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Abstract 
This Report discusses mathematical models of brain deformation 
behaviour for neurosurgical simulation, brain image registration and 
computer simulation of development of structural brain diseases. These 
processes can be reasonably described in purely mechanical terms, 
such as displacements (or displacement field), internal forces 
(stresses), pressure (or pressure field), flow and velocity of the flow, etc, 
and therefore they can be analysed using established methods of 
continuum mechanics. We advocate the use of fully non-linear theory of 
continuum mechanics. Partial differential equations (PDE’s) of this 
theory, in most practical cases, cannot be solved analytically, however 
an approximate numerical solution can be calculated on a computer. 
We recommend the choice of non-linear (i.e. allowing finite deformation) 
finite element procedures as an effective and proven numerical method 
for solving the PDE’s of continuum mechanics.  
The mechanical response of brain tissue to external loading is 
characterised by a non-linear stress-strain relationship and a non-linear 
stress – strain rate relationship. Moreover, the brain is much stiffer in 
compression than in tension. We show how these experimentally 
measured properties can be taken into account when choosing a 
constitutive model of the brain tissue for a particular application. 
We support our recommendations and conclusions with four examples: 
computation of the reaction force acting on a surgical tool, computation 
of the brain shift for image registration, simulation of the development of 
hydrocephalus, and simulation of the effects of tumour growth. 

 

 
Key words: brain, biomechanics, computational radiology, surgical simulation, 
structural disease simulation 
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1 Introduction 
 
Mathematical modelling and computer simulation have proved tremendously successful in 
engineering. Computational mechanics has enabled technological developments in virtually 
every area of our lives. One of the greatest challenges for mechanists is to extend the success 
of computational mechanics to fields outside traditional engineering, in particular to biology, 
biomedical sciences, and medicine (52). By extending the surgeons' ability to plan and carry 
out surgical interventions more accurately and with less trauma, Computer-Integrated Surgery 
(CIS) systems could help to improve clinical outcomes and the efficiency of health care 
delivery. CIS systems could have a similar impact on surgery to that long since realised in 
Computer-Integrated Manufacturing (CIM).  
 In computational sciences, the most critical step in the solution of the problem is the 
selection of the physical and mathematical model of the phenomenon to be investigated. 
Model selection is most often a heuristic process, based on the analyst’s judgment and 
experience. Often, model selection is a subjective endeavour; different modellers may choose 
different models to describe the same reality. Nevertheless, the selection of the model is the 
single most important step in obtaining valid computer simulations of an investigated reality 
(52). 

In this paper we present how various aspects of computer-integrated neurosurgery can 
benefit from the application of methods of computational mechanics. We discuss physical and 
mathematical models of the brain deformation behaviour developed in the Intelligent Systems 
for Medicine Laboratory at The University of Western Australia. We chose to focus on the 
following application areas: 

 
1. Neurosurgical simulation for operation planning and surgeon training; 
2. Neuroimage analysis (computational radiology); 
3. Simulation of the development of structural diseases for prognosis and diagnosis. 

 
Following the Introduction (Section 1), in Section 2 we describe a standard procedure of 
creating computational models of real phenomena: the engineering modelling process. In 
Section 3, a conceptual framework for the system for computing brain deformations is 
discussed. Section 4 presents selected experimental data on the mechanical properties of brain 
tissue. In Section 5 we consider example applications in areas of surgical simulation, 
computational radiology and computer simulation of structural diseases of the brain. We 
conclude with some reflections about the state of the field. 

We wrote Sections 1 (Introduction), 2 (Engineering modelling process), 3 (System for 
computing brain deformations), 6 (Conclusions), and all figures and figure captions for 
readers without mathematical or engineering background. We also included a glossary of 
technical terms at the end of the paper (technical terms explained in the Glossary, when used 
for the first time, appear in the manuscript in italic). Sections 4 (Mechanical properties of 
brain tissue) and 5 (Applications) are more technical. 

 

2. Engineering modelling process 
 
The process of mathematical modelling and computer simulation is presented in Figure 1. 
Major blocks in the diagram are discussed below. 
 

 3



Research Report # ISML/01/2006    K.Miller, Z.Taylor, A.Wittek 

Reality

Physical model

Mathematical 
model

Numerical model

Numerical 
solution

Numerical result

QUESTIONS?

In Engineering usually systems 
of equations + B.C. and I.C.:
ODE, DAE, PDF

usually discretisation

usually a sketch

 
 

Figure 1. Engineering modelling process 
 

 
What do we want to know about reality - questions? 
The most critical element of the modelling process is the clear specification of questions. 
These questions are related to the desired results of the analysis. 
 
Physical model 
After the questions have been explicitly specified, we may notionally discard many features of 
reality that we deem irrelevant. This process of simplification leads to a physical model that 
contains only relevant aspects of reality from the perspective of the specified questions. 

For instance, consider that our “reality” is the brain undergoing surgery. Our 
“questions” clearly depend on the application we have in mind. If our application is a virtual 
reality neurosurgical simulator, the two most important questions are about the deformation 
field in the brain, so that it can be displayed for the user, and about reaction forces acting on a 
surgical tool or surgeon’s fingers, so that a realistic tactile (haptic) feedback can be given to 
the surgeon. We may safely discard e.g. bio-chemical and electrical aspects of the brain as 
irrelevant to the problem at hand. To answer questions about deformations and forces it is 
reasonable to treat the brain in purely mechanical terms, e.g. a reasonable physical model of 
choice is a single-phase continuum. 
 
Mathematical model 
A mathematical model is created through the selection of equations that describe the physical 
model. It is important to note that the equations of mechanics do not describe reality but only 
certain classes of physical models. Therefore it is imperative not to skip the physical 
modelling stage of the modelling process. A mathematical model describing the brain as a 
single-phase continuum (the selected physical model) that allows accurate computations of 
brain’s mechanical response (i.e. finite deformations and internal forces) consists of the 
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differential equations of non-linear continuum mechanics and of a constitutive model 
capturing the main features of mechanical properties of brain tissue.  

However, if our application is the registration of pre- and intra-operative images, we 
are interested only in deformation fields (and not in forces involved) and therefore the 
selection of the constitutive model for the brain tissue is of secondary importance (see Section 
5.2). It is worth noting that in both cases the use of the equations of linear elasticity would be 
inappropriate because the assumption of infinitesimal deformations is embedded in them, and 
therefore they cannot be used to answer questions about finite deformations.  
 
Numerical model 
Mathematical models of computational biomechanics are usually complicated sets of partial 
differential equations (PDEs) supplemented with boundary and initial conditions. In practice 
such systems of equations are converted to numerical models (usually through some form of 
discretisation) and solved using computers. Probably the most effective, and certainly the 
most popular numerical method for solving such sets of differential equations is the Finite 
Element Method (3, 79). It is very important to note here that the Finite Element Method is not 
a modelling method. It is merely a numerical method for solving systems of differential 
equations – the modelling (i.e. selecting appropriate physical and mathematical models) must 
be done by an analyst. 
 
Assessing the validity of numerical results – feedback loops  
Because every step in the modelling process is based on assumptions and therefore introduces 
simplifications, it is necessary to assess the validity of computational results versus the 
numerical, mathematical and physical model, as well as the reality. This is indicated by 
“feedback” loops in Figure 1. For example a solution procedure may be unstable and produce 
an incorrect solution to the numerical model. Or if a computational grid (e.g. a finite element 
mesh) has not been created correctly, calculated results may be a correct solution to the 
(incorrect) numerical model, but not to the mathematical model. If equations of the 
mathematical models were not properly chosen, calculated results may be a correct solution to 
the numerical and mathematical models but not to the physical model. And finally, if the 
physical model is not adequate, the numerical results may be a correct solution to the 
numerical, physical and mathematical models, but may have no relevance to reality. 

It is most important to select models that are reliable and effective in predicting the 
quantities of interest. As it is often difficult to assess the reliability of the model through direct 
experimentation because the system under investigation either does not exist (e.g. a new 
fighter jet in the design stage) or conducting experiments on it is difficult or impossible (e.g. 
the human brain, or many other biological systems), one thinks of a very comprehensive 
model and measures the response of one’s chosen model against the response of the very 
comprehensive model. Bathe (3) defines effectiveness and reliability of a model as follows: 
Effectiveness of a model: The most effective model for the analysis is the one which yields 
the required response with sufficient accuracy and minimum cost. 
Reliability of a model: The chosen model is reliable if the required response can be predicted 
within a specified level of accuracy measured against the response of the very comprehensive 
model. 
As very comprehensive models of human organs, including the brain, are rare, the assessment 
of the reliability of models can be a significant challenge. 
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3. System for computing brain deformations 
 

For all applications considered in this paper, the ability to calculate (predict) brain 
deformations is of primary importance. Figure 2 shows the concept of the system for 
computing brain deformations. 

 

Electronic brain atlas

Computational grid (mesh)

single phase bi-phasic

Physical models

Numerical models

Applications
(which require knowledge of brain deformation)

Patient-specific data

Mathematical models

Electronic brain atlas

Computational grid (mesh)

single phase bi-phasic

Physical models

Numerical models

Applications
(which require knowledge of brain deformation)

Patient-specific data

Mathematical models

 Figure 2. A framework for computing brain deformations 
 
Detailed geometric information is needed to define the domain in which the deformation field 
needs to be computed. Such information is provided by electronic brain atlases (28, 49-51). In 
applications that do not require patient-specific data (such as neurosurgical simulators for 
education and training) the geometric information provided by these atlases is sufficient. 
However, other applications such as neurosurgical simulators for operation planning, image 
registration systems, and simulations for prediction of the development of a disease, require 
patient specific data. Such data are available from radiological images, however they are 
significantly inferior in quality to the data available from anatomical atlases. 
  The selection of the physical and mathematical models depends on the application. We 
discuss two modelling approaches in detail in Section 5. 
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  A necessary step in the development of the numerical model of the brain is the 
creation of a computational grid, which in most practical cases is a finite element mesh. The 
requirements for the mesh type and fidelity depend on the chosen mathematical model and the 
accuracy of the solution required by the application. 
  Patient-specific data should also include information about mechanical properties of 
the particular patient’s brain. Average properties, such as those presented in Section 4, may 
not be sufficient because of the very large variability inherent to biological materials, as 
clearly demonstrated in the biomechanics literature, see e.g. (7, 38, 42, 56). 
 
4. Mechanical properties of brain tissue 
 
Mechanical properties of living tissues form a central subject in biomechanics. In particular, 
the properties of the muscular−skeletal system, skin, lungs, blood and blood vessels have 
attracted much attention (see for example (19, 20) and references cited therein). The 
properties of “very” soft tissues that do not bear mechanical loads (such as brain, liver, 
kidney, etc.) have not been so thoroughly investigated. 

Previous research into the mechanical properties of the brain and brain tissue was 
motivated by traumatic injury prevention (e.g. (75, 77) and references cited therein) and 
understanding of structural brain diseases (e.g. hydrocephalus, see (22, 46)).  These require 
investigation into applying a load to brain tissue very quickly and very slowly.  

The first papers on the mechanical properties of the brain at moderate loading speeds 
(relevant to surgical simulation) appeared, to the best of our knowledge, in 1995 (39, 40). 
Since then, research groups from the University of Sydney (7), University of Pennsylvania 
(56, 63), Eindhoven University of Technology (10), AIST, Tsukuba, Japan, and The 
University of Western Australia (41-43) have conducted experiments and presented 
mathematical models of brain tissue mechanical behaviour. Results obtained by the authors of 
this contribution and collaborators from AIST, Japan are collected in (38). 

Figure 3 (adapted from reference (42)) presents stress – strain relationships for swine 
brain tissue in compression and extension. The experiments were conducted on cylindrical 
samples approximately 30 mm in diameter and 13 mm in height. The ventricle surface and the 
arachnoid membrane formed the top and bottom faces of the sample cylinder, thus the 
arachnoid membrane and the structure of the sulci remained as parts of each specimen. A 
typical sample is shown in Figure 4. 

Experimental results show that the mechanical response of brain tissue to external 
loading is very complex. The stress – strain relationship is clearly non-linear with no portion 
in the plots suitable for estimating a meaningful Young’s modulus. It is also obvious that the 
stiffness of the brain in compression is much higher than in extension. The non-linear 
relationship between stress and strain – rate is also apparent. Stresses at moderately high 
strain rate (0.64 s-1) are about ten times higher than at the low strain rate of 0.64 s-1 x 10 –5 s-1. 
These experimental facts must be carefully considered when choosing a constitutive model of 
the brain for simulation. 
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Figure 3. Experimental (solid line) versus theoretical (dashed line, Equations 1, 2 
and Table 1) results for uniaxial compression (41) and extension (42) of brain 
tissue for various loading velocities. For this simple experimental configuration, 
Lagrange stress (vertical axis) is the vertical force divided by the undeformed 
cross-sectional area, and extension (horizontal axis) is the current height divided 
by the initial height, i.e. extension less than one indicates compression. Negative 
values of stress indicate compression. 
a) loading velocity v = 5.0 x 102 mm/min ; corresponding to the strain rate approx. 
0.64 s-1. 
b) loading velocity v = 5.0 mm/min ; corresponding to the strain rate approx.  
0.64 s-1 x 10 –2  s-1. 
c) loading velocity v = 5.0 x 10 –3  mm/min ; corresponding to the strain rate 
approx.  
0.64 s-1 x 10 –5  s-1 (compression only). 
Note that the stress – strain and stress – strain rate relationships are non-linear, 
and the stiffness of the brain in compression is much higher than in extension.  
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Figure 4. A typical swine brain tissue specimen used in compression and 
extension experiments, results of which are given in Figure 3. 

 
To account for such complicated mechanical behaviour we proposed the Ogden-based 

hyper-viscoelastic constitutive model of the following form (38, 42): 

W =
2
α 2 [µ(t −τ )

d
dτ0

t

∫ (λ1
α + λ2

α + λ3
α − 3)]dτ        (1) 

t

µ = µ0[1− gk(1 −
k =1

n

∑ e
−

τ k )] ,         (2) 

W is the strain energy. 
λ1, λ2, λ3 (directions 1, 2, 3 correspond to x, y, z) are principal extensions. Their values are 1 
for no deformation, greater than 1 for extension and smaller than 1 for compression.  
α is a material coefficient without physical meaning. We identified the value of α to be  
–4.7, see Table 1. 
t and τ denote time. 
Equation 2 describes viscous response of the tissue. µ0 is the instantaneous shear modulus in 
the undeformed state. τk are characteristic relaxation times.  
Stress – strain relationships are obtained by differentiating the energy function W with respect 
to strains (3, 38). This is analogous to linear elasticity and Hooke’s law. For one-dimensional 
stretching of the linear elastic material the energy function is: 

2

2
1 εEW = , where E is the Young’s Modulus and ε is the strain.    (3) 

Stress is computed as the derivative of the energy with respect to strain: 

ε
ε

σ EW =
∂
∂=            (4) 

Equation 4 is a well-known Hooke’s Law. Because brain’s mechanical response is very 
complicated Equations 1 and 2 describing the energy function of brain tissue are more 
complex than Equation 3.  
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The identified from experiment material constants are given in Table 1. One-dimensional 
response, as predicted by Equations 1 and 2, is shown in Figure 3. 

 
Table 1. List of material constants for the constitutive model of brain tissue, 

Equations 1 and 2, n=2 (42). 
Instantaneous response  k=1 k=2 

µ0 =842 [Pa]; 
a=-4.7 

characteristic time t1=.5 [s]; 
g1=0.450; 

characteristic time t2=50[s]; 
g2=0.365;  

 
One advantage of the proposed model is that the constitutive equation presented here 

is already available in commercial finite element software (1, 32) and can be used 
immediately for larger scale computations.  

 
It is very important to examine the simplifying assumptions behind the model 

described by Equations 1 and 2, and Table 1: isotropy and incompressibility.  
1. Incompressibility.  

Very soft tissues are most often assumed to be incompressible (see e.g. (15, 36, 54, 58, 
59, 68, 69)). In experiments on brain tissue at moderate strain rates when there is not 
enough time for significant fluid flow, we have not detected a departure from this 
assumption. 
 

2. Isotropy (i.e. mechanical properties are assumed to be the same in all directions).  
Very soft tissues do not bear mechanical loads and do not exhibit directional structure 
(provided that a large enough sample is considered: for brain we used samples of 30 
mm diameter and 13 mm height). Therefore, they may be assumed to be initially 
isotropic (see e.g. (6, 16, 34, 36, 37, 42, 43, 48, 69)). 
Prange and Margulies (56) reported anisotropic properties of brain tissue. However, 
their sample sizes were 1 mm wide. At such a small length scale, the fibrous nature of 
most tissues will cause detectable difference in directional properties. Experiments 
discussed here were aimed at identifying “average” properties at the length scale of 
approx. 1 cm. At such length scales, most very soft tissues can be safely assumed to 
exhibit no directional variation of mechanical properties. 
 
The specimens used in the experiments consisted of the arachnoid membrane, white 

matter and grey matter. Subsequently, it could be argued that the experimental results are only 
valid for such a composite.  However, these results are useful in the approximate modelling of 
the behaviour of brain tissue, which includes spatial averaging of material properties.  

 
5. Applications 
 
5.1 Modelling the brain for neurosurgical simulation  
The goal of surgical simulation research is to model and simulate deformable materials for 
applications requiring real-time interaction. Medical applications for this include simulation-
based training, skills assessment and operation planning.  
 
5.1.1 Linear versus finite deformation elasticity  
A neurosurgical simulator must predict the deformation field within the brain, so that it can be 
displayed to the user, and the internal forces (stresses) so that reaction forces acting on 
surgical tools can be computed and conveyed to the user through haptic feedback.  
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To allow simulation in near real time, most investigators (with one notable exception 
(78)), build models based on the simpler equations of linear elasticity. These models are 
incapable of providing realistic predictions of finite deformations of the tissue, because the 
infinitesimality of the deformations is assumed. Linearity of the material response is also 
assumed. Consequently, the principle of superposition holds for linear elastic models, 
contradicting years of experience accumulated by researchers working on finite deformation 
elasticity. In the 1970s, when non-linear finite element procedures were under development, 
many examples of these shortcomings were published, see e.g. (12, 33, 53). 

 
5.1.2 Example of fully non-linear computation of brain deformation and reaction forces 
 
As a demonstration of the feasibility of fully non-linear computations of brain deformation 
and reaction forces acting on a surgical tool we present a summary of our most recent results 
(74).  
 
Construction of the finite element mesh 
Suitable meshes are required so that computational analysis of anatomical and geometrical 
information contained within MRI scans can be conducted. One can attempt to construct 
patient-specific meshes either anew, directly from the MRI, or by utilizing the MRI to modify 
pre-existing generic meshes (i.e. template meshes) to match the patient-specific data. We 
chose the second approach, as it is believed that the “template-based” meshing may be 
developed to allow full automation in the future.  

We chose a brain mesh consisting of hexahedron elements (i.e. 8-node “bricks”) 
previously developed for the Total Human Model for Safety (THUMS) (26) by the Toyota 
Central R&D Labs., Nagakute, Japan, with the help of Wayne State University, Detroit, 
Michigan, USA (Figure 5). The hexahedron finite elements are known to be the most effective 
ones in non-linear finite element procedures using explicit time integration. The THUMS brain 
mesh was developed using the anatomical and geometrical data obtained from the Visible 
Human (67) electronic atlas of the human body, and Gray’s Anatomy textbook (5), and it 
represents the brain of a healthy adult. Although it distinguishes between the grey and white 
brain matter, it disregards important components of the brain anatomy such as ventricles.  

This example demonstrates how finite element models can be used to simulate an 
actual surgical procedure. To do this, patient specific geometric data must be incorporated. 
The data were obtained from a set of sixty pre-operative MRIs of a patient undergoing brain 
tumour surgery at the Department of Surgery, Brigham and Women’s Hospital (Harvard 
Medical School, Boston, Massachusetts, USA).  

In order to distinguish between the ventricles and the brain parenchyma, the images 
were segmented using the SLICER  (http://www.slicer.org/ (21)) program developed by the 
Surgical Planning Laboratory of Harvard Medical School (Figure 6). After segmentation, the 
digital models of 3-D surfaces of the brain and ventricles were created using the Visualization 
Toolkit (VTK) binary format (60), Figure 7.  
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Figure 5. Hexahedron mesh of the THUMS brain model. Courtesy of Toyota 
Central R&D Labs. CSF is the cerebrospinal fluid. The hexahedron finite 
elements (i.e. 8-node bricks) are known to be the most effective ones for non-
linear finite element procedures using explicit time integration. A finer mesh 
allows more accurate results to be calculated, at the cost of increased computation 
times. 

 

 

a) b)  

Figure 6. (a) Raw and (b) segmented MRI of the head used to build the patient 
specific brain mesh (courtesy of Professor Simon Warfield, Computational 
Radiology Laboratory, Harvard Medical School). 
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The patient specific brain mesh was generated using a semi-automatic method that 
relied heavily on the analyst’s skills. This is typical for building hexahedron meshes of human 
organs. Fully automatic hexahedron meshing of structures with complex geometry cannot be 
achieved as yet (65). 
 

a) b)   
Figure 7. a) Brain and b) ventricle surface models created from MRIs. These 
models were used to build the patient specific brain mesh.  

 

 

Figure 8. Patient specific brain mesh constructed in this study. a) Left lateral 
ventricle; b) Entire left hemisphere. Arrows indicate nodes at which the motion 
(simulating indentation) was applied. The cerebellum and brainstem nodes were 
rigidly constrained to prevent rigid body motion (i.e. motion of the entire brain). 

 
Solution of the finite element equations 
Integrating finite element equations in the time domain requires an efficient numerical 
scheme. Implicit or explicit methods (3, 13) are available. Implicit integration methods are 
unconditionally stable but can be time consuming because iterations are conducted at every 
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time step. Therefore, in this example explicit integration was used. In explicit integration, no 
iteration is required as the displacement at time t+∆t is solely based on the equilibrium at time 
t. The explicit time integration has proved to be reliable and efficient in the automotive 
industry when simulating car structure deformation, e.g. (61), and predicting injury resulting 
from car accidents, e.g. (75), see also publications of the National Crash Analysis Center 
http//:www.ncac.gwu.edu. The present study appears to be one of the first attempts to apply 
explicit integration in medical biomechanics when the modelled system undergoes 
deformation with moderate strain rates. The computations were conducted using LS-DYNA 
code (Livermore Software Technology Corporation, Livermore, California, USA) (23, 32), 
which is one of the explicit finite element codes routinely applied in car crash-simulations. 

We used the constitutive model of the brain tissue as given by Equations 1, 2 and 
Table 1 in Section 4. To develop a surgical training system with realistic force feedback, using 
a model of an “average” brain with the most “typical” mechanical properties, the model and 
material constants presented in Section 4 would be satisfactory. However, to develop a 
surgical operation plan for a particular patient, the model with “average” properties is not 
sufficient. We need to identify the properties of the individual patient’s brain. The proposed 
methods provide the mathematical framework for modelling, but numerical values for the 
parameters in Equations 1 and 2 have to be ascertained for each patient. 

During a surgical procedure, tools driven by the surgeon’s hands or a manipulator exert 
forces on the brain, causing displacement of the brain surface. To simulate such a situation, 
we applied constant velocity (2 mm/s) motion to selected nodes in a direction approximately 
normal to the brain surface (Figure 8b). The sum of forces at these nodes was a close 
approximation of the reaction force between the brain surface and a cylindrically shaped tool.  

To properly constraint the nodes on the brain model surface, the contact interface was 
defined between the rigid skull model (not shown in Figure 8) and the part of the brain surface 
where the nodal displacements were not prescribed. The spine - spinal cord interactions and 
constraining effects of the spinal cord on the brain rigid body motion were simulated by 
rigidly constraining the spinal end of the model. The falx was simulated as an elastic 
membrane rigidly attached to the skull. The contact interfaces were defined between this 
membrane and inter-hemisphere surfaces. To simulate pia matter the brain surface was 
covered by a layer of 2070 thin membrane elements 

We chose an integration time step of 0.2 ms. Because brain tissue is much softer than 
traditional engineering materials (e.g. steel), the maximum time increment required for 
stability is orders of magnitude higher than those routinely used in explicit dynamic 
engineering simulations. We anticipate that even greater increase of the time step size is 
possible. 
 
Results 

The calculated reaction force between the brain surface and indenter is shown in 
Figure 9. It agrees well with the results measured by Miller et al. (43) on a swine brain in 
vivo. The calculated force is only around 20% larger than the measured one. Taking into 
account the large variability of mechanical properties of biological tissues, and the fact that 
the model parameters were not in any way “tuned”, the agreement between the calculated and 
experimental results can be considered as good. By increasing the value of instantaneous 
shear modulus µo (Equation 2 and Table 1) to about 1010 Pa we would have cancelled the 
observed difference, and therefore obtained a patient-specific constitutive model. 
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Figure 9. Reaction force acting between the brain surface and the cylindrical tool 
versus the depth of indentation (displacement), computed using the mesh from 
Figure 8 and explicit time integration. The computed result agrees well with the 
experiment reported in (43) 

 
The computation time was 21 minutes on a single Pentium IV 2.8 GHz processor when 

simulating the indentation of 4.2 s duration. This time is clearly too long for real-time 
applications, and in particular for interactive simulation. We used a general-purpose 
engineering finite element package. It is reasonable to expect that the computation time could 
be significantly reduced by the application of more specialized code with reduced capabilities 
but improved efficiency, and by increasing the time step used in time integration of continuum 
mechanics equations. We estimate that using a state-of-the-art personal computer, the 
calculation time could be reduced to about 50 seconds (29). Improvements in computer 
hardware and the use of parallel processing would decrease this time even further.  

Computational times of tens of seconds are acceptable for most intra-operative 
applications, but would still be orders of magnitude too high for applications requiring 
interactive simulation.  Nevertheless the use of linear models, motivated by computational 
efficiency requirements, would not be appropriate.  

Explicit time integration algorithms avoid iterative solution of equations. A significant 
portion of computation time is taken by hyper-viscoelastic constitutive model evaluation (38, 
42). A possible trade-off between accuracy and efficiency would be to replace the non-linear 
constitutive model with a bi-modular model approximately valid for a strain rate of 0.006 s-1, 
which is representative for neurosurgical procedures (it corresponds to the displacement of 6 
mm induced with a velocity of 10 mm/s on the organ with a characteristic length of the order 
of 10 cm). Figure 10 presents the comparison of Lagrange stress computed using Ogden-type 
hyper-elastic equation: 

W =
2µ
α 2 (λ1

α + λ2
α + λ3

α − 3)         (5) 

where µ is a shear modulus (µ=E/3 for almost incompressible materials, for a strain rate of 
0.006 1/s, E=~1200 Pa) in the undeformed state and α=−4.7 is a material coefficient (38, 42), 
and a bi-modular model  with Young’s modulus in compression Ecomp=1800 Pa  and Young’s 
modulus in extension Eext=900 Pa. 
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Figure 10. Relationship between Lagrange stress and extension approximately 
valid for a strain rate of 0.006 1/s; dashed line – non-linear model given by 
Equation 3; solid line – bi-modular model. For this simple experimental 
configuration, Lagrange stress is the vertical force divided by the undeformed 
cross-section area, and extension is the current height divided by the initial height, 
i.e. extension less than one indicates compression. 

 
Both cases were computed using finite deformation theory. Agreement in extension is 

almost perfect. In compression, the agreement is good up to compression levels of 20%. For 
larger compression the linear model fails to account for tissue stiffening. 

The modelling method presented here is equally applicable to computing any 
mechanical interaction with the brain (e.g. brain retraction (24)) provided no cutting is 
involved (accurate modelling of cutting is an unresolved problem).  At this point we can 
suggest a method for conducting patient-specific neurosurgical simulations. Magnetic 
resonance images of a patient’s head can be used to create the mesh. Fine indentation of the 
brain, with force measurement, can provide data to adjust material constants in the 
mathematical model (in the case of the model presented herein, only instantaneous shear 
modulus µ0  needs to be adjusted) without altering the model structure. The resulting model 
can next be used with some degree of confidence. However, more research is needed, 
especially into the appropriate modelling of the interface between the brain and the skull 
(boundary conditions). This research seems at least as important as investigation of the 
mechanical properties of brain internal structures. 
 
5.2 Modelling the brain for image registration 
 
Examples of therapeutic technologies that are entering the medical practice now and will be 
employed in the future include gene therapy, stimulators, focused radiation, lesion generation, 
nanotechnology devices, drug polymers, robotic surgery and robotic prosthetics (11). One 
common element of all of these novel therapeutic devices is that they have extremely localised 
areas of therapeutic effect. As a result, they have to be applied precisely in relation to current 
(i.e. intra-operative) patient’s anatomy, directly over specific location of anatomic or 
functional abnormality, and are therefore all candidates for coupling to image-guided 
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intervention (11). Nakaji and Spetzler (47) list the “accurate localisation of the target” as the 
first principle in modern neurosurgical approaches. 

As only pre-operative anatomy of the patient is known precisely from scanned images 
(in case of the brain from pre-operative 3D MRIs), it is now recognised that one of the main 
problems in performing reliable surgery on soft organs is Registration. It encompasses 
matching images of different modality, such as standard MRI and diffusion tensor magnetic 
resonance imaging, functional magnetic resonance imaging or intra-operative ultrasound; 
defining relations between co-ordinate systems (e.g., between a co-ordinate system associated 
with imaging equipment and those of robotic tools in an operating room), segmentation of 
reference features and defining disparity or similarity functions between extracted features 
(30). Registration procedures involving rigid tissues are now well established. If rigidity is 
assumed, it is sufficient to find several points such that their mappings between two co-
ordinate systems are known. Registration of soft tissues is much more difficult because it 
requires knowledge about local deformations. A particularly exciting application of non-rigid 
image registration is in intra-operative image-guided procedures, where high resolution pre-
operative scans are warped onto intra-operative ones (17, 70). We are in particular interested 
in registering high-resolution pre-operative MRI with lower quality intra-operative imaging 
modalities, such as multi-planar MRI and intra-operative ultrasound. To achieve accurate 
matching of these modalities accurate and fast algorithms to compute tissue deformations are 
fundamental.  

The drawback of current biomechanics model-based non-rigid registration methods is 
their assumed linearity (see (76) for a notable exception). Geometric non-linearities (i.e. 
resulting from finite deformations) are not taken into account by linear, finite element based 
registration methods. Certain phenomena, such as craniotomy-induced brain shift involving 
finite (large) displacements, cannot be reliably computed at all.  

In image registration we are not interested in internal forces (stresses). Therefore, we 
are free to use the simplest material model available that captures the essential feature of the 
brain’s mechanical response: its lower stiffness in extension than in compression. The bi-
modular model of Section 5.1 (Figure 10) is sufficient. Therefore, the suggested modelling 
approach would be to use equations of non-linear elasticity valid for finite deformations and a 
simple bi-modular constitutive model.  

Here we present examples of computational results of brain shift, taken from (73). For 
this case the craniotomy-induced displacement of the tumour, as observed on intra-operative 
MR images, was about 7 mm. Patient-specific geometry was used. The pre- and intra-
operative positions of the tumour are shown in Figure 11. The results are given in Table 2 and 
Figures 12 and 13.  

The computed craniotomy-induced displacements of the tumour and ventricles centre 
of gravity (COG) agreed well with the actual ones determined from the radiographic images 
(Table 2). With the exception of the tumour COG displacement along the inferior-superior 
axis, the differences between the computed and observed displacements were below 0.65 mm.  
An important (and not unexpected) feature of the results summarized in Table 2 is that the 
displacements of the tumour and ventricle COGs differ appreciably. This feature can be 
explained only by the fact that the brain undergoes both local deformation and global rigid 
body motion (i.e. the whole brain moves), which justifies the use of non-rigid registration. It is 
worth noting here that linear elasticity theory is not capable of describing the deformation 
field that is a superposition of rigid body motion and local displacements. 

Detailed comparison of cross sections of the actual tumour and ventricle surfaces 
acquired intra-operatively with the ones predicted by the present brain model indicates that 
although some local miss-registration is visible, particularly in the inferior tumour part 
(Figures 12 and 13), the result is remarkably good.  
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State-of-the-art image analysis methods, such as those based on optical flow (4, 25), 
mutual information-based similarity (66, 72), entropy-based alignment (71), and block 
matching (14, 57)), work perfectly well when the differences between images to be co-
registered is not too large. It can be expected that the non-linear biomechanics-based model 
supplemented by appropriately chosen image analysis methods would provide a reliable 
method for brain image registration in the clinical setting. 

 
 
 

a) b)  

Figure 11.  (a) Pre- and (b) intra-operative MRIs of the head. The tumour 
segmentation is indicated by white lines in the anterior brain part. 

Table 2. Comparison of craniotomy-induced displacements of tumour and 
ventricles centres of gravity predicted by the present brain model with the actual 
ones determined from intra-operative MRIs. Coordinate axes are defined as 
follows: X - lateral axis; Y - vertical axis; Z - sagittal axis. 

 
 Determined from intra-

operative MRIs 
Predicted 

 ∆x= 3.40 mm ∆x= 3.06 mm 
Ventricles ∆y= 0.25 mm ∆y= 0.29 mm 
 ∆z= 1.73 mm ∆z= 1.65 mm 
 ∆x= 5.36 mm ∆x= 4.74 mm 
Tumour ∆y=-3.52 mm ∆y=-0.40 mm 
 ∆z= 2.64 mm ∆z= 2.77 mm 
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Figure 12.  Comparison of contours of coronal sections of ventricles and tumour 
obtained from the intra-operative images, with the ones predicted using the brain 
model. Positions of section cuts are measured from the most anterior point of the 
frontal cortex (posterior direction is positive). 

 

 
 

Figure 13.  Comparison of contours of axial sections of ventricles and tumour 
obtained from the intra-operative images with the ones predicted using the brain 
model. Positions of section cuts are measured from the most superior point of the 
parietal cortex (superior direction is positive). 
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5.3. Modelling the brain for prognosis of structural diseases  
 
Brain structural diseases, such as hydrocephalus or the growth of tumours can take from hours 
to years to develop. Interstitial fluid flow has an important mechanical role to play in such 
long-lasting phenomena. Therefore, a single-phase continuum, chosen for a physical model in 
the previous two examples, cannot be used here. A bi-phasic continuum, consisting of a 
porous, deformable solid, and a penetrating fluid is more appropriate. 

Since 1980 when the paper by Mow et al. (45) initiated the growth of an impressive 
body of knowledge related to modelling the mechanical properties of articular cartilage tissues 
using “bi-phasic theories”, the method has reached a high level of maturity, nevertheless 
should be used with caution (35). Non-linear formulations and non-linear finite element 
models have been developed, and solutions to real life physiological problems attempted (see 
(2, 64) and references cited therein). The biphasic approach has been also used for modelling 
the brain.  

Following the work of Nagashima et al. (46) and Peña et al. (55), the biphasic nature 
of brain tissue may be modelled using the principles of Biot’s consolidation theory (8), which 
was further developed and generalized by Bowen (9). The mathematical model of the bi-
phasic continuum contains equations of equilibrium, mass conservation, and fluid flow. 

During the development of brain structural diseases the strain-rate is close to zero. It is 
therefore reasonable to adopt the limiting (hyperelastic) case of the constitutive model given 
by Equations 1 and 2, and Table 1 as a description of the properties of the solid phase 
(compare Section 5.1.2, eq.3): 

)(2
3212
ααα λλλ

α
µ

++= ∞W    ,            (6) 

where: µ∞ = ~ 155 Pa is the shear modulus in the undeformed state at infinitesimally slow 
loading. α= -4.7.  

Permeability, k = 1.59×10-7m/s, and Poisson’s ratio, ν = 0.35, are obtained from (27), 
and the initial void ratio for the material is taken as 0.2 (46). The fluid phase is considered to 
be an incompressible, inviscid fluid with the mechanical properties of water. 
  We present an example simulation of the development of non-communicating 
hydrocephalus taken from our recent work (62). In a hydrocephalic brain, an obstruction may 
block the CSF flow and prevent its extrusion from the lateral ventricles. Consequently, 
ventricular fluid pressure increases and forces expansion of the ventricle walls. Because it is 
confined by the rigid skull (except in infantile cases) the periventricular brain parenchyma is 
compressed, and in acute cases, destroyed. Additionally, significant oedema is observed in the 
periventricular material, particularly in the regions of the frontal and occipital horns, as the 
increased ventricular pressure forces permeation of the CSF through the surrounding tissue. 
The first biomechanics-based analysis of this phenomenon was reported in (22). 

Our model geometry was obtained from a horizontal cross-section presented in the 
anatomic atlas (51). The section was taken at 20mm above a reference defined by the anterior 
and posterior commissures (51). Pore pressure was fixed at zero at the skull boundary to 
ensure outward radial CSF flow and drainage in the sub-arachnoid space. The outer brain 
surface was assumed fixed to the skull and so surface nodes are constrained in all directions. 
Along the midline boundary, nodes are constrained in the horizontal direction (due to the 
presence of the left hemisphere), but are allowed to displace vertically. Loading of the 
ventricular wall was in the form of a distributed fluid pressure over the surface, with a 
magnitude of 3000Pa, in line with previous work (46, 55). Model solutions were obtained 
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using ABAQUS/Standard finite element software (1). Based on published data (46), the total 
development time for hydrocephalus was taken as 4 days (345600 seconds).  

 

 
Figure 14. Simulation of hydrocephalus: comparison of (a) undeformed mesh with 
(b) deformed mesh. The pressure across the surface of the ventricle produces an 
overall expansion of the ventricular space. There is a pronounced lateral 
displacement of the right wall of the ventricle, and a dilation of the frontal and 
occipital horns. 

 
Figure 14 shows the deformed mesh compared with the original configuration. The 

pressure across the surface of the ventricle produces an overall expansion of the ventricular 
space. In particular, there is a pronounced lateral displacement of the right wall of the 
ventricle, and a dilation of the ventricle tips (frontal and occipital horns). The maximum 
displacement midway along the ventricle right wall is 4.79mm. 

Figure 15 shows the void ratio distribution after loading – the unloaded void ratio 
throughout the medium is 0.2. Significant increases around the ventricular horns are apparent. 
Void ratios in these regions rise as high as 0.363. 

As the medium remains fully saturated, any increase in void ratio corresponds to an 
increase in the fluid content in that region. The areas with increased void ratio around the 
ventricle horns may be identified as areas of fluid oedema. 
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Figure 15. Simulation of hydrocephalus: void ratio distribution. High void ratio 
indicates oedema. (a) entire model, (b) enlarged areas around the frontal and 
occipital horns with the largest void ratio 

 
5.4 Computer simulation of the effects of the tumor growth 
 
Tumor growth can cause substantial brain deformation and change stress distribution in the 
tissue as well as patterns of CSF, interstitial fluid and blood flow within the brain. The bi-
phasic approach would appear to be an appropriate starting mathematical modeling technique 
to investigate such phenomena. 

An example of the most recent results of computations conducted in our laboratory is 
presented here (44). The same geometry as in the simulation of hydrocephalus (Section 5.3) 
was used. The tumor was modeled as a rigid circle of 3 cm diameter. Figure 16 shows the 
calculated pore pressure distribution within the brain. 

Changes of pore pressure and altered patterns of interstitial fluid flow direction and 
speed may have a detrimental effect on brain cell metabolism and function. The ability to 
predict future changes of field variables characterizing mechanical equilibrium of the brain 
may lead to improved prognosis and diagnosis methods. For instance, when the tumor growth 
rate is known, it is possible to predict the corresponding intracranial pressure.  

 
6. Conclusions 
 
Computational mechanics has become a central enabling discipline that has led to greater 
understanding and advances in modern science and technology (52). It is now in a position to 
make a similar impact in medicine. We have discussed modelling approaches to three 
applications of clinical relevance: i) surgical simulation, ii) neuroimage registration, and iii) 
simulation of the development of structural diseases. These problems can be reasonably 
characterized with the use of purely mechanical terms such as displacements, internal forces, 
pressures, flow velocity, etc. Therefore they can be analysed using the methods of continuum 
mechanics.  
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Figure 16. Results of computer simulation of tumor growth effects on the brain 
showing pore pressure distribution [N/mm2]. Increased pore pressure may cause 
localized damage to the tissue. 

 
 As the brain undergoes large displacements (~15 mm in the case of a brain shift) and 
its mechanical response to external loading is very non-linear, we advocate the use of general, 
non-linear finite element procedures for the numerical solution of the proposed models.  
 The brain’s complicated mechanical behaviour: non-linear stress–strain and stress–
strain rate relationships, and much lower stiffness in extension than in compression, require 
very careful selection of the constitutive model for a given application. The selection of the 
constitutive model depends on the characteristic strain rate of the modelled process, and to a 
certain extent on computational efficiency considerations. 
 A number of challenges must be met before Computer-Integrated Surgery systems 
based on computational biomechanical models can become as widely used as Computer-
Integrated Manufacturing systems are now. As we deal with individual patients, methods to 
produce patient-specific models quickly and reliably must be improved. Substantial progress 
in automatic meshing methods is required, or alternatively mesh-free methods (31) may 
provide a solution. Computational efficiency is an important issue, as intra-operative 
applications, requiring reliable results within approximately 50 seconds, are most appealing. 
Progress can be made in non-linear algorithms by identifying parts that can be pre-computed, 
and parts that do not have to be calculated at every time step. Use of the Total Lagrangian 
Formulation of the finite element method (3, 29, 79), where all field variables are related to 
the original (known) configuration of the system, and therefore most spatial derivatives can be 
calculated before the simulation commences, during the pre-processing stage, offers such a 
possibility. Implementation of algorithms in parallel on networks of processors, and 
harnessing the computational power of graphics processing units provide a challenge for 
coming years.  
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Glossary of technical terms 
 
Anisotropic material – material whose properties depend on a direction in which they are 

measured 
Bi-phasic continuum - a model that assumes the existence of two phases (e.g. a liquid and a 

solid) at each point in space (in Section 5.3 deformable solid and penetrating fluid) 
Computational grid - a way to discretise (i.e. divide up) space so that partial differential 

equations can be solved using one of the many available numerical methods 
Constitutive model – mathematical model describing material’s mechanical response under 

loading. Usually a stress – strain, or stress – history of strain relationship 
Continuum – domain, within which it is assumed that physical quantities (e.g. displacement, 

pressure, etc.) change from place to place in continuous way. In single-phase continuum 
model we assume the existence of only one phase at each point of the domain (in our 
case a solid). In biphasic continuum model we assume the existence of both solid and 
fluid at every point of the domain. 

Deformation field – deformation at each point within a body 
Elastic material – material for which stress is proportional to strain, i.e. Hooke’s Law  applies 
Finite deformation – deformation large enough so that it cannot be assumed to be 

infinitesimal. 
Finite deformation elasticity – mathematical theory describing stresses and strains in materials 

for arbitrarily large deformations and arbitrarily complicated material behaviour 
Finite element mesh – a way to discretise (i.e. divide up) space so that partial differential 

equations can be solved using the finite element method 
Finite element method – a numerical method for solving systems of partial differential 

equations. The method requires a finite element mesh. Finite element method is 
currently the most popular numerical method in computational mechanics 

Geometric non-linearity – non-linear effects in finite deformation elasticity resulting from the 
change of shape and position of a body 

Haptic feedback - feedback provided by a simulator by exerting forces e.g. on user’s hands  
Hyper-elastic material - material model, which assumes that stresses depend on strain only, 

but in a complicated, non-linear way, i.e. Hooke’s Law does not apply 
Hyper-viscoelastic material - material model, which assumes that stresses depend on strain 

and on the history of strain. This model accounts for different responses at different 
strain rates 

Infinitesimal deformation – deformation so small that the overall position and shape of the 
body can be assumed constant 

Incompressible material – material that does not change volume under loading 
Inviscid fluid – fluid with negligible viscosity, and therefore no energy dissipation within the 

fluid 
Isotropic material – material whose properties are the same in all directions 
Linear elasticity – mathematical theory describing stresses and strains in materials under the 

assumptions that deformations are infinitesimal and materials are elastic 
Permeability – parameter in bi-phasic continuum models describing how easy it is for a fluid 

phase to pass through the solid phase. Unit [m/s] 
Poisson’s ratio – ratio of transverse strain to longitudinal strain in uniaxial extension, as 

described by linear elasticity theory. For incompressible materials Poisson’s ratio is 0.5 
Pressure field – pressure at each point within a body 
Shear modulus – parameter used in linear elasticity to relate shear stress to shear strain. Unit 

[Pa = N/m2]. In simple shear, the shear modulus (µ) is a proportionality constant relating 
shear stress to the shear angle: shear stress = µ * tan(α), see Figure below (18).  
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ααα

 
Simple shear 

 
Single-phase continuum – a model that assumes existence of only one phase at each point in 

space. In Sections 4, 5.1 and 5.2 this is a deformable solid 
Strain – local measure of deformation. Dimensionless. In the one-dimensional case Green’s 

strain is defined as the change of length divided by the initial length 
0L
Le ∆= ; and 

Almansi’s strain is defined as the change of length divided by the current length 

LLL
L
L ∆+=∆= 0,ε . Only for infinitesimal deformations these strain measures are 

equal (18).  

L0
L0

L

∆LL0
L0

L

∆LL0
L0

L

∆L

 
Simple elongation 

 
Strain rate – the speed of strain change. Unit [1/s] 
Stress – measure of internal forces in the material, in one-dimensional case force divided by 

cross-sectional area. Unit [Pa = N/m2]. In one-dimensional extension or compression, 
for infinitesimal deformations, stress in many simple materials is proportional to strain 
and can be determined from Hooke’s Law εσ E=  (where E is Young’s modulus, σ is 
tensile stress and ε is longitudinal strain). 

Tactile feedback – feedback provided by a simulator through human sense of touch  
Void ration – ration of the volume of empty space (filled by fluid) to the volume of solid 

phase in bi-phasic modelling approach 
Young’s modulus - parameter used in linear elasticity (i.e. in Hooke’s Law) to relate 

longitudinal stress to longitudinal strain. εσ E=   (where E is Young’s modulus, σ is 
tensile stress and ε is longitudinal strain). Unit [Pa = N/m2]. 
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