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SUMMARY

Real time computational biomechanics for mediauseally uses explicit time
integration, due to its efficiency and suitability parallel implementation. Explicit time
integration is only conditionally stable and theref requires an estimation of the
maximum stable time step that can be used. In ghger we develop a method of
estimating the stable time step for mesh-free @arthethods for a specific case of mass
lumping: the mass associated with an integratiantps distributed equally to all nodes
found in the support domain of that integrationnpoifwo estimates of the stable time
step for each integration point are developed:whieh is very accurate but more costly
to compute and one less accurate but easier temgit. The results are also valid for

the finite element method and beyond computatibrmahechanics for medicine.
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1. INTRODUCTION

In the past few years our research group develapeslite of finite element
algorithms for computing soft tissue deformationsdzh on the Total Lagrangian
formulation and using explicit time integration 41- By using artificial mass
proportional damping in the explicit integratiorhemes such algorithms can not only be
used for time accurate simulations, but also fat 'omputation of the steady state
solution [5, 6]. Parallel implementations of thesdgorithms lead to real-time
performance for intra-operative brain shift compiotas using comprehensive finite
element models having more than 50,000 degreeseetidm and including different
element types, nonlinear materials, large deformnatand contacts [7].

While applying these algorithms for intra-operativ@age registration [8, 9], some
important weakness of the finite element methodibexevident:

* In order to obtain good results and convergencéhefsimulation, a good quality
mesh is needed. Such mesh is very hard to builddioplicated organ shapes (such
as the brain), and automatic generation is almogibssible for any element type
except tetrahedrons.

» Even if a good quality mesh is used, the soluti@hmod may still fail in case of large
deformations, due to problems such as elementsiorer
In order to circumvent these problems we considéredise of mesh-free methods,

such as the Mesh-free Total Lagrangian Explicit &wics (MTLED) algorithm based on

the Element Free Garlekin method [10]. Such methdmshot require a good quality

mesh to be generated, as the shape functions astructed based on a cloud of points,



and they also perform much better in case of vargd deformations. Therefore we
propose to use mesh-free methods combined withogxpblution algorithms for more
robust surgical simulations.

Explicit time integration can be used to perforrmayic simulations, leading to
time accurate solutions, or for quasi-static sirtiafes, to obtain the steady state solution.
Because it does not require the solution of laygtesns of equations, explicit integration
can be much more computationally efficient at fingdthe solution than other methods
(implicit integration, static analysis). It alsatés to solution algorithms that can be easily
implemented on parallel hardware such as GraphioseBsing Units (GPU) [7]. The
main disadvantage of explicit integration is itsdiional stability — the time step used
for time integration must be smaller than a critib@e step in order for the solution to
converge [11].

In the case of the Finite Element Method (FEM)reéhare well established
formulae for estimating the critical time step feach element type [11, 12]. These
formulae are generally developed using the assompdf a homogenous isotropic
material.

For mesh-free particle methods, there are fewlabai methods for estimating
the critical time step, and these methods are eoémglly valid. In [13] Belytschko et al.
develop critical time step bounds for 1D and 2D miese methods. Nevertheless, these
bounds are valid in 2D only for uniformly distrileat nodes, and they cannot be used for
shape functions that have the Kronecker delta ptp@ad for shape functions that are

not strictly positive, as they become indefinite€do division by zero) [14]. Puso et al.



present in [14] an estimation of the critical tistep for nodal integration methods. These
formulae are also developed using the assumpti@ahaimogenous isotropic material.

The critical time step is directly related to theaximum frequency of free
vibration, which is determined by the mass andfr&ffis matrices of the system.
Therefore, different lumping techniques used famoting a diagonal mass matrix lead to
different critical time steps for the system. Instipaper we consider that the mass
associated with an integration point is distribuexgbally to all nodes found in the
support domain of that integration point. The lungptechnique has no influence on the
results of a steady state analysis [6], as the megsx does not influence the steady
state solution (for elastic materials). The comest of results can be influenced by the
lumping technique in case of dynamic analysis;dfoee the analyst must check whether
this lumping technique is appropriate.

In the next Section we develop a new method fomasing the critical time step
for a mesh-free particle method. In Section 3 weess the performance of the new

method and Section 4 contains discussions and sinok.

2. CRITICAL TIME STEP ESTIMATION

We consider a mesh-free particle method for wtiloh displacement field is

approximated by:

u(x)= > h(x) o (1)

10N (x)
whereu' are the field variable values at nodeN(x) is the set of nodes in the support
domain ofx andh, is the shape function for notle

The matrix of shape function derivatives is dediraes:
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The stable critical time step for central differenintegration can be obtained
from the maximum frequency of free vibration as]{15
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Similar formulae are available for other expliamé integration methods [11].
The mass and stiffness matrices for the systenolt@ned by assembling the

corresponding matrices from each integration point:

K:;W @)
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whereN is the number of integration points.
The maximum free vibration frequency of the asdethBystem can be estimated

using the eigenvalue inequality theorem [16]:

rnlin(AMin) = AMin = AMax = mlax(A:\/lax) (6)

Therefore, a conservative estimate of the crititale step for the central

difference method is given by:

A =2 o 2 2

= ~ =min _2 = min(At. ) 7)
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For a given integration point, the maximum eigdngaan be estimated using the

Rayleigh quotient as [16]:



u'K'u
Avae = SUP o ®)

Considering our specific mass lumping techniqueadsn associated to an
integration point is distributed equally to all msdfound in the support domain of that

integration point), the above relation can be rétem as:

N'  u'K'u _N
Avra :WSUW:FPMM(W) 9)

whereN' is the number of nodes in the support domain t&gration point, m' is the
mass allocated to integration pointand puax(K') is the maximum eigenvalue of the
stiffness matrix for integration poiht

The stiffness matrix for integration poinis defined as:
K:JIK = BjJ (XI)CijkIBIK (Xl) Wl = BljJCijle:K Wl (10)
whereV! is the volume allocated to integration point 1]j1Bor a homogenous isotropic

material, the maximum eigenvalue of the stiffnesdrix is developed in [14] as:

)R 2BV sz s O
whereA andy are the Lame constant, |{B the Frobenious norm:
Bl =88, (12)
and ||BYis the matrix two norm, defined as:
Bl} = Ave: (BB ) (13)

By replacing (11) in (9), and considering the diéfom of density, we get the

bounds for the maximum eigenvalues of the stiffmeatix as:
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wherep is the material density ardis the dilatational wave speed. These can be used
directly in Eqg. (7) for estimating the critical tarstep. While Eq. (14) offers a better
estimate, it involves the computation of the maximeigenvalue of a 3x3 matrix (in 3D),
and therefore Eq. (15) may be preferred in practice

The bounds for the maximum eigenvalue of therstgs matrix, as given by Eq.
(14) and (15), are valid for 1D, 2D and 3D casdsyTare also valid for finite elements,
as long as the same mass lumping technique is &sedhe uniform strain hexahedron

and quadrilateral these bounds give the same rastifte ones presented in [12].

3. PERFORMANCE EVALUATION

To evaluate the performance of the critical tinepsestimation algorithm for
different numbers of nodes per integration pointuse the nodal distribution presented
in Fig. 1 for a 2D case and in Fig. 4 for a 3D cd&3® each node we define an influence
domain based on the local node density. We usenaedgrid of regularly distributed
integration points to get different nodes-integmatpoints associations. For the chosen
parameters we have between 3 and 11 nodes assdiae integration point in 2D. We
compute the Moving Least Squares (MLS) shape fanstand their derivatives (matrix
B, see Eq. 2) at each integration point. UsingBhmatrix we can compute the stiffness
matrix (Eq. 10), find its maximum eigenvalue andanpaite the real value of the critical

time step for a given integration point. We can pame the real value of the critical time
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step with estimates computed using Eq. 14 and &qlie obtained results are presented

in Fig. 2 for a plane strain analysis and in Fip3a plane stress analysis.
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Fig. 1. The distribution of nodes (represented by circlasyl integration points used for performance

evaluation. MLS shape functions are computed fohéategration point.
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Fig. 2. The ratio of critical time step estimates, as giby Eq. 14 (a) and Eqg. 15 (b), to the real critica
time step obtained based on the stiffness matrigoimputed for all integration points. The maximum,
minimum and average values of these ratios aréeplatgainst material’s Poisson'’s ratio, for a plsimain

analysis.
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Fig. 3. The ratio of critical time step estimates, as giby Eq. 14 (a) and Eq. 15 (b), to the real critica

time step obtained based on the stiffness matrigoimputed for all integration points. The maximum,
minimum and average values of these ratios aréeplatgainst material’s Poisson'’s ratio, for a plsiness

analysis.

The obtained results show that Eq. 14 leads tayag@od critical time step estimate,
which is less than 5% lower than the actual vdioethe entire range considered for the
material’s Poisson’s ratio. The estimate of théaail time step given by Eq. 15 can be as
much as 30% lower than the actual value, with gebetediction for higher values of the
material’s Poisson’s ratio. Also the estimate gibgrEqg. 15 is better for plane strain than
for plane stress analyses, especially at higheregabf the material’s Poisson’s ratio.

We performed a similar evaluation for 3D shape fioms using the nodes and
integration points distributed as in Fig. 4, withrariable nodal influence domain leading
to between 8 and 25 nodes associated to an intagnabint. The obtained results are
presented in Fig. 5. The obtained results for 3®Dvary similar with those obtained for a

plane strain analysis in 2D.



Fig. 4. The distribution of nodes (represented by circlasyl integration points used for performance

evaluation in 3D. MLS shape functions are comptibecach integration point.
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Fig. 5. The ratio of critical time step estimates, as giby Eq. 14 (a) and Eq. 15 (b), to the real critica

time step obtained based on the stiffness matrigomputed for all integration points. The maximum,

minimum and average values of these ratios ar¢epl@tgainst material’s Poisson’s ratio, for a 3@lgsis.

4. DISCUSSION AND CONCLUSSIONS

In this paper we present a method for estimativegcritical time step for mesh-
free particle methods. The estimates are validafgpecific case of mass lumping: the
mass associated with an integration point is tisted equally to all nodes found in the
support domain of that integration point. The sasgmation method can also be used

for finite elements if the mass lumping is doné¢hea same way.
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We present two formulas that can be used fomasitng the critical time step.
These formulas are obtained considering a homogeisoiropic material and are valid
both in 2D and 3D. The first formula (Eq. 14) ledds very good estimate, for any value
of the material’'s Poisson’s ratio, but it requirdee computation of the maximum
eigenvalue of a 2x2 (2D) or 3x3 (3D) matrix. Theaad formula (Eg. 15) is much
simpler, but the accuracy of the estimates it glesiis lower, especially for materials
with a low Poisson’s ratio. Nevertheless, this mifje a better option for a large
deformations non-linear solver implementation, laes ¢ritical time step might decrease
during the analysis (because of changes in nodatipos and material properties due to
the large deformations). The second formula woust &e a good choice for almost
incompressible materials, such as brain tissuesiwhave a very large Poisson’s ratio.

The developed formulas offer a way of estimatimg ¢ritical time step for mesh
free methods, which can then be used togetherexiplicit time integration algorithms to
solve computational biomechanics problems in rgmkt Although developed in the
context of linear elasticity, empirical evidencerfr the use of similar formulae with the
finite element method suggests that these formalae also useful for simulations

involving large deformations and non-linear matemadels [11].
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