

of Medicine

THE UNIVERSITY OF WESTERN AUSTRALIA

Brain meshing

This presentation is about the work I did during my 5-month internship Tuesday 5th July 2011

Jérémie Voltz

Nedicine

Contents

Introduction

- Meshing from MRI images
 - Slicer3D
 - IA-FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning of the mesh
 - Assembly with tetrahedrons
- Computing the deformationConclusion

of Medicine

Introduction

Introduction

- 1. Meshing from MRI images
 - Slicer 3D
 - IA-FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly
- 3. Computing the deformation

Conclusion

Internship abroad

- Lab work on a challenging project
 Continuing Mathieu's work from 2009
 Modelling the brain
 - Modelling the brain

Medicine

Introduction

- 1. Meshing from MRI images
 - IA-FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly
- 3. Computing the deformation

Conclusion

Resampling

- Bigger resolution: 0.9375mm
- Lanczos interpolation type

Registration

Align the two images: useful for the measure of the displacements

Medicine (

Slicer3D

Introduction

1. Meshing from MRI images

- IA-FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly
- 3. Computing the deformation

Conclusion

Segmentation

- Tried several automatic registration modules:
 - EMSegmenter
 - Simple Region Growing
 - Fast Marching Segmentation
- All segmentation done manually

Medicine Las

IA-FEMesh

Introduction

1. Meshing from MRI images

- Slicer 3D
- IA-FEMest
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly
- 3. Computing the deformation

Conclusion

Blocks

- As close as possible to the surface
- Not too much deformed
- Use of symmetry for brain

to medicine Las

IA-FEMesh

Introduction

1. Meshing from MRI images

- Slicer 3D
- IA–FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly
- 3. Computing the deformation

Conclusion

Mesh

Element Length	Graphic result	Number of elements
Color Code Mesh Seeds Element Length Rx : 2 Gy : 2 Bz : 2		# Elements 178956 # Distorted 1124 Minimum -35.652 Maximum 28.412 Average 6.284 Variance 19.661
Color Code Mesh Seeds Element Length Rx : 3 Gy : 3 Bz : 3		# Elements 50584 # Distorted 476 Minimum -39.749 Maximum 94.494 Average 21.577 Variance 230.821
Color Code Mesh Seeds Element Length Rx : 5 Gy : 5 Bz : 5		# Elements 9369 # Distorted 173 Minimum -131.413 Maximum 484.198 Average 108.395 Variance 6608.267

Medicine (%

Introduction

- 1. Meshing from MRI images
 - Slicer 3D
 - IA-FEMesh

2. Creation of the model with HyperMesh

- Cleaning
- Assembly
- 3. Computing the deformation

Conclusion

- Negative Jacobian elements
- Many steps
 - Find faces
 - Creation of surfaces
 - Surface Automesh
 - Tetramesh

Brain and tumour separated in two components

Assembly of the components

Introduction

- 1. Meshing from MRI images
 - Slicer 3D
 - IA-FEMesh

2. Creation of the model with HyperMesh

- Cleaning
- Assembly
- 3. Computing the deformation

Conclusion

- Creation of the hole inside the parenchyma in order to insert the tumour and ventricles
- Complete the gap with tetrahedrons from faces

Computing the deformation

Introduction

- 1. Meshing from MRI images
 - Slicer 3D
 - IA-FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly

3. Computing the deformation

Conclusion

- Accurate segmentation of the brain in the area of interest for both intra and preoperative images
- Use of Grand's algorithm
 - Registration
 - Calculation of the displacements
 - Apply the deformation to the model

Medicine

Conclusion

Introduction

- 1. Meshing from MRI images
 - Slicer 3D
 - IA-FEMesh
- 2. Creation of the model with HyperMesh
 - Cleaning
 - Assembly
- 3. Computing the deformation

Conclusion

- Plenty of time needed to learn how to use the software
- No results after deformation
 - Too many elements
 - Meshing problems
 - Wrong materials properties
- Tutorials made for Slicer3D and IA-FEMesh
- Demonstration made for HyperMesh with a tutorial

Medicine

Thank you for your attention

>>> If you have any questions, I'd be pleased to answer you

