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A B S T R A C T

We present the Implicit Potential (IPOT) numerical scheme developed in the framework of meshless point
collocation. The proposed scheme is used for the numerical solution of the steady state, incompressible Navier-
Stokes (N-S) equations in their primitive variable (u-v-w-p) formulation. The governing equations are solved in
their strong form using either a collocated or a semi-staggered type meshless nodal configuration. The unknown
field functions and derivatives are calculated using the Modified Moving Least Squares (MMLS) interpolation
method. Both velocity-correction and pressure-correction methods applied ensure the incompressibility
constraint and mass conservation. The proposed meshless point collocation (MPC) scheme has the following
characteristics: (i) it can be applied, in a straightforward manner to: steady, unsteady, internal and external fluid
flows in 2D and 3D, (ii) it equally applies to regular an irregular geometries, (iii) a distribution of points is
sufficient, no numerical integration in space nor any mesh structure are required, (iv) there is no need for
pressure boundary conditions since no pressure constitutive equation is solved, (v) it is quite simple and
accurate, (vi) results can be obtained using collocated or semi-staggered nodal distributions, (vii) there is no
need to compute the velocity potential nor the unit normal vectors and (viii) there is no need for a curvilinear
system of coordinates. Simulations of fluid flow in 2D and 3D for regular and irregular geometries indicate the
validity of the proposed methodology.

1. Introduction

One of the problems arising in incompressible flow is the explicit
treatment of pressure in equations of motion. Moreover, solving
numerically the Navier-Stokes (N-S) equations is a challenging task
for a number of reasons. First, and most important, is the inherent
nonlinear nature of the partial differential equations. For high velocity
or low viscosity the governing equations can produce highly unstable
flows (formation of eddies). Second, is the imposition of the incom-
pressibility constraint, with the central question to be answered being
the calculation of pressure boundary conditions [1], considering that
the governing equations do not provide any boundary conditions for
the pressure. Any algorithm developed must ensure a divergence-free
flow field at any given time during the calculation.

A significant number of techniques have been developed aiming to
deal with the incompressibility constraint [2]. All were successfully
incorporated into the traditional mesh-based methods, such as Finite
Difference Method (FDM), Finite Element Method (FEM) and Finite
Volume Method (FVM). One of the first methods developed using the
FDM was the MAC (Marker-and-Cell) scheme, introduced by Harlow
and Welch [3]. The MAC scheme is a direct discretization of the (N-S)
equations in their primitive variables formulation using second order
finite differences on a staggered grid. The convection and viscous terms
are solved using explicit time integration, while the pressure term using
implicit time integration. Additionally, there is a decoupling of
computing the velocity and pressure fields, with the incompressibility
constraint being solved on the discretized momentum equation, which
results in a discrete Poisson equation for the pressure. In the late 60s
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Chorin [4] introduced the projection method that allows simplified
treatment of the viscous term. In the context of projection methods an
intermediate velocity is computed first and then projected onto the
space of incompressible vector fields by solving a Poisson-type equation
for pressure. The first successful application of FEM to flow problems
might be the work of de Vries and Norrie [5], where the Galerkin FEM
was applied to incompressible flow with low and moderate Reynolds
number. Despite its success, in the cases of high Reynolds numbers the
nonlinear convective terms induce numerical oscillations.
Consequently, the standard Galerkin FEM, known to be unstable in
convection dominated regimes, was modified and new sophisticated
methods emerged, such as the streamline upwind Petrov-Galerkin
(SUPG) method, the sub-grid scale method, the finite increment
calculus (FIC) method, the Taylor-Galerkin (TG) method and the
characteristic-based split (CBS) method [6,7]. In the context of Finite
Volume methods frequently used methodologies belong to the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE) family [8,9].
Alternative approaches are the artificial compressibility technique [10]
and the Continuity Pressure Vorticity (CVP) method [11,12]. Therein,
the velocity field is corrected according to a well-known vector identity
and, on the basis of this correction, the pressure field is subsequently
updated. The solution is obtained using the Helmholtz decomposition
of the velocity vector and a modified Bernoulli's law for the coupling of
the velocity-pressure for the simulation of external flows. In [13] a
novel auxiliary potential velocity scheme for incompressible flows was
presented, while in [14] the implicit potential method was applied
utilizing an implicit potential velocity method for the mass conserva-
tion and employing a modified form of Bernoulli's law for the coupling
of the velocity-pressure corrections. When a potential velocity is
introduced, where the velocity correction is applied in order to fulfil
continuity equation, an additional equation for the potential of the
velocity is introduced. The boundary conditions (BCs) for the velocity-
correction potential function require the computation of the unit
normal vectors. It is usually a difficult task, especially in the case of
irregular geometries. In the proposed scheme there is no need to
compute a potential velocity and unit normal vectors.

Both FDM and FVM methods widely use a semi-staggered or a fully
staggered grid, applied in flow problems with uniform spatial domain
or with some kind of symmetry. Although the applicability of the
method in irregular geometries is feasible, the computational cost may
increase drastically. On the other hand, mesh-based methods, despite
their success, have some serious drawbacks related to the mesh
generation. Mesh generation is still a difficult task, especially for 3D
geometries, being the bottleneck of the entire simulation procedure.
The main drawback is the refinement process. Eventually, meshless
methods have recently emerged as a possible alternative to overcome
the problems of mesh generation and facilitate local refinement of the
approximation scheme.

In the context of Meshless methods (MM) the spatial domain is
represented by a set of nodes, uniformly or randomly distributed along
the interior and on the boundaries, without any inter-connectivity. A
practical overview of meshless methods based on global weak forms
was given in [15]. Numerous MMs schemes were developed in both
Eulerian and Lagrangian frameworks, such as the Meshless Local
Petrov-Galerkin (MLPG) [16–21], Local Boundary Integral Equation
(LBIE) [22,23], Meshless Point Collocation (MPC) [24–28], Element
Free Galerkin (EFG) [29,30], Smoothed Particle Hydrodynamics (SPH)
[31–33] and Finite Point method [34–36], applied on the numerical
solution of (N-S) equations. Flow equations can be solved in their
primitive variables formulation or in their velocity-vorticity and stream
function-vorticity formulation. In most of these methods pressure has
been computed explicitly or as a final outcome, given the boundary
conditions for pressure.

The present study deals with the reformulation of the implicit
potential (IPOT) methodology [14] and its application in the context of
meshless methods. The proposed scheme solves numerically the steady

state, laminar and incompressible (N-S) equations, in their primitive
variables formulation using a collocated or semi-staggered nodal
arrangement. The novelty relies on the introduction of a complemen-
tary pressure (pressure correction) through the introduction of a
complementary velocity, which ensures mass conservation. Moreover,
we assume that the complementary velocity and pressure correspond to
a complementary flow. Consequently, an “appropriate” momentum
equation appears, which can be described as a modified expression of
Bernoulli's law for the complementary flow and, after some algebra, the
complementary pressure is obtained. In fact, both pressures, comple-
mentary and physical, are calculated through an algebraic relation
without solving any partial differential equation. Eventually, the
number of equations solved decreases. To the authors’ knowledge, this
is the first attempt to apply the proposed IPOT methodology using
meshless schemes in general and, specifically, the MMLS method, to
approximate the flow variables. The proposed IPOT meshless point
collocation (MPC) scheme has the following characteristics: (i) it can be
applied, in a straightforward manner, to steady, unsteady, internal and
external fluid flows in 2D and 3D, (ii) it is equally performant for
regular an irregular geometries, (iii) a distribution of points is
sufficient, no numerical integration in space nor any mesh structure
is required, (iv) there is no need for pressure boundary conditions since
no pressure constitutive equation is solved, (v) it is quite simple and
accurate, (vi) results can be obtained using collocated or semi-
staggered nodal distributions, (vii) there is no need neither for the
computation of the velocity potential nor the computation of the unit
normal vectors and (viii) there is no need for a curvilinear system of
coordinates.

The rest of the paper is organized as follows. In Section 2, the
governing equations along with the proposed IPOT numerical method
are presented, while the approximation method of the classical Moving
Least Squares (MLS) and the Modified MLS are briefly presented in
Section 3. Section 4 presents the verification benchmark flow problems
used along with the test cases used to demonstrate and highlight the
accuracy, robustness, and computational efficiency of the proposed
scheme. Finally, the conclusions are given in Section 5.

2. Governing equations and solution procedure

2.1. Governing equations

Navier-Stokes equations express conservation of linear momentum.
They are a set of nonlinear partial differential equations (PDEs) which,
in velocity-pressure formulation [2], can be written in non-dimensional
form as:● Momentum equation

u u u Fp
Re

( ∙∇) = −∇ + 1 ∇ + ,2
(1)

● Continuity equation

u∇∙ = 0. (2)

where u is the flow velocity vector, p is the pressure field, Re is the
Reynolds number and F corresponds to body force terms (herein we
assume F=0). All field variables are functions of space x, in a fixed
domain Ω surrounded by a closed boundary. The system of PDEs (1)-
(2) is closed with appropriate boundary conditions related to the
physical problem considered. Different types of BCs can be used,
namely Dirichlet, Neumann, Robin, mixed type etc. In the present
paper the applied boundary conditions are described in the numerical
examples examined.

2.2. Solution procedure with IPOT scheme

In the context of the strong form meshless point collocation
method, an iterative scheme has been developed for the numerical
solution of the (N-S) equations in their primitive variables (velocity-
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pressure) formulation. The nonlinear PDEs were linearized using the
lagging of coefficients method [26].

The iterative procedure initiates by setting pressure (p(n)) and
velocity (u(n)) field values at the nth iteration on the pressure and
velocity nodes, respectively. Afterwards, momentum equations are
solved to give an estimation of the velocity field u(n+1) (next iteration).
The governing equations at the (n+1) iteration become

u u up
Re

( ∙∇) = −∇ + 1 ∇ .n n n n( ) ( +1) ( +1) 2 ( +1)
(3)

u∇∙ = 0.n( +1) (4)

The estimated velocity field u(n+1) does not necessarily satisfy the
continuity equation u(∇∙ ≠ 0)n( +1) . Hence, a complementary velocity
u( )a

n( +1) is introduced, given by

u u u= + ,c
n n

a
n( +1) ( +1) ( +1)

(5)

with uc
n( +1) being the corrected velocity value. The corrected velocity

satisfies the continuity equation by definition; the following equation
can be written for the complementary velocity

u u u u u∇∙ = 0 ⇔∇∙( + )=0 ⇔∇∙ =−∇∙ .c
n n

a
n

a
n n( +1) ( +1) ( +1) ( +1) ( +1) (6)

The complementary velocity vector can be written as the sum of a
curl vector function and a divergence vector function (Helmholtz
decomposition):

u u u= ( ) + ( ) ,a
n

a
n

irrot a
n

solen
( +1) ( +1) ( +1)

(7)

which is the sum of an irrotational term for which u 0∇ × ( ) =a
n

irrot
( +1)

and a solenoidal term for which u∇∙( ) =0a
n

solen
( +1) . The solenoidal

component of the complementary velocity does not affect the mass
conservation equation and can be ignored. Thus, the complementary
velocity can, at the same time, satisfy the continuity equation and be an
irrotational vector u u= ( )a

n
a

n
irrot

( +1) ( +1) . In fact this does not alter the
nature of the flow, in terms of the velocity field, since the complemen-
tary velocity is introduced to impose mass conservation rather than to
correct the velocity field. Moreover, the complementary velocity field
can be given as u u u= −a

n n n( +1) ( +1) ( ), since the velocity values at nth and
(n+1)th iterations slightly differ (are of the same order of magnitude).

For the complementary pressure, first we assume that the com-
plementary momentum equation is satisfied

u u up
Re( ∙∇) = − ∇ + 1 ∇ ,n

a
n

a
n

a
a

n( ) ( +1) ( +1) 2 ( +1)

(8)

which conceptually corresponds to creeping flow with Re O≈ (10 )a
0 .

Second, we express the convection terms of the complementary
momentum equation according to the vector identity

u u u u u u u u

u u

∇∙( ∙ ) = ( ∙∇) + ( ∙∇) + × (∇× )

+ × (∇× ).

n
a

n n
a

n
a

n n n
a

n

a
n n

( ) ( +1) ( ) ( +1) ( +1) ( ) ( ) ( +1)

( +1) ( ) (9)

The complementary momentum equation (Eq. (8)) at (n+1) itera-
tion becomes

u u u u u Rp1
2

∇∙( ∙ ) − × (∇× ) + ∇ − ∇ = ,n
a

n n
a

n
a

n
a

n
a

n( ) ( +1) ( ) ( +1) ( +1) 2 ( +1) ( +1)

(10)

where

∑

R u u u u u u

u u u u

= − 1
2

∇( ∙ ) + ( ∙∇) + × (∇ × )

= 1
2

( ∇ − ∇ ).

a
n n

a
n

a
n n

a
n n

i
i a

n
i

n
i

n
i a

n

( +1) ( ) ( +1) ( +1) ( ) ( +1) ( )

=1

3

,
( +1) ( ) ( )

,
( +1)

(11)

ui (i=1,2,3) stands for the three components of the velocity, while ui,α
(i=1,2,3) stands for the three components of the complementary
velocity. The term Ra

n( +1) is a byproduct of the linearization of the
convection terms. Additionally, when u u− → 0a

n
a

n( +1) ( ) the term

R → 0a
n( +1) . Moreover, an order of magnitude analysis showed that this

term is negligible compared to other terms [13]. Therefore, we neglect
the term Ra

n( +1), which expresses the error in the estimation of the
convection term correction due to the lagging of the nonlinear term.
This term reduces to zero as the numerical scheme converges and does
not affect the accuracy of Eqs. (10) or (8). Finally, we obtain the
conservative form of Eq. (8)

u u u u up1
2

∇∙( ∙ ) − × (∇× ) + ∇ − ∇ =0.n
a

n n
a

n
a

n
a

n( ) ( +1) ( ) ( +1) ( +1) 2 ( +1)
(12)

The complementary velocity function uα is always irrotational
u 0(∇ × = )a

n( +1) and independent of the nature of the flow.
Additionally, it can be linked to a complementary pressure function
pα through a “complementary” momentum equation. By utilizing the
following vector identity

u u u u∇ = ∇(∇∙ ) − ∇ × (∇× ) = ∇(∇∙ ),a
n

a
n

a
n

a
n2 ( +1) ( +1) ( +1) ( +1) (13)

Eq. (12) can be written as

u u up∇ 1
2

∙ + − ∇∙ =0.n
a
n

a
n

a
n( ) ( +1) ( +1) ( +1)⎛

⎝⎜
⎞
⎠⎟ (14)

and Eq. (14) gives

u u up constant1
2

∙ + − ∇∙ = =0.n
a

n
a

n
a

n( ) ( +1) ( +1) ( +1)
(15)

In Eq. (15) the arbitrary constant should be zero when the
continuity equation is satisfied and u =0a

n( +1) , p =0a
n( +1) . Using Eq. (6)

in Eq. (15), the following formula for the complementary pressure is
obtained:

u u up = − 1
2

− ∇∙ .a
n n

a
n n( +1) ( ) ( +1) ( +1)

(16)

In this way we evaluate complementary pressure function pa
n( +1)

without ignoring the first term of Eq. (8) as it has been implemented in
[14]. Nevertheless, a simplified version of Eq. (16) can be obtained if
the convection term of Eq. (8) is neglected and the first term of the
right side of Eq. (16) is eliminated. The complementary velocity
function ua

n( +1)is of the same order of magnitude with u u−n n( +1) ( ) and
we can estimate it without solving an additional PDE. Finally, the
update pressure field is given by

p p p= + .n n
a

n( +1) ( ) ( +1)
(17)

2.3. Algorithmic description of the implicit potential method

The algorithmic steps describing the method can be summarized as
follows:

• For an initial pressure and velocity field p(n) and u(n), we solve the
momentum equation (Eq. (3)) to obtain the updated velocity field
u(n+1).

• Using the computed velocity field u(n+1) and the complementary
velocity function ua

n( +1), compute the complementary pressure func-
tion pa

n( +1)given by Eq. (16).

• Obtain the updated pressure field p n( +1) using Eq. (17) and proceed
to the next iteration.

The convergence of the proposed scheme was monitored as

≤ 10g g
g

− −5n n

n

( +1) ( )

( +1) , where g stands for every unknown function (u, v,

w, p) and n represents the nth iteration. As soon as the convergence
criteria are satisfied, the iterative procedure ends; otherwise, the
current velocity and pressure values are replaced with the updated
ones and the procedure is repeated. The linear systems, obtained from
the discretization of the PDEs of the flow, are solved using a direct
Gauss elimination method. Additionally, other iterative linear equa-
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tions solvers, as the biconjugate gradient method, were applied,
demonstrating the accuracy of the numerical procedure.

3. Meshless approximation scheme

We present the classical MLS and the Modified MLS method used
in this paper.

3.1. Moving Least Squares (MLS)

MLS is one of the most widely used meshless approximation
schemes [37]. Consider a set of N nodes scattered in the domain Ω
and xi the coordinates of the node i. The function u(x) around a point x
is locally approximated by the function uh(x), which can be expressed
as

∑x x x x xu p a p a( ) = ( ) ( ) = ( ) ( ),h

i

m

i i
T

=1 (18)

where m is the number of terms in the basis, p(x) is a polynomial basis
in the space coordinates that consists of monomials of the lowest order
to ensure completeness (herein we consider a second order polynomial,
thus m=6 in 2D and m=10 in 3D) and ai(x) are constants which, as
indicated, are functions of the spatial co-ordinates x. Due to the local

nature of the approximation, the polynomial basis can be written in 2D
as

p x x x x y y x x x x y y y y( − ) = [1,( − ), ( − ), ( − ) , ( − )( − ), ( − ) ],T
i i i i i i i

2 2

(19)

and in 3D as

p x x x x y y z z x x y y z z

x x y y x x y y y y z z

( − ) = [1,( − ), ( − ), ( − ), ( − ) , ( − ) , ( − ) ,

( − )( − ), ( − )( − ), ( − )( − )].

T
i i i i i i i

i i i i i i

2 2 2

(20)

The coefficients ai(x) are obtained by performing a weighted least
square fit of the local approximation, which is obtained by minimising
the difference between the local approximation and the function. The
fit of function u(x) to the data values u1, u2, …, uN can be evaluated by
means of the error functional J(x) given as

∑

∑

J x x

x x

x u x u w

p x a x u w

( ) = ( ( ) − ) ( − )

= ( ( ) ( ) − ) ( − )

j

N
h

j j j

j

N
T

j j j j

=1

2

=1

2

(21)

where w(||x-xj||) is a weight function with compact support. The
weight function depends on data points xj (they are also functions of x)
location in the spatial domain Ω, where a fit is required. The weight
functions have relatively large values for points xj close to x, and
relatively small for the more distant points xj. The following choice of
the weight function w(||x-xj||) was used here

x xw w d e inside support domain
outside support domain

( − ) = ( ) =
0

j j
−

dj
a h0

2⎧
⎨⎪
⎩⎪

⎛
⎝⎜

⎞
⎠⎟

(22)

where di=||x-xj|| and a0 is a prescribed constant, defined as a fraction
of the radius of the support domain h. The value of a0-has to be
predefined, usually with the help of numerical experiments for the
same class of problems where solutions already exist. A value between
0.2 and 0.3 gives satisfactory approximation of the field function. The
value a0=0.2 was used here, which was found to reproduce with
excellent accuracy verified numerical solutions for benchmark pro-
blems (see Section 4).

Eq. (21) can be rewritten in the form

J xx Pa u W Pa u( ) = ( − ) ( )( − )T (23)

where

u u u u= ( , , …, )T
N1 2 (24)

Fig. 1. Nodal configurations used for the solution of the governing equations (i) uniform semi-staggered grid (velocity is defined on the blue dots and pressure on the red ones. On the
boundary there are velocity nodes) and (ii) irregular semi-staggered grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.).

Fig. 2. Lid-driven cavity flow: Convergence for Re=400 for increasing resolution:
81 × 81, 121 × 121, 161 × 161 and 201 × 201. The absolute differences between the two
solutions Linf and L2 over all nodes are calculated with respect to a solution computed
with 261 × 261 nodes, as in [40]. N N× is the total number of nodes used in the
simulation, and N the number of nodes in each direction.
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p x

p x
P =

( )
…
( )

T

T
n

1
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

(25)

x x xp pP ( ) = ( ( ),…, ( ))T
j j m j1 (26)

W x x x xdiag w w= ( ( − ),…, ( − ))n1 (27)

To compute the coefficients a(x), we minimize function J with
respect to coefficients a(x)

J
a

x x xA a B u 0∂
∂

= ( ) ( ) − ( ) =
(28)

where

∑x x x x p x p xwA P W P( ) = ( ) = ( − ) ( ) ( ),T

i

N

i i i
T

i
=1 (29)

x x x p x x p x x p xw w wB P W( ) = ( ) = [ ( ) ( ), ( ) ( ),…, ( ) ( )]T
N N1 1 2 2 (30)

and therefore

x x xa A B u( ) = ( ) ( ) .−1 (31)

Finally, the dependent variable uh(x) can then be expressed as

∑x xu u( ) = Φ ( )h

I

N

I I
=1 (32)

with uI is the value of the field u at xI and ΦI is the shape function of
the node I, given by

x p x A x p x xΦ w( ) = ( ) ( ) ( ) ( ).I
T

I I
−1 (33)

The partial derivatives of the shape functions ΦI(x) are obtained as

∑ A B A B A Bx p pΦ ( ) = ( ) + ( + ) ,k kI k
j

m

j k ji j ji
1

,
=1

,
−1 −1

, ,
−⎡

⎣⎢
⎤
⎦⎥ (34)

with (),k denotes differentiation with respect to k and, A k
1

,
− represents

the derivative of the inverse of matrix A given by

A A A A= − .,k
−1 −1

,k
−1

(35)

3.2. Modified Moving Least Squares (MMLS)

The advantage of Modified MLS comes to the computation of the
moment matrix A. A singular moment matrix mathematically means
that the functional

∑J x xx u x u w( ) = [( ( ) − ) ( − )],
j

n
h

j j j
=1

2

(36)

used to compute the coefficients a(x) in MLS, has multiple solutions,
and therefore it does not include sufficient constraints to guarantee a
unique solution for the given node distribution. Based on this fact,
authors in [38] proposed to add additional constraints to the functional
JMMLS as follows:

∑J x xx u x u w μ a μ a μ a( ) = [( ( ) − ) ( − )] + + +MMLS

j

n
h

j j j x x xy xy y y
=1

2 2 2 22 2 2 2

(37)

with

Fig. 3. Lid-driven cavity flow: Pressure contours for (a) Re=400 (b) Re=1000 (c) Re=5000 and (d) Re=10,000.
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μ μ μ μ= [ ]x xy y2 2 (38)

is a vector of positive weights for the additional constraints (for
simplicity, the derivation is only presented for the 2D case).

The choice of the additional constraints ensures that, when the
classical MLS moment matrix is singular (multiple solutions), we
obtain the solution having the coefficients for the higher order

monomials in the basis equal to zero. By choosing the additional
weights as small positive numbers, we can ensure that the classical
MLS solution is altered only very slightly when the moment matrix is
not singular. This has already been demonstrated in the case of solids
undergoing finite deformation [39].

The new functional can be rewritten in matrix form as

Fig. 4. Lid-driven cavity flow: Streamline patterns of primary and secondary vortices (computed as in [41]) obtained for (a) Re=400 (b) Re=1000(c) Re=5000 and (d) Re=10,000. The
full domain, close-up on the left eddy and close-up on right eddy are defined as in [41].
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Fig. 5. The u-velocity on the section x=0.5 and the v-velocity on the section y=0.5 of the square lid-driven cavity problem for (a) Re=400 (b) Re=1000 (c) Re=5000 and (d)
Re=10,000. Results of Ghia et al. [40] are compared with the current numerical solutions.
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J Pa u W Pa u a Ha= ( − ) ( − ) + ,MMLS T T (39)

where H is a matrix with all elements equal to zero except the last 3
diagonal entries, which are equal to μ:

H μdiag
0 0
0=

( )
.33 33

33

⎡
⎣⎢

⎤
⎦⎥ (40)

Then, following the minimization procedure for the functional
JMMLS used in the classical MLS we get

Fig. 6. (a) Pressure and (b) streamlines contours for the backward-facing step for Re=200.

Fig. 7. Velocity contours for u- component and v- component, respectively for Reynolds number (a) Re=20 and (b) Re=60.

Fig. 8. Pressure contours for (a) Re=20 and (b) Re=60.
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J
a

P WP H a x P Wu∂
∂

= [ + ] ( ) − =0.
MMLS

T T
(41)

For the modified moment matrix we can write

M P WP H M H= + = + ,MMLS T (42)

while the new coefficients can be computed as

a x P WP H P Wu( ) = ( + ) .T T1−
(43)

Finally, the modified approximant becomes

∑x P P WP H P Wu xu u( ) = ( + ) = Φ ( ) ,T T TMMLS

j

n

j
MMLS

j
1−

=1 (44)

with the new shape functions

x x x P P WP H P WΦ ( ) = [Φ ( ) … Φ ( )] = ( + ) .T T TMMLS MMLS
n
MMLS 1

1
−

(45)

4. Numerical examples and algorithm verification

We verify the accuracy of the proposed meshless scheme through
several flow cases. First, we have considered the two most frequently
used benchmark problems in Computational Fluid Dynamics (CFD),
the lid-driven cavity flow and the backward-facing step (BFS). Next, we
examined flow cases in irregular geometries, starting with a 2D
rectangular duct with a cylinder (and multiple cylinders) as an obstacle
and a geometry that resembles flow in a blood vessel. Finally, we have
considered the 3D lid-driven cavity flow problem as well as a typical 3D
geometry of a dilated vessel (aneurysm), obtained by segmenting CT
(computed tomography) images. For the test cases presented we
considered Reynolds numbers that correspond to steady state solu-
tions. In detail, for the lid-driven cavity flow problem steady state
solutions can be obtained for Reynolds number up to Re=10,000; for
the rest of the flow cases we considered moderate Reynolds numbers to
ensure steady state solutions. Additionally, moderate Reynolds num-
bers ensure, for the flow cases considered in the present study, laminar
flow; this is compatible with the flow equations being solved, which are
only valid for laminar incompressible flows.

For the simulations conducted we have used two types of nodal
configurations: (i) a uniform semi-staggered grid (Type-I) embedded in
the geometry and (ii) a semi-staggered grid (Type-II) based on a
triangular (or tetrahedral in 3D) mesh of the spatial domain. The
vertices of the nodes correspond to the velocity nodes, while the
barycenter of triangles to the pressure nodes (this configuration
resembles the mini-elements configuration used in FEM). Fig. 1 shows
the nodal configurations used for the case of an irregular geometry. It
worth mentioning that results were also computed for collocated nodal
distribution, where velocity and pressure values are computed on the
same nodes.

4.1. Lid-driven cavity problem

The flow in closed cavities, mechanically driven by tangentially
moving walls, is a well-known benchmark problem for viscous incom-
pressible flow. The forced convection in a square cavity with isothermal
sides and moving upper side is known as the lid-driven cavity problem.
The lid-driven cavity flow problem, despite its geometrical simplicity, is
considered to be a challenging problem, mainly due to the vortices that
appear at the corners of the square cavity, especially for high Reynolds
numbers. The flow boundary conditions imposed were no-slip bound-
ary condition for all walls of the cavity, except for the top wall which
moves with velocity u=1 in the x-direction.

For all the simulations conducted we consider both uniform and
irregular nodal distributions previously described. For the construction
of the shape functions and derivatives, in the case of uniform nodal
distribution, the support domain was defined by using the 20 nearest
neighbors, while in the case of irregular nodal distribution, an adaptive
cut-off radius has been used, adapting accordingly to the number of
nodes in the support domain. Coarse and fine nodal configurations
were used in order to obtain a grid-independent solution.

In the case of uniform nodal distribution (Type-I), a uniform
121 × 121 grid (for velocity components) was used for Re=100, while
for Re=400 and Re=1,000 a 241 × 241 grid was used. Although, nodal
distributions as coarse as 41 × 41 and 81 × 81 were adequate for the
convergence and accuracy of the numerical solution. Additionally,
computations were conducted for higher values of the Reynolds
number up to Re=10,000, using a uniform nodal distribution of
401 × 401 nodes. The results obtained were compared against the

Fig. 9. u- velocity components profile along the line x=0.25 and x=0.3 for Re=20. Solid
line is for IPOT-MMLS scheme and squre symbol for COMSOL.
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values provided in Ghia et al. [40] at the centerlines (x=0.5 and y=0.5),
with the convergence curve of Linf (the maximum absolute value of the
difference between the two solutions) and L2 (the mean square value of
the difference between the two solutions) shown in Fig. 2. We assess

the accuracy of the method for Re=400, 1000, 5000 and 10,000
through qualitative and quantitative comparisons with benchmark
numerical results from the literature [40,41]. For qualitative evaluation
of the solution, pressure contours (Fig. 3) and streamlines (Fig. 4,
computed as in [41]) of the flow field are presented for Re=400, 1000,
5000 and 10,000. The streamlines plotted in Fig. 4 show the formation
of the counter-rotating secondary vortices that appear as the Reynolds
number increases. For quantitative comparison, we plot the u-velocity
profiles along a vertical line and the v- velocity profiles along a
horizontal line passing through the geometric center of the cavity,
respectively, in Fig. 5, for Re=400, 1000, 5000 and 10000. These
profiles are in good agreement with of the results from Ghia et al. [40],
shown by symbols in Fig. 5.

In the case of irregular nodal distribution (Type-II), triangle
vertices were used as the nodal distribution where velocity values are
calculated. Pressure values were calculated at the barycenter of each
triangular element. For the case of Re=100 we started using a coarse
grid consisting of 2601 velocity nodes and 5000 pressure nodes and
gradually refined the grid. The IPOT-MMLS scheme converges to the
data obtained for the benchmark problem. For every type of nodal
distribution, as the number of nodes in the support domain increases,
the accuracy of the proposed scheme increases.

4.2. Backward facing step (BFS) problem

The second benchmark problem considered is the backward-facing
step (BFS) flow problem [42]. The flow domain is a channel of width H
(H=1) and length L (L=30 H), with an obstacle (step) (of height H=0.5)
placed at the left-most edge of the inlet (x=0). Flow is assumed to be
fully developed, with a parabolic inflow velocity profile given by
u=(12y−24y2, 0) for y > 0.5. Fully developed flow is also assumed at
the outlet (right edge), with the velocity profile given by u=(0.75–3y2,
0) for 0 < y < 1. At the bottom and top walls no-slip boundary

Fig. 10. Velocity contours for (a) u- component and (b) v- component, for Re=20.

Fig. 11. Pressure contours for Re=20.

Fig. 12. u- velocity components profile along the line x=0.65 and x=0.95 for Re=20.
Solid line is for IPOT-MMLS scheme and squre symbol for COMSOL.

Inlet                                                                                                                           Outlet

Fig. 13. Irregular geometry that resembles a 2D stenosed artery with a bypass.
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conditions were imposed.
BFS is considered as a demanding benchmark flow problem due to

the vortices formed downstream, just after the step. The BFS has been
studied both experimentally [42] and numerically [42–45]. The flow
has been found to be stable and two-dimensional for Reynolds number
Re < 400, allowing the flow to be numerically modeled in 2D and
compared directly with experiments [42]. Beyond this Reynolds
number, the flow is 3D and the 2D approximation is no longer valid.
However, numerical results for the 2D problem for Re > 400 are still
given in the literature as a purely numerical benchmark problem [43].
Here we present numerical results for our method for Re=200, for
comparison with both experimental and numerical results such as [42].

Initially we tested the performance of the proposed scheme using
the Type-I nodal distribution. To ensure a grid-independent numerical
solution, successively increasing nodal configurations were tested
starting from 300 × 11, 600 × 21, 900 × 31and 1200 × 41. For the
Re=200, a uniform nodal distribution of 27,931 (900 × 31) is used.
Fig. 6 shows the streamlines and vorticity contours for Re=200. We can
observe that the flow separates at the step corner and a vortex is
formed downstream. For Re=200 the reattachment length of the

formed vortex is Lreattachment=2.55, being in agreement with that
computed using different numerical methods, such as Meshless
Collocation Point with Radial Basis Functions and Finite Element
Method [25]. Type-II nodal configurations were also used, starting
from a coarse distribution and resulting in a denser one after successive
refinements (total number of nodes used were 12,321). The numerical
results obtained showed excellent agreement with those of Type-I. For
the case of Re=200 the reattachment length computed was
Lreattachment=2.54.

4.3. Flow behind cylinder

In the next example we consider the laminar flow in a rectangular
duct with a cylindrical obstacle. The duct has length L=2.2 m and
height H=0.41 m. The cylindrical obstacle is located at point O(0.2,
0.2) having radius r=0.05 m. The kinematic viscosity of the fluid was
set to v=0.001 m2/s. The Reynolds number is defined by Re=2ur/v
with the mean velocity umean=(2/3)*u(0,H/2). The inflow conditions
are

Fig. 14. For the bypass geometry (a) pressure contours (b) u- velocity component contours (c) v- velocity component contours(d) streamlines for Re=20 and (e) pressure contours (f)
u- velocity component contours (g) v- velocity component contours (h) streamlines for Re=240.
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u v u y H y
H

( (y), ) = (4 − ,0)m 2

⎛
⎝⎜

⎞
⎠⎟ (36)

with um=0.3 m/s yielding Reynolds number Re=20. At the outlet a
fully developed flow u x(∂ /∂ =0) is applied, while at the rest of the
boundaries no-slip conditions were applied. Simulations were con-
ducted using the different types of nodal configuration described above.
The numerical results obtained were compared point wise with those
computed using COMSOL [46]. The maximum absolute values of the
difference between the two solutions Linf, for the velocity components
u- and v-, were computed as 1.14x10−3and 1.82x10−3, respectively. The
uniform semi-staggered nodal distribution (Type-I) was more stable in
terms of computing shape functions and derivatives. The positivity
conditions [47] were fulfilled naturally, in contrast to the Type-II
configuration, where extra care should be taken in order to find the
optimal support domain.

For the results obtained using the uniform semi-staggered distribu-
tion, the contour plots of the velocity components are shown in Fig. 7,
and pressure contours in Fig. 8. We used 9546 nodes with 90 of them
distributed over the cylinder circumference. Finally, Fig. 9 shows u-
velocity profile along the line x=0.25 and x=0.3 for Re=20 comparing
the results of IPOT-MMLS technique and COMSOL. All flow variables
are computed in SI units. Contour plots of the velocity components and
pressure are presented for Reynolds number up to Re=60 (um=0.9 m/
s). For higher values of maximum inlet velocity um, and, consequently
for higher values of Re, the flow regime becomes oscillating down-
stream and is not considered as steady state flow.

Additionally, we consider the case where a number of cylinders are
present downstream, using the exact same boundary conditions as in
the case of a single cylinder. In total 18,362 nodes were used, 630 of
them located on the boundaries. The cut-off radius was chosen such
that 40 nodes were located in the support domain. The numerical
results obtained were compared against those computed using
COMSOL, with the maximum absolute values of the difference between
the two solutions for the velocity components u- and v- computed as
1.2x10−3and 2.3x10−3, respectively. The contour plots for the velocity

u=1, v=0, w=0

x

z

y

Fig. 15. Geometry of the lid-driven flow in a cubic cavity.

Table 1
Comparison of numerical results for lid-driven flow in a cubic cavity. u-component of the
velocity profile at the mid-planes for Re=100.

y Ding et al. [48] IPOT-MMLS error Relative error (%)

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.96
1.00

0
−0.028
−0.052
−0.073
−0.092
−0.112
−0.130
−0.148
−0.166
−0.181
−0.194
−0.202
−0.205
−0.202
−0.191
−0.173
−0.147
−0.113
−0.071
−0.019
0.048
0.140
0.270
0.456
0.707
1.000

0
−0.025
−0.047
−0.066
−0.084
−0.101
−0.118
−0.135
−0.152
−0.167
−0.180
−0.190
−0.196
−0.197
−0.190
−0.175
−0.152
−0.118
−0.075
−0.018
0.052
0.151
0.283
0.465
0.720
1.000

0
0.003
0.005
0.007
0.008
0.011
0.012
0.013
0.014
0.014
0.014
0.012
0.009
0.005
0.001
0.002
0.005
0.005
0.004
0.001
0.004
0.011
0.013
0.009
0.013
0

10.7
9.61
9.59
8.69
9.82
9.23
8.78
8.43
7.73
7.22
5.94
4.39
2.47
0.52
1.15
3.40
4.42
5.63
5.26
8.33
7.86
4.81
1.97
1.84

Fig. 16. Velocity component distribution along the vertical centerline of cubic cavity, u-y
for (a) Re=100 and (b) Re=400 using successively denser nodal distributions. Square
symbol is for the results in [48].

Inlet Outlet

Fig. 17. 3D geometry obtained using a CT scan showing the part of the blood vessel that
suffers from an aneurysm.
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components are shown in Fig. 10, while pressure contours are plotted
in Fig. 11. Fig. 12 shows u- velocity profile along the line x=0.25 and
x=0.3 for Re=20 comparing the results of IPOT-MMLS technique and
COMSOL, when using a staggered grid based on irregular nodal
distribution obtained from a triangular mesh. The 40 closest nodes
were used to define the support domain of each node.

4.4. Bypass geometry

As a fourth example, we consider the flow in an irregular geometry
that resembles a 2D stenosed artery with a bypass, Fig. 13, having
length of 15 cm. For the simulations conducted, we considered a
parabolic velocity profile with u=4um(y-y2) and v=0 in the inlet of
the domain, at the outlet fully developed flow, and on the remaining
walls no-slip boundary conditions (u=v=0). For um=0.1 m/s and
kinematic viscosity of v=0.001 m2/s the Reynolds number was calcu-
lated as Re=40, giving rise to laminar flow regime. The proposed
scheme can provide accurate results for higher Reynolds numbers; in
the case of v=0.0001 m2/s Reynolds number becomes Re=240. For
higher Re numbers turbulence may probably occur. Since studying
turbulence is out of the scope of the present study, we restricted the
presented results to low and moderate Reynolds numbers.

Both nodal configuration types were used in order to test the

applicability of the proposed scheme in flow cases concerning irregular
domains. All the numerical solutions, obtained using different nodal
distribution types, converged. The numerical results computed are
accurate as compared to the results obtained using the finite element
method (COMSOL). The maximum absolute values of the difference
between the two solutions for the velocity components u- and v- were
computed as 2.4x10−3 and 3.6x10−3, respectively. Simulations show that
the most reliable, in terms of computational cost, stability and
convergence, has been the uniform semi-staggered embedded distribu-
tion. Several grids with increasing resolution were used in order to
obtain a grid independent solution. For the simulations conducted we
used a total of 14,563 nodes, with 1380 of them located on the
boundaries. Fig. 14 shows iso-contours for the velocity components u,
v, pressure and streamlines. All flow variables are computed in SI units.

4.5. Lid-driven flow in 3D

The lid-driven flow in a cubic cavity (0,1)3 is the natural extension
to 3D of the 2D driven cavity test case, Fig. 15. Numerical results were
obtained for Re=100 and Re=400. A grid independence study has been
conducted to ensure a grid independent numerical solution. Typical
nodal distributions up to 41×41×41 (68,000) and 61×61×61 (226,981)
points for Re=100 and 400, respectively, are employed. The numerical
results obtained are in a good agreement with those in [48], Table 1.
Velocity profile at the mid-planes for Re=100 and 400, using succes-
sively denser nodal distributions, are shown in Fig. 16.

4.6. Flow in 3D aneurysm

We considered the flow in a 3D geometry obtained using a CT scan
showing the part of the blood vessel that suffers from an aneurysm,
Fig. 17. The aneurysmatic part of the vessel has been smoothed during
the segmentation and 3D reconstruction procedure, and the final
output was an STL file with all the geometrical information. The length
of the vessel is L=10 cm and the radius is R=1 cm. Concerning the
boundary conditions imposed, at the inlet a plug flow velocity profile
(u=1 cm/s, v=w=0), and at the outlet a zero axial velocity gradient was
imposed u x(∂ /∂ =0). On the rest of the boundaries no-slip conditions
were applied. The 3D mesh, consisting of tetrahedral elements, has
been created in ANSYS ICEM, the pre-processor contained in ANSYS
CFX commercial software [49].

For the simulations conducted the STL file used, shown in Fig. 18a,
describes the surface of the vessel geometry, which is represented by
triangles and forming a convex surface. All types of nodal configura-
tions described above were used in the simulations conducted. In the
case of the uniform grid embedded in the geometry, a grid-independent
solution was obtained by successively increasing the number of nodes.
The numerical solution was compared against the numerical solution
given by ANSYS CFX. For the simulations conducted, the distance h of
the support domain was set to h=0.2 cm (30 nodes in the support
domain), with a total of 12,456 nodes used inthe computations. By
comparing the IPOT-MMLS results with those computed by ANSYS
CFX, the maximum absolute values of the difference between the two
solutions were 1.2x10−3, 2.3x10−3and 3.6x10−3for u-, v- and w- velocity
components, respectively.

In order to depict the direct applicability of the proposed scheme in
cases where the nodal distributions are directly given using a tetra-
hedral mesh, we considered a Type-II nodal distribution,with the nodes
of the tetrahedral mesh are used for the computation of the velocity
field values. The pressure field values were computed at the barycenter
of the tetrahedral elements. The velocity nodes are shown in Fig. 18b
and the pressure nodes in Fig. 18c. The pressure contours on the
surface of the vessel are shown in Fig. 19a, while streamlines are
plotted in Fig. 19b (in a view angle suitable for streamlines in 3D). All
flow variables are computed in SI units.

Fig. 18. (a) Surface triangulation of the vessel geometry and nodal distribution for (b)
velocity (c) pressure field values.

Fig. 19. (a) Pressure contours on the vessel wall and (b) streamlines (in a view angle
suitable for streamlines in 3D) for Re=80.
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5. Conclusions

In this paper we applied the Modified Moving Least Squares
(MMLS) meshless method in the numerical solution of laminar,
incompressible, steady state flow in the context of a point collocation
method. We solved the flow governing equations in their primitive
variables (velocity-pressure) formulation, by using a semi-staggered
meshless nodal distribution. A pressure correction methodology (IPOT
method) has been used in order to fulfil the incompressibility con-
straint, ensuring the mass conservation. The advantages of the
proposed IPOT meshless point collocation are that it is straightforward
and easy to apply, results can be obtained using collocated or semi-
staggered nodal distributions, it works for 2D and 3D geometries, it is
truly meshless, while there is no need for pressure boundary conditions
since no pressure constitutive equation is solved. Additionally, in our
approach there is no need for the computation of the velocity potential
or unit normal vectors. The proposed scheme can be used for the
numerical solution of the transient Navier-Stokes equations; the
iterative procedure, used to update the solution in the steady state
equations, can be used to update in time the numerical solution when
an explicit or an implicit solver is used. Additionally, the method is
useful for the flow cases where pressure boundary conditions cannot be
defined. The absence of pressure boundary conditions can be handled
by the IPOT scheme. In case where the pressure on the boundaries is
known the IPOT method can also be applied. Nevertheless, for the last
case more numerical studies are needed.

The MMLS approximation method makes use of two distinct sets of
nodes for velocity and pressure variables. We have focused on the
method's performance, accuracy and stability using uniformly and
irregularly distributed nodes. First, we showed that the proposed
scheme provides accurate results in uniform geometries using bench-
mark fluid flow problems, namely the lid-driven cavity and the back-
ward-facing step. Both qualitative and quantitative results were given
in order to show the accuracy of the method used. Second, we tested
the numerical stability and performance of the method across complex-
geometry problems. COMSOL and ANSYS CFX were used as reference
solvers for the complex geometries, demonstrating that the proposed
scheme provides consistent results across all the problems considered.
Concerning the parameters related to upwinding for moderate
Reynolds numbers, in both COMSOL and ANSYS CFX, the default
parameters have been used in all the test cases considered. MMLS
numerical scheme was stable with both uniform and irregular nodal
distributions.

Our results show that the use of MMLS operators in conjunction
with velocity and pressure correction method provide stable and
accurate solutions across a range of 2D and 3D problems, in both
regular and irregular geometries. For every type of nodal distribution,
as the number of nodes in the support domain increases, the accuracy
of the proposed scheme increases. The same happens when the total
number of nodes in the spatial domain is increased, where uniform
nodal distributions embedded in geometry seem to be more efficient.
Finally, for future applications, the proposed scheme will be upgraded
to treat time dependent flow problems, pressure-driven and shear-
driven flow, considering flow regimes with high Reynolds number.
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