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1 Introduction

In June 2005, I submitted a research proposal which was followed by an annual report in January
2006 for ‘Mesh Free Methods for Soft Tissue Deformation in Computer Integrated Surgery’. This
report covers the work I have completed since January 2006 and gives the direction of future work.
Fundamental ideas of mesh free methods and motivation for mesh free simulation of soft tissue
deformation were given in the research proposal and are not repeated here.

The major work of the past year has been the development of a working 3D fully nonlinear
meshless code for solving partial differential equations that arise in solid mechanics. Many smaller
codes have been written for 1 and 2 dimensions as well as linear statics but these are not included
in this report since they have been superseded. Similarly many algorithms (to handle geometries
and output data etc) have been written to support the main code and again these are not detailed
in this report.

2 A Total Lagrangian Explicit Dynamics Meshless Algo-

rithm

2.1 Motivation for the Algorithm

In [1] we proposed the use of the Element Free Galerkin method (EFG) introduced by [2] for
surgical simulations. In that study, we simulated craniotomy induced brain shift with both EFG
and Finite Element Analysis (FEA) in LS DYNA [3, 4]. Although slightly slower, EFG gave very
similar results to FEA and can certainly be considered for use in future simulation. The major
limitation of LS DYNA’s implementation of EFG is the fact that it requires a complete mesh of
hexahedral elements that conform to the geometry exactly. By employing this mesh of hexahedral
elements, LS DYNA ensures that nodes are evenly distributed through the problem domain which
reduces the possibility of near singular shape functions. Background integration is also performed
over these elements so the volume of integration matches the volume of the problem’s geometry
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perfectly. However, requiring this structured hexahedral mesh, removes the method’s ability to
deal with irregular geometries easily.

An algorithm that does not require a geometry conforming hexahedral element mesh is a nec-
essary step towards using meshless methods for fast, efficient simulation of surgical procedures.
For this reason, we proposes an algorithm that integrates over a regular background grid. This grid
does not conform to the simulation geometry. Independant of this integration grid are the nodes
where we calculate displacement. To allow for complicated boundaries etc, our method can accept
an almost1 arbitrary placement of nodes throughout the simulation geometry. Both the integration
grid and node placement for our algorithm can be created automatically for any geometry. This
distinguishes it from the hexahedral dependant EFG offered in LS DYNA. Our shape functions
are created by Moving Least Squares (MLS) [5].

Any algorithm to be used in surgical simulations must be capable of producing dynamic results in
real-time. Most commercial dynamic FEA solvers (such as [6, 4]) use Updated Lagrangian (UL)
where our algorithm uses Total Lagrangian (TL). The difference between these methods is that
in UL, the calculated variables are referred to the previous calculated configuration, as opposed
to the initial configuration for TL [7]. As in [8], our method precomputes the constant strain-
displacement matrices for each integration cell and uses the deformation gradient to calculate the
full matrix at each time step.

In our algorithm, we use explicit time integration based on the central difference method. Unlike
implicit time integration, this does not require solving any systems of equations at every time step.

2.2 Algorithm overview

The following is a brief description of the developed algorithm. Notation is based on that used in
[7]. More detailed explanations of each part are given in the following sections.

Preprocessing

1. Load simulation geometry Ω in the form of two lists:

� Node locations.
� Integration point locations.

2. Load boundary conditions.

3. Loop through list of integration point locations. For each integration point:

� Identify n local nodes.
� Create and store the 3×n matrix DΦ(x) of moving least squares shape function deriv-

atives

DΦk,i(x) =
∂φi(x)

∂xk

k = 1, 2, 3 i = 1, 2 · · ·n

4. Loop through nodes and associate to each a suitable mass.

5. Initialise global nodal displacements −∆tU and 0U.

Solving

In every time step t:

1. Loop through integration points2

1Totally arbitrary placement will never be possible. An extreme example of this is to imagine all nodes being

placed at the same location.
2Technically we should be looping through integration regions. We use single point integration so this is equiva-

lent.
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� From precomputed list, find n local nodes and associated shape function derivatives
DΦ(x) for the given integration point x.

� Find n × 3 local nodal deformation matrix tU .
� Calculate deformation gradient t

0X .
� Calculate strain-displacement matrix t

0BL.
� Calculate second Piola-Kirchoff stress vector t

0Ŝ (using material properties).
� Calculate and store local nodal reaction forces

t
0F =

∫

V 0

t
0B

T
L

t
0Ŝ dV 0

2. Combine all local nodal reaction forces to create global nodal reaction forces vector t
0F.

3. Calculate global nodal displacements at time t + ∆t using central difference method

t+∆tU = −∆t2M−1(t
0F −

tR) + 2 tU −
t−∆tU

where M is the diagonal mass matrix and tR is the boundary condition forces applied at
time t.

2.3 Geometry Discretisation

Although a major advantage of meshless methods is the freedom of node placement, this freedom
is not total. There is significantly more flexibility than hexahedral meshes can offer, but still not
the option to place all nodes on one side of the geometry. What is needed is a roughly even density
of nodes throughout the domain.

We also require that all boundary nodes must share a support domain with at least one inte-
rior node. To satisfy this requirement, we need to consider our placement of integration points.
The general form for numerical integration of a function f over a region V , is

∫

f(x) dV ≈

∑

f(xi)wi

which leaves the questions of where to place xi ∈ V and what weights wi to use. Available options
include:

Background FEA mesh A mesh is created conforming to the nodes and standard FEA inte-
gration methods are used.

Nodal integration Some or all nodes are used as single sampling points and the weights are set
as the volume associated with each node.

Background grid A regular grid of cells is imposed over the geometry and integration is per-
formed in each cell using standard techniques for a regular 3D region.

Creating a background mesh removes some of the flexibility of the meshfree method. A hexahedral
mesh would likely require manual construction for complicated geometries so a tetrahedral mesh
is a better option. The tetrahedral integration mesh can be constructed to conform to the existing
nodes or not. Conforming to the nodes restricts the possibility of varying integration densities
independently to the nodes. A non-conforming tetrahedral mesh has more promise since the sim-
ulation volume can be discretised automatically and would be accurately modeled.

Nodal integration is said to be fast and efficient [9] but this is claimed in comparison to back-
ground meshes and background grids which use several gauss points per region3. The speed of

3Nodal integration by nature involves only single point integration.
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nodal integration is balanced by its instability [10, 11] so we have not used it(regardless of the
claims made in the previous annual report).

In this study we have used a regular background grid with single point integration for each cell.
This is fast in theory because of its low number of integration points and in practice because the
simplicity lends itself to efficient coding.

2.4 Support Domains and Moving Least Squares Shape Functions

The support domain and MLS theory as initially developed by [5] and used in meshless methods in
the Diffuse Element Method of [12] was detailed in the research proposal for this study and is not
repeated here. We have experimented with many other shape functions and there are advantages
to each, but the simple robustness of the MLS makes it the best choice at this stage.

For the purpose of our algorithm we will require only the n × 3 first partial, spatial derivatives of

the shape functions ∂φi(x)
∂xk

for k = 1, 2, 3 and n the number of nodes in the support domain.

2.5 Mass allocation

All mass in the simulation is located at the nodes, but unlike FEA, we do not believe that all
interior nodes are created equal. Each integration cell is allocated a mass based on its volume
and density. This mass is split evenly to the n nodes in the support domain of that cell. Many
nodes will thus have different masses proportional to the number of support domains that they
are included in. This is a good method of distributing weight because nodes in more support
domains will receive more forces. For good results, every node should be included in at least 2
support domains, preferably 3−4 with integration points roughly surrounding the node in question.

The result of a node being included in few support domains, is low mass and unbalanced forces.
Since our explicit time integration is based on Newton’s second law of motion, this leads to high
accelerations and unstable simulations. Even worse is the case of a node which escapes all support
domains. No force will be applied to that node, but its massless nature means it must be removed
entirely or the diagonal mass matrix will be singular.

The simplest method to avoid nodes with low or zero mass, is to increase the density of the
background integration grid. This will reduce the volume and hence mass of each cell, but cre-
ates a more even distribution of mass across the entire simulation volume. The obvious cost is in
computation.

2.6 Force calculation

From [7] we have the TL formulation

t
0F =

∫

0V

t
0B

T
L

t
0Ŝ d 0V

which we integrate numerically.
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The full strain-displacement matrix t
0BL has the following construction

t
0BL =

[

t
0B

(1)
L , t

0B
(2)
L , · · · ,t0 B

(n)
L

]

t
0B

(i)
L =t

0 B
(i)
L0

t
0X

T

t
0B

(i)
L0 =





















∂φi(x)
∂x1

0 0

0 ∂φi(x)
∂x2

0

0 0 ∂φi(x)
∂x3

∂φi(x)
∂x2

∂φi(x)
∂x1

0

0 ∂φi(x)
∂x3

∂φi(x)
∂x2

∂φi(x)
∂x3

0 ∂φi(x)
∂x1





















where every element of t
0B

(i)
L0 is taken from the precomputed DΦ(x). This update is fast and efficient

since all shape function calculations are done in the preprocessing stage. An UL formulation
would involve recalculating shape functions and their derivatives at every time step and for every
integration point.

2.7 Explicit time integration

The 3n nodal forces calculated at each integration point are combined to form the global force
vector t

0F. These forces are the only data that is stored at each step of the integration point loop.

We use Newton’s second law
M tÜ =t R −

t
0 F (1)

where the forces on the right hand side are the difference between applied (boundary) forces the
reaction forces calculated in section 2.6. Mass is constant, so we apply the finite difference method
to acceleration to find

Ü ≈
1

∆t2

(

t−∆tU − 2 tU + t+∆tU
)

(2)

Putting (2) into (1) gives us

t+∆tU = ∆t2M−1(tR −
t
0F) + 2 tU−

t−∆tU (3)

This concludes one timestep. If the simulation involves any enforced displacements or contacts,
they are enforced here by adjusting t+∆tU appropriately.

3 A simplified 3D experiment

The following example is given to show how our algorithm can be used in the place of LS DYNA’s
existing code. The example is a simple one, but contains all the major components (3D, finite
deformation, nonlinear material models, irregular geometry, multiple parts and contact definitions)
of a more complicated simulation. Parallel simulations are run in both LS DYNA and with our
algorithm. The major simplification here is that only a thin slice of brain is simulated, rather than
a complete solid.

3.1 Base Images and Geometry

The geometry for our patient-specific, brain shift simulation is based on pre-operative MRIs (Figure
1) segmented with 3D Slicer [13] by the Surgical Planning Laboratory at Brigham and Women’s
Hospital and Harvard Medical School We choose our experimental geometry to be a thin, 3D slice
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Figure 1: Left: Patient specific data. MRI showing ventricles (dark centre), brain and skull. A
tumor is present, but experience and skill are required to accurately differentiate it from healthy
brain tissue. Right: Segmented MRI clearly showing ventricles, brain, skull and tumor.

of brain obtained by taking the 2D segmented image shown in Figure 1, and applying a uniform
thickness of 5mm using the Ansys pre-processor [14]. Complete justification for this is given in [1],
but the main point to note is that full 3D formulations are employed throughout this study.

3.2 Discretising the Geometry

For the LS DYNA simulation, we use the same node arrangement and hexahedral element used in
[1]. Integration is done over the hexahedral elements shown in Fig 2

Unlike LS DYNA, our algorithm can take randomly placed nodes. However, a truly random place-
ment is often not useful, since shape functions cannot be effectively created when several nodes
in a given region exist in a straight line. To avoid poor node placement, we create a tetrahedral
mesh automatically with Ansys and record node locations before discarding element information.
This method ensures that we get a roughly even distribution of nodes.

Integration in our algorithm is done over a regular background mesh of varying density as shown
in Figure 2. This background mesh is initially much larger than the volume of interest but we
reject any cell whose centre is outside the brain volume. For most interior regions, we use a cell
with volume of 500mm3. On the boundary and around the tumor, a higher resolution is needed
to deal with irregular geometry and/or higher density of nodes. In these areas the volume of the
cells drops to 125mm3. All cells are under-integrated (single Gauss point).

It is important to note that while our background cells appear to be standard hexahedral ele-
ments, they do not conform to boundaries. This would appear to give less accurate results, but
we see in section 3.5 that this is not the case. Of course, if more accuracy was required then
additional, smaller cells can be added and some large cells can be broken up to account for any
geometry at any resolution. No consideration is needed when multiple small cells share a border
with one large cell. All of this can be done automatically by a simple code.

3.3 Material Properties

In our brain slice, there are three parts that require modeling of material properties, the brain,
ventricles and tumor. For the brain and tumor, we use the simplest fully nonlinear material for-
mulation, Neo-Hookean [7]. We are justified in using the simplest possible nonlinear form because
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Figure 2: Left: Hexahedral element mesh needed for LS DYNA simulation. Right: Background
mesh used in our algorithm. The dot in the centre of each cell is the single integration point Note
that in our algorithm, the skull does not have a background mesh.

at this point we are primarily interested in comparing our numerical algorithm to LS DYNA’s.

The Neo-Hookean formulation is obtained by simplifying the Mooney-Rivlin [7, 15] rubber model
used in LS DYNA. According to [4, 3], Mooney-Rivlin rubber in LS DYNA has the strain energy
density function

W = A(I − 3) + B(II − 3) + C(III−2
− 1) + D(III − 1)2

C =
A

B

D =
A(5ν − 2) + B(11ν − 5)

2(1 − 2ν)

Where I, II and III are the first, second and third invariants of the right Cauchy-Green defor-
mation tensor.

The parameters we use for healthy brain tissue are A=1052 Pa, B=0 Pa and v=0.49. Note
that by setting B=0 we are simplifying the model to almost incompressible Neo-Hookean since
v is Poisson’s ratio. The value for A is derived from [16, 17]. For the tumor, we use the same
justification as [18] to assume the properties of healthy brain.

We model the ventricles as soft, compressible elastic solids with Young’s modulus 10Pa and Pois-
son’s ratio of 0.1. Justification for this is given in [18].

3.4 Loading and Boundary Condition

The brain, ventricles and tumor are modeled as having no gaps between parts. They are connected
by sharing nodes along part boundaries. Between the brain and skull, there are many materials
with complicated properties. For this study, it is sufficient to consider this subarachnoid space to
be a gap of approximately 2-4mm between these two parts [18]. Appropriate contact surfaces are
defined between the brain and skull with the assumption of no sliding friction.

We constrain all nodes in the direction normal to the slice to simulate the existence of the missing
brain volume. During any neurosurgical procedure, the head would be totally anchored and the
skull significantly stiffer than its contents. In both our simulations we treat the skull as a rigid
and anchored body. In our algorithm this means that the skull only needs to be modeled along its
contact region (interior surface). This explains why Figure 2 does not show any background mesh
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for the skull.

We simulate external pressure on the brain (causing brain shift) by enforcing a displacement
on nodes near the craniotomy as shown in Figure 3 The displacement is enforced for 1s before
removing the enforced displacement and allowing relaxation for 1s (total simulation time is 2s).

Figure 3: Displacement is enforced on nodes near craniotomy.

3.5 Results

Table 1 shows the resulting displacement of the centre of mass for the brain, ventricles and tumor.
We see that the relative displacement differences between the two algorithms are of the order 10−2.
Also, the absolute displacement differences are safely less that 0.85mm which is the resolution of
the MRIs used in this study [19]. At this level of accuracy, it would now be more important (for
this simulation) to refine the initial state than to refine the numerical algorithm.

Figure 4 visually shows the high agreement between simulation results. Outlines from both sim-
ulations are shown and line up almost perfectly. As would be expected, the greatest difference is
visible (as a slightly thicker outline) at the contact region where the two algorithms differ slightly.
We should also be aware that slightly different nodal discretisations of the part boundaries give us
a minor discrepancy which is not the fault of either algorithm. Note that it is the nodes, not the
integration cells, that discretise the part boundaries.

Part Direction
Initial Displaced Coordinates

Relative
Coordinate LS DYNA Our Algorithm

Differences
(mm) (mm) (mm)

Brain
x 13.3012 0.7133 10.7610 0.0184
y 7.1770 3.9657 4.2143 0.0774

Ventricles
x 15.3711 12.4832 12.7567 0.0947
y -4.8039 -8.1255 -7.8064 0.0961

Tumor
x 34.4503 31.6203 31.8396 0.0775
y 57.732 54.8762 55.0402 0.0574

Table 1: Coordinates of the centre of mass of the brain, ventricles and tumor. Coordinates in the
z direction (normal to the slice) are not shown, since they are all 2.5mm and no differences are
seen.

These results conclude the thin slice experiment, having shown that our algorithm gives good
results and is worth investigating further. These results we published in the Proceedings of the

8



Figure 4: Outlines of the displaced brain, ventricles and tumor from both simulations are displayed
here on the same image to show the similarity of results. A greater difference in results is visible
near the contact edges. The dots around the skull are reference markers, to ensure that the images
are aligned correctly.

Computational Biomechanics for Medicine workshop at MICCAI 2006. A poster presentation was
made and the poster can be seen in Figure 5.
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Figure 5: Poster presented at the Computational Biomechanics for Medicine workshop at MICCAI
2006.

4 Future work

The algorithm developed in the past year and outlined in this report forms the basis for the final
stages of work in my Phd. Over the next 6 months I intend to take this algorithm and:

� Find optimal parameters to increase accuracy and decrease computation expense.

� Extend current FEA theory for explicit time integration to be useful for meshless shape
functions.

� Develop code to directly automatically convert segmented MRI images into useful geometry
data (without ever creating surfaces and volumes as is standard in FEA).

� Implement 3D contact algorithms for meshless geometries.
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� Construct a neurosurgical simulation using complete 3D geometry and compare results to
pre and intraoperative MRIs.

Most of the base research for the above goals has already been completed, with only the application
left to be done. The following table was presented in my research proposal in June 2005 and shows
the intended timeframe for this Phd.

Research in the months since 27/01/05 6 12 18 24 30 36
Literature review X

Begin using LS-DYNA X X

Extend LS-DYNA to real data X X

Consider improvements to existing software X

Write meshless code X X

Extend code for real applications X X

Write thesis X

I consider myself to be on target to complete research by the middle of this year and begin writing
my thesis in the second half.
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