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Commentary

In this issue of the JEVT, the biomechanical evaluation of 
abdominal aortic aneurysms (AAAs) again receives atten-
tion; this time, Erhart et  al1 show that prerupture AAAs 
(n=13) had significantly higher peak wall rupture risk 
(PWRR) and rupture risk equivalent diameter (RRED) 
compared with diameter-matched controls (n=23) and that 
their biomechanical analyses predicted the location of 
future rupture in 7 of 13 cases. What is important about this 
article is that, despite certain limitations, it demonstrates the 
ability of computational biomechanics to predict the loca-
tion of rupture in advance, albeit in ~50% of their cases, and 
thus it helps generate useful pilot data toward larger scale 
investigations in the area. Although vascular surgeons 
would rather know which aneurysms will rupture rather 
than where they might rupture, this study boosts the credi-
bility of such modeling in the clinical community by pro-
viding evidence that rupture locations can be predicted. The 
authors have had similar experiences in rupture prediction 
studies to those reported here. The exact location of rupture 
was predicted in some cases,2,3 and the same transverse 
location, but on the opposite wall, was predicted in others,4 
similar to some cases in Erhart et al.1 Furthermore, Xenos 
et al5 used a sophisticated fluid-structure interaction com-
putational approach with an orthotropic material model and 
embedded calcifications to also show that they could pre-
dict the locations of rupture in the 2 cases examined.

What is still unclear, however, is how complicated the 
model has to be in order to predict rupture risk. Gasser et al6 
showed the impact of model complexity on the predictabil-
ity of rupture risk and concluded that the inclusion of intra-
luminal thrombus (ILT) and a nonhomogenous wall 
thickness are the most important parameters. So, is the most 
sophisticated material model needed? Does mechanobiol-
ogy need to be included into the framework?

To better understand the growth and remodeling of 
AAAs, mechanobiological information is certainly required, 
but perhaps not for the purpose of generating a rupture risk 

index based on wall stress and an estimate of wall strength. 
Reports such as those from Erhart et al1,7 and others6,8 are 
making important steps toward defining a risk threshold 
akin to the diameter threshold. However, any new criterion 
will of course require validation and major interrogation 
before it can be used clinically. The use of the RRED by 
Erhart et al1 and others9 represents an excellent example of 
“translating” the results of computational biomechanics 
into a language familiar in the clinic, that is, presenting the 
risk profile as a simple diameter equivalency. Perhaps the 
use of the RRED will make it easier for clinicians to appre-
ciate the biomechanical risk of different aneurysms in a for-
mat to which they are well accustomed.

It is now about 4 years since we commented10 on an arti-
cle published in the JEVT that reviewed the current state of 
the art in computational AAA rupture prediction.11 This area 
of research is commonly known as patient-specific model-
ing (PSM) of AAAs. However, it is becoming apparent that 
many aspects are not as “patient-specific” as one would 
like. A typical PSM framework assumes values of wall 
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thickness and models the thrombus as the same homoge-
nous mass across all patients. In our 2011 commentary,10 we 
proposed 4 key areas, or challenges, that require both fur-
ther research and standardization: (1) modeling ILT, (2) 
capturing AAA wall thickness, (3) determining appropriate 
material properties, and (4) effectively incorporating calci-
fications. Only by addressing these issues will robust proto-
cols be created, enabling large-scale efficacy testing to 
inform clinical practice.

Challenge 1: Intraluminal Thrombus

Over recent years, there has been substantial research aimed 
at understanding ILT,12–14 and classification of the thrombus 
is now possible based on its morphology.13 It is generally 
understood that ILT must be included into computational 
models; however, the way it is included is currently not 
patient-specific, and ILT is assumed to buffer the wall stress 
to the same extent for all patients. Based on our work13 and 
others,12,14 this cannot be the case, as there is simply too 
much interpatient variation in the structure. A strategy needs 
to be devised whereby patient-specific information on the 
ILT can be included, and this may be possible through addi-
tional magnetic resonance imaging (MRI). It is common for 
ILT to develop into distinct layers from fresh luminal 
thrombus to older abluminal thrombus.15 Importantly, the 
excellent soft tissue discrimination possible with MRI 
means that ILT can be better visualized compared with rou-
tine computed tomography (CT). Therefore, MRI can be 
used to guide CT reconstructions of ILT and create a layered 
ILT geometry true to the in vivo situation of the patient. 
Whether or not this enhances the biomechanical assessment 
remains to be seen.

Challenge 2: Wall Thickness

Accurate measurement of wall thickness remains one of the 
most elusive components of the entire PSM workflow. 
Whereas some groups have developed methods to measure 
the wall thickness from CT,16,17 the methods are yet to be 
widely adopted. MRI, on the other hand, is better suited to 
measure aortic wall thickness.18 Therefore, the authors have 
begun to use a combination of MRI and CT to generate our 
AAA reconstructions.19 In this approach the 2 image data- 
sets are registered and the best information from both 
sources is combined; that is, the wall is defined using calci-
fications visible on CT in conjunction with the soft tissue 
visibility of MRI. We believe that this represents the most 
accurate reconstruction of the AAA wall currently available 
and enables a better prediction of wall tension.

However, measuring the wall thickness is only one side 
to the story as, generally speaking, the thicker the wall the 
weaker it is. Biochemical and remodeling processes result in 
increased wall thickness, often by the addition of non–load 

bearing constituents. So, now another problem arises; if the 
wall thickness can be measured, how is information on  
wall strength obtained? As with the thrombus, noninvasive 
imaging may hold the key. Both 18F-fluorodeoxyglucose 
positron emission tomography (PET)/CT20 and ultrasmall 
superparamagnetic particles of iron oxide MRI21,22 are prov-
ing to be valuable ways to visualize and quantify processes 
active in the AAA wall. With further work the strength of the 
wall may be able to be determined from such imaging.20 
This may better inform rupture risk models that couple  
wall stress and wall strength, such as the rupture potential 
index (RPI)23 and PWRR used in the study by Erhart et al.1

Challenge 3: Material Properties

This aspect of the analysis was long believed to be one of 
the most critical elements of the PSM framework, and major 
research efforts have focused on experimentally measuring 
the behavior of AAA tissue within the physiological range 
in the laboratory using excised tissue.24–26 The earliest 
reports of PSM in AAA used linear elastic models to char-
acterize the wall; later work used nonlinear constitutive 
models that have since become increasing complex. Then 
the focus aimed at recovering the unloaded geometry, or 
stress-free configuration, of the AAA using inverse meth-
ods (as, of course, the AAA is internally loaded at the time 
of CT). A result that may seem surprising to some when first 
encountered is that if the inverse method is used correctly, 
the importance of material properties becomes negligible.27 
In fact, increasing the stiffness of the AAA wall a thousand-
fold does not change the resulting wall stress.19 The inter-
nally loaded AAA (as observed with CT) is thus a statically 
determinate structure even though the thin-walled structure 
assumption is not introduced. Moreover, as the deformed 
geometry is available from CT, the stress distribution in the 
wall that balances the internal pressure load can be estab-
lished via (geometry preserving) linear finite element anal-
ysis, which can be performed in a matter of seconds on a 
typical desktop computer. The segmentation of the geome-
try still is a semiautomatic task that takes about 40 minutes 
using dedicated software.28

Challenge 4: Calcifications

The vast majority of AAA computational biomechanics 
studies omit calcifications. There is much disagreement in 
the literature as to how best to incorporate calcifications into 
the geometry.29–31 It was recently shown that partially calci-
fied tissue has a much lower strength than fibrous wall tissue 
(1.21 vs 0.88 MPa).32 Interestingly, there is little difference 
in the mechanical behavior of the tissues in the physiological 
stretch range, and there is no significant difference in the 
stiffness parameters that mathematically characterize the 2 
tissue types. Partially calcified tissue predominantly fails at 
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the boundary of the microcalcifications and the fibrous tis-
sue, which implies that calcifications are likely “stress-raisers,” 
and these junctions are potential AAA rupture locations. 
This was observed in the work of Xenos et al,5 in which they 
observed high wall stress and location of rupture at sites of 
calcification. It is important to note that microcalcifications 
are not typically visible on CT, unlike established macrocal-
cifications, and as such, other imaging modalities such as 
18F-sodium fluoride PET/CT may be needed to effectively 
visualize these microstructures.33

The authors of this commentary believe they have 
developed methods for stress estimation in AAA that are 
easy to implement, significantly faster, and more clini-
cally applicable19 than the current state of the art in static 
biomechanical AAA analyses. Furthermore, Erhart et  al1 
mention that “no study has been performed to investigate 
the validity of biomechanical parameters to predict the 
future rupture sites of asymptomatic AAA.” This is diffi-
cult for many reasons; however, we are currently testing 
our own methods on a large prospective cohort of patients 
and hope to soon demonstrate the added value that PSM 
brings to the clinical management of patients with AAA.
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