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SUMMARY 

 Real time computational biomechanics for medicine usually uses explicit time 

integration, due to its efficiency and suitability for parallel implementation. Explicit time 

integration is only conditionally stable and therefore requires an estimation of the 

maximum stable time step that can be used. In this paper we develop a method of 

estimating the stable time step for mesh-free particle methods for a specific case of mass 

lumping: the mass associated with an integration point is distributed equally to all nodes 

found in the support domain of that integration point. Two estimates of the stable time 

step for each integration point are developed: one which is very accurate but more costly 

to compute and one less accurate but easier to implement. The results are also valid for 

the finite element method and beyond computational biomechanics for medicine. 
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1. INTRODUCTION 

In the past few years our research group developed a suite of finite element 

algorithms for computing soft tissue deformation based on the Total Lagrangian 

formulation and using explicit time integration [1-4]. By using artificial mass 

proportional damping in the explicit integration schemes such algorithms can not only be 

used for time accurate simulations, but also for fast computation of the steady state 

solution [5, 6]. Parallel implementations of these algorithms lead to real-time 

performance for intra-operative brain shift computations using comprehensive finite 

element models having more than 50,000 degrees of freedom and including different 

element types, nonlinear materials, large deformations and contacts [7]. 

While applying these algorithms for intra-operative image registration [8, 9], some 

important weakness of the finite element method became evident:  

• In order to obtain good results and convergence of the simulation, a good quality 

mesh is needed. Such mesh is very hard to build for complicated organ shapes (such 

as the brain), and automatic generation is almost impossible for any element type 

except tetrahedrons.  

• Even if a good quality mesh is used, the solution method may still fail in case of large 

deformations, due to problems such as element inversion.  

In order to circumvent these problems we considered the use of mesh-free methods, 

such as the Mesh-free Total Lagrangian Explicit Dynamics (MTLED) algorithm based on 

the Element Free Garlekin method [10]. Such methods do not require a good quality 

mesh to be generated, as the shape functions are constructed based on a cloud of points, 
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and they also perform much better in case of very large deformations. Therefore we 

propose to use mesh-free methods combined with explicit solution algorithms for more 

robust surgical simulations.  

Explicit time integration can be used to perform dynamic simulations, leading to 

time accurate solutions, or for quasi-static simulations, to obtain the steady state solution. 

Because it does not require the solution of large systems of equations, explicit integration 

can be much more computationally efficient at finding the solution than other methods 

(implicit integration, static analysis). It also leads to solution algorithms that can be easily 

implemented on parallel hardware such as Graphics Processing Units (GPU) [7].  The 

main disadvantage of explicit integration is its conditional stability – the time step used 

for time integration must be smaller than a critical time step in order for the solution to 

converge [11].  

 In the case of the Finite Element Method (FEM) there are well established 

formulae for estimating the critical time step for each element type [11, 12]. These 

formulae are generally developed using the assumption of a homogenous isotropic 

material.  

 For mesh-free particle methods, there are few available methods for estimating 

the critical time step, and these methods are not generally valid. In [13] Belytschko et al. 

develop critical time step bounds for 1D and 2D mesh-free methods. Nevertheless, these 

bounds are valid in 2D only for uniformly distributed nodes, and they cannot be used for 

shape functions that have the Kronecker delta property and for shape functions that are 

not strictly positive, as they become indefinite (due to division by zero) [14]. Puso et al. 
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present in [14] an estimation of the critical time step for nodal integration methods. These 

formulae are also developed using the assumption of a homogenous isotropic material.   

 The critical time step is directly related to the maximum frequency of free 

vibration, which is determined by the mass and stiffness matrices of the system. 

Therefore, different lumping techniques used for obtaining a diagonal mass matrix lead to 

different critical time steps for the system. In this paper we consider that the mass 

associated with an integration point is distributed equally to all nodes found in the 

support domain of that integration point. The lumping technique has no influence on the 

results of a steady state analysis [6], as the mass matrix does not influence the steady 

state solution (for elastic materials). The correctness of results can be influenced by the 

lumping technique in case of dynamic analysis; therefore the analyst must check whether 

this lumping technique is appropriate.  

 In the next Section we develop a new method for estimating the critical time step 

for a mesh-free particle method. In Section 3 we assess the performance of the new 

method and Section 4 contains discussions and conclusions. 

2. CRITICAL TIME STEP ESTIMATION 

 We consider a mesh-free particle method for which the displacement field is 

approximated by: 
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where uI are the field variable values at node I, N(x) is the set of nodes in the support 

domain of x and hI is the shape function for node I. 

 The matrix of shape function derivatives is defined as: 
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 The stable critical time step for central difference integration can be obtained 

from the maximum frequency of free vibration as [15]: 
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Similar formulae are available for other explicit time integration methods [11].  

The mass and stiffness matrices for the system are obtained by assembling the 

corresponding matrices from each integration point:   
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where N is the number of integration points. 

 The maximum free vibration frequency of the assembled system can be estimated 

using the eigenvalue inequality theorem [16]: 
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 Therefore, a conservative estimate of the critical time step for the central 

difference method is given by: 
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 For a given integration point, the maximum eigenvalue can be estimated using the 

Rayleigh quotient as [16]:  



6 

 

uMu
uKu

u
IT

IT
I
Max sup=λ  (8) 

 Considering our specific mass lumping technique (mass associated to an 

integration point is distributed equally to all nodes found in the support domain of that 

integration point), the above relation can be re-written as: 
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where NI is the number of nodes in the support domain of integration point I, mI is the 

mass allocated to integration point I and ρMax(K
I) is the maximum eigenvalue of the 

stiffness matrix for integration point I. 

 The stiffness matrix for integration point I is defined as: 
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where VI is the volume allocated to integration point I [14]. For a homogenous isotropic 

material, the maximum eigenvalue of the stiffness matrix is developed in [14] as:  
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where λ and µ are the Lame constant, ||B||F is the Frobenious norm: 

jIjIF
BBB =2

  (12) 

and ||B||2 is the matrix two norm, defined as: 
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By replacing (11) in (9), and considering the definition of density, we get the 

bounds for the maximum eigenvalues of the stiffness matrix as: 
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where ρ is the material density and c is the dilatational wave speed. These can be used 

directly in Eq. (7) for estimating the critical time step. While Eq. (14) offers a better 

estimate, it involves the computation of the maximum eigenvalue of a 3x3 matrix (in 3D), 

and therefore Eq. (15) may be preferred in practice. 

 The bounds for the maximum eigenvalue of the stiffness matrix, as given by Eq. 

(14) and (15), are valid for 1D, 2D and 3D cases. They are also valid for finite elements, 

as long as the same mass lumping technique is used. For the uniform strain hexahedron 

and quadrilateral these bounds give the same result as the ones presented in [12]. 

3. PERFORMANCE EVALUATION 

 To evaluate the performance of the critical time step estimation algorithm for 

different numbers of nodes per integration point we use the nodal distribution presented 

in Fig. 1 for a 2D case and in Fig. 4 for a 3D case. For each node we define an influence 

domain based on the local node density. We use a dense grid of regularly distributed 

integration points to get different nodes-integration points associations. For the chosen 

parameters we have between 3 and 11 nodes associated to an integration point in 2D. We 

compute the Moving Least Squares (MLS) shape functions and their derivatives (matrix 

B, see Eq. 2) at each integration point. Using the B matrix we can compute the stiffness 

matrix (Eq. 10), find its maximum eigenvalue and compute the real value of the critical 

time step for a given integration point. We can compare the real value of the critical time 
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step with estimates computed using Eq. 14 and Eq. 15. The obtained results are presented 

in Fig. 2 for a plane strain analysis and in Fig. 3 for a plane stress analysis. 

 

 

Fig. 1. The distribution of nodes (represented by circles) and integration points used for performance 

evaluation. MLS shape functions are computed for each integration point. 

 
    a)             b) 

Fig. 2. The ratio of critical time step estimates, as given by Eq. 14 (a) and Eq. 15 (b), to the real critical 

time step obtained based on the stiffness matrix is computed for all integration points. The maximum, 

minimum and average values of these ratios are plotted against material’s Poisson’s ratio, for a plane strain 

analysis.  
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    a)             b) 

Fig. 3. The ratio of critical time step estimates, as given by Eq. 14 (a) and Eq. 15 (b), to the real critical 

time step obtained based on the stiffness matrix is computed for all integration points. The maximum, 

minimum and average values of these ratios are plotted against material’s Poisson’s ratio, for a plane stress 

analysis.  

The obtained results show that Eq. 14 leads to a very good critical time step estimate, 

which is less than 5% lower than the actual value, for the entire range considered for the 

material’s Poisson’s ratio. The estimate of the critical time step given by Eq. 15 can be as 

much as 30% lower than the actual value, with a better prediction for higher values of the 

material’s Poisson’s ratio. Also the estimate given by Eq. 15 is better for plane strain than 

for plane stress analyses, especially at higher values of the material’s Poisson’s ratio. 

We performed a similar evaluation for 3D shape functions using the nodes and 

integration points distributed as in Fig. 4, with a variable nodal influence domain leading 

to between 8 and 25 nodes associated to an integration point. The obtained results are 

presented in Fig. 5. The obtained results for 3D are very similar with those obtained for a 

plane strain analysis in 2D. 
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Fig. 4. The distribution of nodes (represented by circles) and integration points used for performance 

evaluation in 3D. MLS shape functions are computed for each integration point. 

 
    a)             b) 

Fig. 5. The ratio of critical time step estimates, as given by Eq. 14 (a) and Eq. 15 (b), to the real critical 

time step obtained based on the stiffness matrix is computed for all integration points. The maximum, 

minimum and average values of these ratios are plotted against material’s Poisson’s ratio, for a 3D analysis.  

 

4. DISCUSSION AND CONCLUSSIONS 

 In this paper we present a method for estimating the critical time step for mesh-

free particle methods. The estimates are valid for a specific case of mass lumping: the 

mass associated with an integration point is distributed equally to all nodes found in the 

support domain of that integration point. The same estimation method can also be used 

for finite elements if the mass lumping is done in the same way.  
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  We present two formulas that can be used for estimating the critical time step. 

These formulas are obtained considering a homogenous isotropic material and are valid 

both in 2D and 3D. The first formula (Eq. 14) leads to a very good estimate, for any value 

of the material’s Poisson’s ratio, but it requires the computation of the maximum 

eigenvalue of a 2x2 (2D) or 3x3 (3D) matrix. The second formula (Eq. 15) is much 

simpler, but the accuracy of the estimates it provides is lower, especially for materials 

with a low Poisson’s ratio. Nevertheless, this might be a better option for a large 

deformations non-linear solver implementation, as the critical time step might decrease 

during the analysis (because of changes in nodal positions and material properties due to 

the large deformations). The second formula would also be a good choice for almost 

incompressible materials, such as brain tissue, which have a very large Poisson’s ratio. 

 The developed formulas offer a way of estimating the critical time step for mesh 

free methods, which can then be used together with explicit time integration algorithms to 

solve computational biomechanics problems in real time.  Although developed in the 

context of linear elasticity, empirical evidence from the use of similar formulae with the 

finite element method suggests that these formulae are also useful for simulations 

involving large deformations and non-linear material models [11]. 
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