of residual stress in finite element analysis of AAA. The new method requires only the 

post-processing of a finite element analysis, therefore being very efficient from a 

computational point of view.  

 

To test the proposed method under the most demanding conditions, we have used in our 

experiments a highly non-linear material model, which increases the variation of stress across 

the wall thickness. We have compared the results of using the proposed method against 

results obtained using an existing iterative method on 5 real geometries of AAA. The newly 

proposed method predicts similar stress distribution and values for the maximum principal 

stress, without the computational expense of an iterative method. 

 

The comparative results obtained with and without the inclusion of RS highlight the 

importance RS inclusion has on both the distribution and value of the wall stress. The 

inclusion of RS leads not only to a significant reduction in the maximum stress value, but 

also a different location for the maximum stress areas. Therefore, the inclusion of RS has a 

great influence on AAA rupture prediction.  
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