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Abstract This paper demonstrates that the recently developedmodifiedmoving least squares
(MMLS) approximation possess the necessary properties which allow its use as an element
free Galerkin (EFG) approximation method. Specifically, the consistency and invariance
properties for the MMLS are proven. We demonstrate that MMLS shape functions form a
partition of unity and the MMLS approximation satisfies the patch test. The invariance prop-
erties are important for the accurate computation of the shape functions by using translation
and scaling to a canonical domain. We compare the performance of the EFG method based
on MMLS, which uses quadratic base functions, to the performance of the EFG method
which uses classical MLS with linear base functions, using both 2D and 3D examples. In 2D
we solve an elasticity problem which has an analytical solution (bending of a Timoshenko
beam) while in 3D we solve an elasticity problem which has an exact finite element solu-
tion (unconstrained compression of a cube). We also solve a complex problem involving
complicated geometry, non-linear material, large deformations and contacts. The simulation
results demonstrate the superior performance of the MMLS over classical MLS in terms of
solution accuracy, while shape functions can be computed using the same nodal distribution
and support domain size for both methods.
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1 Introduction

Meshlessmethods (MMs) have been developed as alternative solutionmethodswhich address
some of the shortcomings of the finite element method (FEM). MMs use only a set of
scattered nodes in the problem domain and on its boundary to discretise the problem space.
Therefore, the need for creating a high quality mesh is eliminated. MMs are suitable for
solving large deformation problems, where traditional FEM has difficulties in obtaining a
solution due to element distortion. Furthermore, changes to the discretisation can be easily
made in MMs, making them suitable for solving problems which involve topology changes
and discontinuities, such as crack propagation and cutting [1–4].

The element free Galerkin (EFG) method is an effective meshless method for nonlinear
problems proposed by Belytschko et al. [5], based on the diffuse elements method (DEM)
originated by Nayroles et al. [6]. The solution procedure of the EFG method is similar to
that used in FEMs. However, in EFG the problem domain discretisation is achieved using
nodes arbitrarily distributed within and on the boundary of the problem domain. A Galerkin
weak form is employed to develop the discretised system of equations and background cells
are used for numerical integration. Moving Least Squares (MLS) is used to approximate the
displacement field at a point of interest using the nodal parameters of the nodes that fall
into the support domain of that point. The MLS shape functions used in the EFG method
are ‘meshless’ as they are constructed entirely based on the nodes. In FEM, the supports
of the shape functions are also used as integration cells. However, in EFG-based MMs
the background integration cells are constructed independently of the shape functions [7].
Although the simplest way to define the background integration cells is by creating a mesh,
such mesh does not need to be defined using the discretising nodes, and each integration
cell can be handled independently during integration (for example when applying adaptive
integration procedures [8]) without having to ensure mesh compatibility.

A number of ways have been proposed over the years to construct meshless shape func-
tions [7,9,10]. According to the literature, shape functions used in meshless methods should
satisfy some basic requirements [7]: they should be sufficiently robust for reasonably arbitrar-
ily distributed nodes; should be numerically stable; should have a certain order of consistency;
should be compactly supported (should be zero outside a bounded region called the support
domain); should be computationally efficient and should ideally possesses the Kronecker
delta function property. Not having the Kronecker delta function property means that the
shape function associated with a particle does not vanish at all other particles; this makes dif-
ficult the imposition of essential boundary conditions. The point interpolation method (PIM),
proposed by Liu and Gu [7], possesses the Kronecker delta function property. However, PIM
requires the number of basis functions to be equal to the number of nodes in the support
domain, increasing the chance of a singular moment matrix for arbitrarily distributed nodes.
PIM shape functions are also not compatible over the problem domain [7].

Due to its continuity and smoothness properties, theMoving Least Squares (MLS) approx-
imation has been the preferred choice in EFG. However, in order to compute the shape
functions, the classical MLS places strict requirements on the nodal distributions inside each
support domain. The practical use of higher order polynomial basis, which can generate
more accurate approximations of complex deformation fields, is not trivial in classical MLS
for randomly distributed nodes. In this context, a modified moving least squares (MMLS)
approximation has been recently developed [11,12].

The MMLS shape functions must also satisfy the requirements stated above in order to
be used in EFG [7]. Some of these properties (acceptable node distribution, continuity) have
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already been derived in the paper describing theMMLS approximation [11]. Other properties
(compatibility of the field approximation, compact support) are ensured by selecting appro-
priate weight functions [7]. In this paper we will demonstrate that the MMLS approximation
has the necessary order of consistency to satisfy the patch test. We discuss the computa-
tional efficiency and derive the invariance properties of MMLS, necessary for an accurate
computation of the shape functions.

The paper is organised as follows.A short introduction toMMLS is presented in Sect. 2; the
consistency and invariance properties of the approximation are derived in Sect. 3; numerical
examples are presented in Sect. 4 and the conclusions are presented in Sect. 5.

2 The Modified Moving Least Squares (MMLS) Approximation Method

The procedure for constructing classicalMLS shape functions∅ startswith the approximation
of a function u(x), denoted by uh(x), which is defined by a combination of m monomials
(also called basis functions) [7]:

uh(x) =
m∑

i=1

pi (x)ai (x) = pT (x)a(x) (1)

where m is the number of terms in the basis p(x), and ai (x) are coefficients that depend on
the spatial coordinates x. These coefficients are computed by minimizing an error functional
defined based on the weighted least squares errors:

J̄ (x) =
n∑

j=1

[(
uh

(
x j

) − u j

)2
w

(∥∥x − x j
∥∥)]

(2)

where n is the number of nodes in the support domain of x. After minimization and solving
the resulting systems of equations, the classical MLS approximation is obtained as:

uh(x) = PT
(
PTWP

)−1
PTWu =

n∑

j=1

∅ j (x)u j = ∅T (x)u (3)

As can be seen from Eq. (3), the classical MLS shape functions construction is depended
on the non-singularity of the moment matrix defined by PTWP. The necessary conditions
for the moment matrix to be non-singular depend on the type of basis functions used; for
higher order approximation, it requires more nodes to be included inside the support domain,
resulting in higher computational cost. Although higher order polynomial basis results in
better approximation and convergence properties, these restrictions prevent the practical use
of such basis.

In this context, Joldes et al. [11] developed a modified MLS (MMLS) with second order
polynomial basis, by including in the error functional additional constraints on the coefficients
a corresponding to the second degree monomials in the basis. When the classical MLS
moment matrix is singular, the minimization problem solved to compute the coefficients has
multiple solutions. The additional constraints ensure that, for such cases, a unique solution
can be obtained. This solution corresponds to the coefficients of the second degreemonomials
in the basis being close or equal to zero, and is therefore close to the solution obtained using
linear basis. Furthermore, choosing theweights for the additional constraints as small positive
numbers ensures that the classical MLS shape functions are altered only very slightly when
the moment matrix in not singular.
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In 2D, the error functional used to derive the MMLS shape functions is:

J̄ (x) =
n∑

j=1

[(
uh

(
x j

) − u j

)2
w

(‖ x − x j ‖)
]

+ μx2a
2
x2 + μxya

2
xy + μy2a

2
y2 (4)

The MMLS approximation in obtained as:

ūh(x) = pT
(
PTWP + H

)−1
PTWu =

n∑

j=1

∅̄ j (x)u j = �̄
T
(x)u (5)

with the new shape functions:

�̄ = [∅̄1(x) · · · ∅̄n(x)
] = pT

(
PTWP + H

)−1
PTW (6)

whereH is a 6×6 matrix with all elements zeros except the last three diagonal entries, which
are equal to the positive weights of the additional constraints µ = [μx2 μxy μy2 ]

H =
[
O33 O33

O33 diag (µ)

]
(7)

For the 3D case, the error functional is defined as:

J̄ (x) =
n∑

j=1

[(
uh

(
x j

) − u j

)2
w

(‖x − x j‖
)] + μx2a

2
x2 + μy2a

2
y2 + μz2a

2
z2

+ μxya
2
xy + μxza

2
xz + μyza

2
yz (8)

where µ are the positive weights for the additional constraints:

µ = [
μx2 μy2 μz2 μxy μxz μyz

]
(9)

Using the same minimization procedure, the shape functions are derived as:

�̄(x) = [∅̄1(x) · · · ∅̄n(x)
] = PT

(
PTWP + H

)−1
PTW (10)

where H is a 10 × 10 matrix with all elements zeros except the last six diagonal entries,
which are equal to µ:

H =
[
O44 O46

O64 diag (µ)

]
(11)

It has been shown in [11] that the nodal distributions which are admissible for the classical
MLS with linear basis functions are also admissible for the MMLS which uses second order
quadratic basis. This requires at least 3 non-collinear nodes in 2D and 4 non-coplanar nodes
in 3D to be found in the support domain of any point where the shape functions are computed.

In the next section we demonstrate that the MMLS approximation has the necessary order
of consistency to be used as approximation in a meshless method and study the invariance
of the MMLS shape functions to translation and scaling.
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3 Properties of the Modified Moving Least Squares (MMLS)
Approximation

3.1 Consistency of Shape Functions

A certain order of consistency is a prerequisite to ensure the convergence of the numerical
resultswhen nodal spacing is reduced; convergence implies that the numerical solution should
approach the exact solution when the nodal spacing approaches zero [7]. In case of MLS, the
consistency of the approximation depends on the complete order of the monomials used in
the basis. It has been shown in [7] that, if pure polynomial basis is assumed, the MLS shape
function will possess Ck consistency (can represent exactly polynomial fields up to order k),
where k is the complete order of the monomials in the basis. For MMLS we will demonstrate
the following consistency property:

Lemma 1 If the weight function satisfies the positivity requirement,

w
(‖x − x j‖

)
> 0, x j ∈ �s (12)

where �s is the support domain of point x, the MMLS shape functions based on quadratic
basis (m = 2) will possess C1 consistency.

Proof Since the weight function and the components of vector µ are positive, the energy
functional J̄ in Eq. (4) is semi-positive definite. Therefore, its minimum has to be non-
negative. Consider a function u(x) ∈ span

{
p j (x)

}
given by

u(x) =
r∑

j

p j (x)a j , r < m (13)

The approximation field can always be rewritten as

u(x) =
m∑

j

p j (x)a j (x) (14)

by simply assigning

a j (x) =
{
a j , j ≤ r
0, r < j ≤ m

(15)

For such a field J̄ will vanish and it will necessarily be a minimum, and therefore

ūh(x) =
r∑

j

p j (x)a j (x) = u(x) (16)

This proves that any field given by Eq. (13) will be reproduced exactly by theMMLS approx-
imation. ��
Corollary 1 The shape functions created by the MMLS approximation form a Partition of
Unity:

n∑

j

�̄ j (x) = 1 (17)

This is a necessary condition for the shape functions to be able to represent any rigid motion
of the problem domain.
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In the application of approximation methods to numerical solutions of partial differential
equations, practitioners often judge an interpolation method by its ability to pass the patch
test, meaning it can reproduce exactly linear functions. In engineering applications this often
applies to exact calculation of constant stress and strain.

Corollary 2 The shape functions created by the modified MLS approximation possess the
linear field reproduction property:

n∑

j

�̄ j (x)x j = x (18)

The above two Corollaries are a direct result of Lemma 1. C0 consistency, which means
constant fields can be exactly reproduced by the approximation, is a particular case of partition
of unity. The linear field reproduction property (patch test) is identical to the C1 consistency
condition.

3.2 Invariance of Shape Functions

The invariance to translation and scaling is an important property formeshless shape functions
which indicates that the shape functions and the approximation do not depend on the global
nodal positions. In other words, any translation or scaling of the nodal positions to a local
coordinate system should not change the values of the shape functions. This allows the use
of a canonical domain in the computation of shape functions, which reduces the rounding
errors which may occur due to the inclusion of too large or too small entries in the moment
matrix. For the sake of simplicity and without loss of generality, the following proofs are
presented only for the 2D case.

Lemma 2 The modified MLS shape functions are invariant to the translation of nodes—the
shape functions for nodes x∗

j = (
x j + d

)
have the same values as the shape functions for

nodes x j :
�̄

∗
(x + d) = �̄(x) (19)

Proof Based on Eq. (6), the shape functions for nodes x∗
j can be written as:

�̄
∗ = pT

(
P∗TWP∗ + H

)−1
P∗TW (20)

with

P =

⎡

⎢⎢⎢⎢⎣

p
(
x∗
1

)T

p
(
x∗
2

)T
...

p
(
x∗
n

)T

⎤

⎥⎥⎥⎥⎦
(21)

The weight functions W do not change since they are functions of relative distances, which
are not affected by translations. Therefore,

�̄
∗
(x + d) = p (x + d)T

(
P∗TWP∗ + H

)−1
P∗TW (22)
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We note that

p (x + d) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
x + dx
y + dy

(x + dx )2

(x + dx )
(
y + dy

)
(
y + dy

)2

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
x + dx
y + dy

x2 + 2dx x + d2x
xy + dyx + dx y + dxdy

y2 + 2dy y + d2y

⎤

⎥⎥⎥⎥⎥⎥⎦
= T

⎡

⎢⎢⎢⎢⎢⎢⎣

1
x
y
x2

xy
y2

⎤

⎥⎥⎥⎥⎥⎥⎦
= Tp(x)

(23)
with

T =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
dx 1 0 0 0 0
dy 0 1 0 0 0
d2x 2dx 0 1 0 0
dxdy dy dx 0 1 0
d2y 0 2dy 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
(24)

Combining Eqs. (21) and (24), we obtain:

P∗ =

⎡

⎢⎢⎢⎣

p (x1 + d)T

p (x2 + d)T

...

p (xn + d)T

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

p (x1)T TT

p (x2)T TT

...

p (xn)T TT

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

p (x1)T

p (x2)T

...

p (xn)T

⎤

⎥⎥⎥⎦TT = PTT (25)

Replacing Eqs. (25) and (23) in Eq. (22), we obtain:

�̄
∗
(x + d) = p(x)TTT

(
TPTWPTT + H

)−1
TPTW

= p(x)T
(
PTWP + T−1HT−T

)−1
PTW (26)

We notice that if
T−1HT−T = H (27)

then Eq. (19) is satisfied and the lemma is proved.
Equation (27) can be re-ordered into:

H = THT−T (28)

By rewriting T from Eq. (24) using 3 × 3 sub-matrices and considering the definition of H
in Eq. (7), we can see that:

THT−T =
[
T11 O33

T21 I33

] [
O33 O33

O33 diag (µ)

] [
TT
11 TT

21
O33 I33

]
=

[
O33 O33

O33 diag (µ)

]
= H (29)

and therefore the lemma is proved. ��
Lemma 3 Consider the scaling of nodal positions x∗

j = Sx j with S a scaling matrix:

S =
[
sx 0
0 sy

]
, (30)

If the following conditions are met:
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(1) The influence domains are scaled in such a way that the weight functions remain
unchanged

w
(‖Sx − Sx j‖

) = w
(‖x − x j‖

)
(31)

(2) The weights for the additional constrains are changed to:

µ∗ =
[
s4xμx2 , s

2
x s

2
yμxy, s

4
yμy2

]
(32)

then theMMLS shape functions are invariant to the scaling of nodal positions—the shape
functions for nodes x∗

j have the same values as the shape functions for nodes x j :

�̄
∗
(Sx) = �̄(x) (33)

Proof From Eq. (31), the shape functions for nodes x∗
j are:

�̄
∗ = pT

(
P∗TWP∗ + H∗)−1

P∗TW (34)

with

P∗ =

⎡

⎢⎢⎢⎢⎣

p
(
x∗
1

)T

p
(
x∗
2

)T
...

p
(
x∗
n

)T

⎤

⎥⎥⎥⎥⎦
(35)

Therefore,

�̄
∗
(Sx) = p

(
(Sx)T

(
P∗TWP∗ + H∗)−1

P∗TW (36)

We note that

p (Sx) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
xsx
ysy
x2s2x
xsx ysy
y2s2y

⎤

⎥⎥⎥⎥⎥⎥⎦
= R

⎡

⎢⎢⎢⎢⎢⎢⎣

1
x
y
x2

xy
y2

⎤

⎥⎥⎥⎥⎥⎥⎦
= Rp(x) (37)

with

R =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 sx 0 0 0 0
0 0 sy 0 0 0
0 0 0 s2x 0 0
0 0 0 0 sx sy 0
0 0 0 0 0 s2y

⎤

⎥⎥⎥⎥⎥⎥⎦
(38)

Combining Eqs. (35) and (38), we obtain:

P∗ =

⎡

⎢⎢⎢⎣

p (Sx1)T

p (Sx2)T

...

p (Sxn)T

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

p (x1)T RT

p (x2)T RT

...

p (xn)T RT

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

p (x1)T

p (x2)T

...

p (xn)T

⎤

⎥⎥⎥⎦RT = PRT (39)
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Replacing Eqs. (39) and (37) in Eq. (36):

�̄
∗
(Sx) = p(x)TRT

(
RPTWPRT + H∗)−1

RPTW

= p(x)T
(
PTWP + R−1H∗R−T

)−1
PTW (40)

We notice that if
R−1H∗R−T = H (41)

then Eq. (33) is satisfied and the lemma is proved. Given the definition of H, it is easy to
show that relation in Eq. (41) is satisfied as long as the weights for the additional constrains
given by Eq. (32) are used in H∗. ��

4 Numerical Examples

4.1 Bending of a Timoshenko Beam

In this section, the analytical solution for the bending of a Timoshenko beam is compared to
the numerical results obtained using an EFGmeshless implementation based on the classical
MLS andMMLS approximations. The example allows us to compare the accuracy ofMMLS
based EFG to that of the EFG method based on classical MLS (with linear and quadratic
basis) in calculating the displacement field.

A beam of length L and characteristic height D is considered which is subjected to a
parabolic varying traction at the free end as shown in Fig. 1. The beam is assumed to be in a
state of plane stress. The exact solution of this kind of problem is discussed by Timoshenko
and Goodier [13]:

ux = − Py

6EI

[
(6L − 3x) x + (2 + ν)

(
y2 − D2

4

)]
(42)

uy = P

6EI

[
3νy2 (L − x) + (4 + 5ν)

D2x

4
+ (3L − x) x2

]
(43)

The problem is solved for the plane stress case with Young’s modulus E = 3.0 × 104,
Poisson’s ratio ν = 0.3, L = 48, D = 12, and P = 1000.

L

D
P

y

x

Fig. 1 Bending of a cantilever beam—problem definition
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Table 1 Difference in nodal displacements between the meshless and analytical solutions

Approximation method Average difference Maximum difference

Classical MLS (linear basis) 1.23 × 10−3 2.74 × 10−3

MMLS (quadratic basis) 0.92 × 10−3 2.34 × 10−3

Classical MLS (quadratic basis) Fails to compute due to singular moment matrices

The domain is discretized using 65 regularly distributed nodes. In order to avoid integration
errors, a large number of background integration cells (100 × 25) are used for integration,
with a 10 × 10 Gaussian quadrature applied in each cell. The solutions are obtained using
a quadratic spline weight function and circular influence domains having the same radius
(R = 8). Essential boundary conditions are imposed exactly by using additional unknown
tractions on the essential boundary and adding the equations describing the essential boundary
conditions to the system of equations [8]. The same weights were used for all the additional
MMLS constraints (μ2

x = μxy = μ2
y = 10−2).

Table 1 shows the maximum and average differences between the analytical solution
and the solutions obtained by classical MLS and MMLS. The differences are computed at
the nodes. For the given nodal influence domain radius, the classical MLS with quadratic
basis failed due to singular moment matrices. Figure 2 shows the difference in the computed
deformation field between MMLS and the analytical solution. The results demonstrate that
MMLS outperforms classical MLS in terms of solution accuracy.

4.2 Unconstrained Compression of a Cube

In this experiment we simulate the unconstrained compression of a cube with an edge length
of 0.1m. The meshless discretization of the problem domain and the boundary conditions
are shown in Fig. 3. A hyper-elastic Neo-Hookean material model with Young′s modulus of
3000Pa and Poisson’s ratio of 0.49 is used and a maximum displacement of 0.02m is applied
to the top surface. The chosen deformation mode andmaterial model result in uniform strains
in the cube, and the finite element solution should be exact and independent of discretisation.

For the meshless simulations, the cube is discretised using 260 nodes and 5070 integration
points are created using tetrahedral background integration cells with five integration points
per tetrahedron. A constant influence domain radius (R = 0.0325) is used for all nodes.
The same weights were used for all the additional MMLS constraints (μ = 10−7). The
essential boundary conditions are imposed by coupling the FEM and MLS shape functions
near the essential boundaries. In this way, like in FEM, the prescribed displacement values
can be directly imposed to the field variables on the essential boundaries [14]. The meshless
simulations are performed using theMeshless Total LagrangianExplicitDynamics (MTLED)
algorithm [15], with dynamic relaxation used in order to ensure fast convergence to the steady
state solution [16,17].

The obtained meshless simulation results are compared with the finite element solution
obtained using the non-linear static solver from the commercial finite element software
ABAQUS and the same discretization. The average and maximum differences between the
nodal displacements obtained using the classical MLS and MMLS meshless methods and
the reference solution obtained using ABAQUS are presented in Table 2 and Fig. 4. Similar
to the previous example, MMLS outperforms classical MLS in terms of solution accuracy.
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Fig. 2 Difference in the computed deformation field for the Timoshenko beam bending between: a classical
MLS (linear basis) and analytical solutions; b MMLS and analytical solutions

4.3 Craniotomy-Induced Brain Shift

This example, a craniotomy induced brain deformation simulation in 2D, illustrates the use
of the proposed method in a case involving complicated geometry, non-linear material, large
deformations and contacts. Due to a number of physical and physiological reasons, the brain
deforms after craniotomy, a phenomenon known as ‘brain shift’ [18]. High quality pre-
operative images are used for identifying the areas of interest (e.g. a tumour) and creating
a biomechanical model, which is then used for computing the position of the tumour and
critical healthy tissues within the brain after craniotomy.

In order to simulate brain deformation, based on experimental data [19] and previousmod-
elling experience [20,21], the Young’s modulus for the brain parenchyma and the tumour
was set to 3000 and 6000Pa respectively. Because the brain tissue is almost incompress-
ible [18,21], a Poisson’s ratio of 0.49 was assigned for both parenchyma and tumour. The
ventricles are modelled as a cavity as the cerebrospinal fluid can freely move in and out of
them. The skull is assumed to be rigid and the interaction between the skull and the brain
is modelled as finite sliding, frictionless contact. Displacements, measured intra-operatively,
are applied on the brain surface exposed by craniotomy. The brain model is discretised with
707 nodes, and 4988 integration points were created from a triangular background grid with
four integration points per cell. A constant influence domain (R = 8) and same weights
for the additional constraints (μ = 10−7) were used in the meshless computation. For easy
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Fig. 3 The discretization (260 nodes, 1014 integration cells) and the boundary conditions for the cube used
in the unconstrained compression simulation

Table 2 Difference in nodal displacements between the meshless and ABAQUS solutions for the cube com-
pression simulation

Approximation method Average difference (m) Maximum difference (m)

Classical MLS (linear basis) 2.48 × 10−5 9.70 × 10−5

MMLS (quadratic basis) 1.65 × 10−5 5.35 × 10−5

Classical MLS (quadratic basis) Fails to compute due to singular moment matrices

imposition of the essential boundary conditions, a regularized weight function [22] was used,
resulting in shape functions with almost interpolating properties.

The solutions obtained using the MMs were compared with a reference solution obtained
using ABAQUS. High order plain strain elements with hybrid formulation were used in
ABAQUS to handle the incompressibility of the soft tissues. The constitutive material
laws (Neo-Hookean), loading and boundary conditions were identical in both meshless and
ABAQUS computations. The differences of the computed deformation field between classi-
cal MLS and modified MLS in comparison with ABAQUS are shown in Fig. 5. Numerical
details of the comparison are presented in Table 3. We note that, unlike in the previous
examples, the reference solution obtained using ABAQUS is not the exact solution.

For the given support domain radius, the classic MLS with quadratic basis failed due to
the singularity of moment matrix, whereas the modified MLS with quadratic basis had no
problem in computing the shape functions. As shown in Table 3, the maximum and average
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Fig. 4 a Differences of computed deformation fields between classical MLS (linear basis, R = 0.0325) and
ABAQUS. b Differences of computed deformation fields between MMLS (R = 0.0325, μ = 10−7) and
ABAQUS. All dimensions are in meters

Fig. 5 Differences of computed deformation fields in the brain: a between classicalMLS (linear basis, R = 8)
and ABAQUS, b between MMLS (R = 8, μ = 10−7) and ABAQUS. Reproduced from [23]

Table 3 Difference in nodal displacements between the meshless and ABAQUS solutions for the brain shift
simulation

Approximation method Average difference (mm) Maximum difference (mm)

Classical MLS (linear basis) 0.14509 0.67531

MMLS (quadratic basis) 0.12332 0.50729

Classical MLS (quadratic basis) Fails to compute due to singular moment matrices
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differences between MMLS and ABAQUS are found to be lower compared to those between
classic MLS with linear basis and ABAQUS.

5 Conclusions

In this paper we prove that theMMLS approximation presented in [11] has the required order
of consistency to be used as an approximation in a meshless method (the resulting shape
functions form a partition of unity and the approximation has the linear field reproducing
property).

The computation of the MMLS shape functions involves a slight modification of the
moment matrix; therefore, the computation efficiency is similar to the classical MLS with
quadratic basis for the same number of nodes in a given support domain. Nevertheless, the
MMLS has better computation efficiency because it does not need the radius of influence to
be as large as for the classical MLS with quadratic basis (requires less nodes in the support
domain of each integration point).

The invariance of the shape functions against translation and scaling have been derived.
These properties are important for a robust numerical implementation of themethod, allowing
scaling of the domain which contains the nodes involved in the shape functions computation
to a canonical domain, in order to avoid rounding errors in the inversion of the moment
matrix.

The 2D and 3D numerical examples demonstrate that MMLS produces more accurate
results than classicalMLSwith linear basis, for the same support domain size. This behaviour
stems from the fact that MMLS has better approximation capability compared to classical
MLS with linear basis, as shown in [11], therefore reducing the discretisation error. For the
chosen support domain size, the classicMLSwith quadratic basis fails due to singularmoment
matrices. To further increase the accuracy of the approximation, the method can be extended
to use higher order base functions in a similar fashion, by including in the error functional
additional constraints on the coefficients corresponding to the higher degree monomials in
the basis.
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