Engineering Analysis with Boundary Elements 51 (2015) 52-63

Contents lists available at ScienceDirect

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

ENGINEERING /™
ANALYSIS wit

Adaptive numerical integration in Element-Free Galerkin methods

for elliptic boundary value problems

Grand Roman Joldes*, Adam Wittek, Karol Miller

@ CrossMark

Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway,

Crawley/Perth WA 6009, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 25 March 2014

Received in revised form

22 July 2014

Accepted 19 October 2014
Available online 25 November 2014

Keywords:

Numerical integration
Element-Free Garlerkin
Irregular node distribution
Elliptic problems

In this paper we present a new numerical integration scheme for Element-Free Galerkin (EFG) methods
used for solving elliptic problems. Integration points are distributed within the problem domain using an
adaptive procedure, based on the characteristics of the shape functions. Existing numerical integration
schemes for EFG methods do not offer any control over the integration accuracy. We devise a method of
distributing the integration points which allows control over the integration accuracy for all elements of
the stiffness matrix, while reducing the number of integration points required. The performance of the
procedure is demonstrated on test problems in 1D and 2D.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Elliptic boundary value problems (BVP) can describe physical
phenomena from various fields: fluid dynamics, heat and electric
conductivity, elasticity theory, geophysics, etc. Element-free Galer-
kin (EFG) methods offer an alternative solution method to well
established solution algorithms (finite element method, finite
difference method) for such problems. EFG methods do not require
a mesh for shape function definition, and therefore are part of the
larger class of mesh-free (MF) methods. Although EFG methods
may offer important benefits over other solution methods (such as
making possible the simulation of very large deformations in
elasticity, eliminating the need for the construction of a high
quality mesh), one important weakness that prevents EFG meth-
ods from being generally accepted is the difficulty in performing
numerical integration.

While there are very well defined rules regarding numerical
integration for the Finite Element Method (FEM), performing numer-
ical integration for EFG methods is as much of an art as a science
[1-3]. For FEM the integration cells are defined by the elements, and
the number of integration points can be easily selected based on the
characteristics of the shape functions, which are usually polynomials
over the integration cells (elements). By knowing the degree of the
shape function polynomials it is easy to select a Gaussian quadrature
that can integrate exactly the shape functions, their derivatives or
products of their derivatives. (Note: The above remark only applies

* Corresponding author. Tel.: 461 8 6488 3125.
E-mail address: grand.joldes@uwa.edu.au (G.R. Joldes).

http://dx.doi.org/10.1016/j.enganabound.2014.10.007
0955-7997/Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

for FEM using Updated Lagrangian formulation and polynomial
shape functions. In the Total Lagrangian formulation the integrands
are usually non-polynomials even when polynomial shape functions
are used [4]). For MF methods the shape functions usually have a
much larger support domain compared to FEM and they are not
polynomials.

Gaussian quadrature over a background mesh is typically used
for integration in EFG methods [1,3,5,6]. As stated in [3], there are
two sources of error associated with these integration schemes:
the shape functions in EFG methods are not polynomials and their
local support may not align with the integration cells.

Specialized integration rules for circular support domains (or
intersections of circular domains, also called lenses) are presented
in the literature [7,8]. A simple adaptive integration procedure for
such domains is proposed in [9]. In [3] the authors show that by
aligning the integration cells with the support domains of the
shape functions the integration accuracy can be increased. They
call their method the bounding-box technique. Additional correc-
tions may be required in the computation of stiffness matrices
when quadrature rules based on intersections of shape functions
support domains are used [10]. Also, specialized integration rules
are restricted to specific types of support domains and the
treatment of irregular boundaries is difficult.

Rather than integrating over the precise supports of the shape
functions or develop more complicated quadrature rules, the
use of nodal integration has been proposed as a possible solution.
A comparison between nodal and Gaussian integration is pre-
sented in [11] for a few sample problems. Similar to under-
integrated finite elements, MF methods based on nodal integration
suffer from instability due to rank deficiency. A stabilized nodal

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2014.10.007
http://dx.doi.org/10.1016/j.enganabound.2014.10.007
http://dx.doi.org/10.1016/j.enganabound.2014.10.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.10.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.10.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.10.007&domain=pdf
mailto:grand.joldes@uwa.edu.au
http://dx.doi.org/10.1016/j.enganabound.2014.10.007

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63 53

integration algorithm for MF methods, using the strain smoothing
stabilization technique, was proposed in [12].

There are some more exotic integration algorithms that have
been proposed in the literature for MF methods, such as Quasi-
Monte Carlo integration [13] or Genetic algorithms [14]. One
common problem of these algorithms is the difficulty in estimat-
ing and controlling integration accuracy.

An adaptive numerical integration was proposed in [15] in the
context of the Generalized Finite Element Method, where the
DECUHR algorithm [16] was used to integrate the singular func-
tions involved in the computation of the stiffness matrix elements.
Hundreds of function evaluations per element are required to
perform the integration [15].

In this paper we present a new adaptive quadrature algorithm.
The new algorithm creates a distribution of integration points
within the problem domain which allows the computation of
integrals with controlled accuracy. The generated distribution of
integration points is used for the computation of all integrals over
the problem domain, including all elements of the stiffness matrix.
The method imposes no constraints on the type of support
domains which can be used.

The numerical solutions presented in this paper are obtained
using the Element Free Galerkin (EFG) method [2] with Moving
Least Squares (MLS) shape functions [1]. The results can be
extended to most Galerkin MF methods and other types of shape
functions.

The paper is organized as follows. In the following section we
introduce the new integration procedure. Section 3 presents
numerical experiments which highlight the properties of the
method for one dimensional (1D) and two-dimensional (2D)
elliptic boundary value problems. Section 4 contains a summary
and some concluding remarks.

2. Adaptive numerical integration

The prevalent method for performing numerical integration in
FEM and MF implementations is Gaussian quadrature [1]. The
integration domain is split into a number of integration cells and
then the quadrature is applied for each cell. It is a demonstrated fact
that integration accuracy does not necessarily improve with the
increase of number of Gauss points per integration cell [3]. A better
approach is to increase the number of integration cells, which leads
to convergence towards the real integral value. Unfortunately, a
higher number of integration cells leads to proportionally higher
computational time, and the number of integration cells required in
order to obtain prescribed integration accuracy is still unknown.

To solve this problem we propose the use of an adaptive integra-
tion scheme. An adaptive quadrature algorithm is one that adapts
itself to the behavior of the function being integrated. One example of
such adaptive numerical quadrature is a process in which the integral
of a function is approximated using static quadrature rules on adap-
tively refined subintervals of the integration domain, with the adaptive
refinement being driven by the properties of the integrand. Such
quadrature rules are well known in applied mathematics for integrat-
ing complicated or “badly-behaved” functions, including functions
with singularities or discontinuities [17-20]. In [17] Rice estimates
there are from 1 to 10 million adaptive quadrature algorithms that are
potentially interesting and significantly different from one another.

2.1. Adaptive quadrature algorithms for univariate functions

As described in [20], a possible basic adaptive algorithm can be
described by the following recursive procedure (for an univariate
function f, an integration interval [a b] and a desired accuracy 7):

Algorithm 1. :
Procedure integrate(f, [a b], 7)
Q=quadrature(f, [a b]);
e=estimateError(f, [a b], I);
if (e>1)
m=(a+Db)/2;
Q=integrate(f, [a m], ')+integrate(f, [m b], 7’)
endif
return Q;
End

If the integrant is Riemann integrable and the error estimate
is exact, the above algorithm will converge to the exact integral
(as the tolerance 7—0) [20]. The integration interval is recursively
subdivided until the error estimate is smaller than the imposed
tolerance for each sub-interval; the integration result is the sum of
the integrals computed on each resulting sub-intervals.

The tolerance used for the recursive calls of the procedure must
be adjusted to 7 to ensure that the required precision for the
integral is obtained. One possibility is to use a proportional
partitioning algorithm [17], which would lead to 7/=7/2 for the
adopted interval partitioning scheme (halving of the interval).

The main components of the above procedure are the quad-
rature rule used for integration and the procedure for estimating
the integration error (estimateError). The quadrature rules we
consider have the general form

b n
[feoix= 3 wife) +E=Qula.b1+E ()

where n is the number of points x; in the interval [a, b] used for
function evaluation and w; are their associated weights, Q, is the
approximation of the integral given by the quadrature rule and E is
the integration error. The degree of precision of a quadrature
formula (which we will simply call the degree of the quadrature) is
N if and only if the error is zero for all polynomials of degree k=0,
1,..N but is not zero for some polynomial of degree N+ 1.

The integration error for a quadrature of degree N is given by

E=k(b—aN "N+)

where k is a constant depending on the underlying quadrature
rule and fAN*1)(x) is the (N+1)th derivative of the integrand at a
point & € [a,b] [20].

We will use the notation Q;'[a,b] for a quadrature applied on m
equal size sub-intervals spanning interval [a,b], therefore the
quadrature(f, [a,b]) is Qi[a,b] in the above algorithm. Many other
choices for the quadrature rule used are possible, such as Simp-
son's rule, Gauss-Legendre, Newton-Cotes, Clenshaw-Curtis or
Gauss-Kronrod quadratures [17,20].

We want to use a quadrature that has a high degree for a given
number of points, as the number of points increases exponentially
for higher dimensions (curse of dimensionality). Therefore, the
Gauss-Legendre quadrature will be used for univariate functions.

There are a variety of error estimators that can be used [20]. We
select a linear error estimator based on the difference between
two quadratures of the same degree (n) yet of different multi-
plicity (m):

e~|Qhla.b] -Q}[ab]| 3)

The use of such estimator in the decision of interval splitting is
also referred to as “h-adaptivity”.

The choice of the error estimator was dictated by the following
considerations:

54 G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63

- The functions to be integrated are continuous and smooth (see
following sections) - there is no need for more complicated
estimators;

- The possibility to re-use information (quadrature value,
weights and integration points) from one level to the next
level of the recursive procedure;

- Easy extension to higher dimensions.

If the quadrature used has a degree N (can integrate exactly
polynomials up to degree N) and the integrand f is sufficiently
smooth, the value of the integral can be approximated by [20,21]:

|Q2[a.b] -Q}[a.b]|
2N+1 1

Therefore, if Qﬁ [a,b] is used as an approximation of the real
integral, the error estimate given by (3) may be 2V*1—1 times
larger than the actual integration error. Although this factor may
seem large, in practice it is a good guard against bad estimates
when the assumptions used for developing Eq. (4) are not met
[20]. We also note that Qﬁ [a,b], needed for the error estimation, is
normally more accurate than Q,ll [a, b}, and should therefore be
used as an approximation of the integral.

The criterion used in the above algorithm to decide if further
recursions are needed does not take into consideration the
expected value of the integral. A better option is to use a criterion
based on the relative error, such as [19]:

1=Q;[a.b]+ “)

€> T‘Qﬁ [a, b]‘ (6

Such criterion may remove the need to adjust the tolerance
used in the recursive calls of the integration procedure. Special
care must be taken when integrating some functions which have
zeroes within the interval, as the above criterion may always be
met on at least one sub-interval and the recursive procedure may
never end. This situation can be handled by imposing a limit on
the number of recursion levels. A more detailed discussion on
stopping criteria and computation of integrals to machine preci-
sion can be found in [19]. As shown in the following sections, our
procedure requires integration of positive functions, and therefore
does not have such problems.

Based on the above considerations, we define the following
adaptive integration scheme for univariate functions:

Algorithm 2. :
Procedure [Q, xi, wi]=integrate(f, [a b], T)
[Q1, xi, wi]=Q,,[a, b] // xi=integration points used,
//wi=associated weights
Q=Q}[a,b];
if 1IQ—Q11>7IQl)
m=(a+Db)/2;
[Q1, xi1, wil]=integrate(f, [a m], T);
[Q2, xi2, wi2]=integrate(f, [m b], T);
Q=0Q1 -+ Q2; xi= concatenate(xil, xi2); wi= concatenate(wil, wi2);
endif
return Q, xi, wi;
End

One last aspect we want to highlight in this section is the
concept of characteristic length, introduced in [17]. The character-
istic length A(f) of the integrand f(x) can be defined as an interval
length such that the error bounds used in the adaptive procedure
are valid for all intervals of length less than A(f). The characteristic
length does not only depend on the integrand, but also on the
adaptive algorithm used (quadrature, error estimation procedure).

Calculating the characteristic length may be difficult in practice.
Nevertheless, its consideration has an important practical implica-
tion that the integration interval for an adaptive procedure cannot
be indiscriminately large, as it can lead to the failure of the
adaptive procedure (incorrect results due to early termination of
the recursive calls). Therefore, large integration intervals should be
divided into smaller intervals and the adaptive procedure should
be applied to each sub-interval (composite integration).

2.2. Adaptive quadrature algorithms in multiple dimensions

The direct extension of quadrature rules in multiple dimen-
sions is through the use of tensor product of one-dimensional
quadrature rules. We will restrict our discussion to 2D, although
the results can be easily extended to higher dimensions. We will
also consider that the same one-dimensional quadrature rule is
used in each dimension (as the rate of convergence for a multi-
dimensional tensor product rule is equal to the smallest rate of
convergence of the one-dimensional quadratures used).

Tensor product rules are usually described over a square region
(integration cell). This does not restrict their use; any quadrilateral
or triangle can be obtained from a square through a coordinate
transformation.

Therefore, for a one-dimensional quadrature rule with n points,
of degree N, the following 2D integration formula can be derived:

2 phy2 -
/ fx.yydydx= 3% ¥ wiwif(x;,y))+Exp =Qun+Exp (6)
J—h/2.J—h/2 i=1j=1

The integration error can be obtained by using the one-
dimensional results, as follows:

Jy Iy fexyydydx = f’i(]wjf(x,yj)%j) dx=
2 2 2 \j=

h
n o n n 4
Y X wiwfxi.y)+ X wiEij+ [Edx)
i=1j=1 j=1 -4
therefore
n 5
Exp= ¥ wiEj+ [Ejdx ®)
j=1 -2
with
Ej=kh" 2 D(x, &)
Ej= khN+2f,(;[<VH)(§ij,J’j) 9)

Under the assumption that the integrand is sufficiently smooth
that the partial derivatives in Eq. (9) are approximately equal to a
constant D, the 2D integration error becomes:

n N

Ew= 3 wikh"*2D4 / " kh"*+2Ddx = 2kh"+3D (10)
i=1 -3

where we used the fact that the quadrature is exact for any

constant:

n
ldx= 3 wy=h an

-4 j=1

The square with the edge length equal h can be divided into
4 smaller squares using its centroid and the middle of its edges.
Using the notation Q‘;yn for the sum of integrals computed using
the 2D quadrature rule on each of the obtained squares, and
considering the relation between h and the error given by Eq. (10),
an equation similar to (4) can be obtained for the 2D case:

4 ‘Qﬁn - Qr11n
I = Qn’n +W

(12)

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63 55

Therefore, an estimation of the error is given by:

4 1
£~ ’Qn,n - Qﬂ,n

(13)

Quadrature rules in 2D defined as tensor product of a one-
dimensional quadrature rule of degree N can integrate exactly all
polynomials including the following monomial terms:

m(x,y)=cx'y), i=0.N, j=0.N (14)

In many applications the total order of the polynomials that
need to be integrated is bounded (complete polynomials, having
total order max(i+j) < p). Special rules have been developed for
integrating such polynomials over triangular or rectangular
domains [22-28]. The advantage of these quadrature rules is the
reduction in the number of points required for exact integration of
a complete polynomial (by taking advantage of the limited
number of monomials that need to be integrated), as compared
to a tensor product rule. Nevertheless, the integration error would
be higher for functions which cannot be well approximated by a
complete polynomial; therefore using such quadrature rules may
not lead to a decrease in the total number of integration points
required to meet a given integration accuracy.

2.3. Adaptive quadrature algorithm for elliptic boundary value
problems

Finding the solution of elliptic boundary value problems using
mesh-free methods usually involves the computation and assem-
bly of a global stiffness matrix. As shown in the following sections,
stiffness matrices involve the computation and assembly of local
stiffness matrices defined based on the derivatives of shape
functions, such as:

Kl-jz/ &L (0T, (x)dx (15)

where i and j are indexes of the degrees of freedom of the
discretization.

Shape functions (and their derivatives) have a compact support
domain, so that only a limited number of nodes from the discretiza-
tion influence their behavior. Over a given integration cell used for
numerical integration only a small number of shape functions will
have nonzero values. At the same time, for each integration point
belonging to a cell, the number and indexes of the nonzero shape
functions may be different. Since the nonzero shape functions
spanning an integration cell are combined as shown in Eq. (15) to
define the elements of the local stiffness matrix, many different
functions need to be integrated over each integration cell. One may
compute each of these integrals using an adaptive procedure;
however, such approach is computationally expensive, as obtaining
the shape functions at each integration point requires the solution of a
minimization problem (as shown in the following section).

We propose a different approach to integration of the stiffness
matrix elements. Our approach is based on the fact that the integra-
tion accuracy is related to the “smoothness” of the integrand. The
“smoothness” of a function is defined by the degree of the polynomial
that can approximate it accurately over the integration cell. The
smoothness is expected to increase as the dimension of the integra-
tion cell decreases, which forms the basis of the h-adaptive integra-
tion procedure. If the adaptive integration method is able to
accurately integrate a given integrand, it should also accurately
integrate integrands which are “smoother”. Using this observation,
our proposed integration method has the following steps:

® Define an integrand which is less smooth than all the integrands
used for stiffness matrix computation over the integration cell;

® Apply the adaptive integration procedure to integrate the above
integrand to user-defined accuracy; this will generate a collec-
tion of integration points and weights over the integration cell;

® Use the integration points and weights generated above to
compute each component of the stiffness matrix for the
integration cell.

We propose the definition of the less smooth integrand, which
drives the creation of the integration points and weights asso-
ciated with an integration cell, using the following heuristics:

® [f a function f can be approximated by a polynomial of degree n
and a function g can be approximated by a polynomial of degree
m, then their product fg can be approximated by a polynomial p of
degree m+n. Because m+n<max(2m, 2n), either 2 or g
requires for approximation a polynomial of degree higher than
the degree of polynomial p and is therefore less smooth than fg.

® The degree of a polynomial approximation for £+ g2 is max
(2m, 2n) (unless the two polynomials have the same degree
and the coefficients of the highest monomial in their poly-
nomial approximation cancel each-other).

Considering the above, we define the function that drives the
creation of the integration points and weights associated to an
integration cell, to be used for the computation of stiffness
matrices according to Eq. (15), as:

S\ 2
feo=3 (k) (16)
1

We note the fact that for a given integration point only a few
shape functions (and their derivatives) are nonzero and they are all
computed at the same time using the Moving Least Squares (MLS)
minimization procedure. Therefore, the values for the function in
Eq. (16) can be easily calculated at each integration point.

The above procedure produces a distribution of integration
points which, for a given required accuracy, is defined only by the
shape functions, and therefore dependent only on the discretiza-
tion of the domain (number and position of nodes). The effective-
ness of the proposed procedure will be demonstrated in the
following section.

3. Numerical experiments
3.1. Moving least squares shape functions

The moving least squares (MLS) approximation is the method
of choice for Mesh-Free methods [1,29], mainly because of the
smoothness and continuity of the approximation field it generates.
The MLS method was proposed by Lancaster and Salkauskas [30]
for smoothing and interpolating data. Given n data points (nodes)
located at positions X;, j=1.. n, we can obtain a function u"(x) that
approximates the given scalar values 1 at points X; by minimizing
the error functional

n .

Joo = 3 [0g) 1) wilix—xj1)] 17

] =
where the error between the defined function and the given scalar
values is weighted using the weighting function w based on the
Euclidian distances between the evaluation point and the posi-
tions of the nodes. We use I.I as the notation for Euclidian
distance.

The function u(x) is chosen as a polynomial

w0 = 3 p(0a (0 =p'0ak0 as)

56 G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63

where m is the number of terms in the basis p(x), and ag;(X) are the
coefficients that depend on spatial coordinates x (due to the
weight functions which depend on x). For example, commonly
used basis and the corresponding coefficients in 2D are:

- linear basis:

P =[1,xy], a'x) =[a,axa)] (19)

- quadratic basis:

P'X) =[1Xy.x%,xy,y*l, a'(X) =[a1,0x, 0y, 02, Gy, Q2] (20)

The coefficients a;(x) are obtained by minimizing the weighted
least-square error functional J(x). The approximation function can
then be expressed as:

n
u'x)= Y dxow (21)
j=1
where @/(x) are the shape functions.

The weight function plays important roles in the formulation of
MLS approximation: it provides weightings for the residuals at
different nodes within the (compact) support domain and it
ensures that nodes enter and leave the influence domain smoothly
so that the shape functions satisfy the compatibility condition and
the approximation is globally continuous. We use a quartic spline
weight function to ensure the approximation has second order
continuity, with circular support domains. The quartic spline
weight function is defined based on the normalized distance

[IX — Xl

s= TJ (22)

(where R; is the radius of the influence domain of the node x;) as:

) 3_2.4
1—6s“+8s>—3s ssl‘ 23)

w(lIx—x;ll) = w(s) = { 0 o1

We will use linear basis for our MF method. The radius of
influence for each node X; is selected as:

Rj=M~11fr;e}V)]§(||xi—xj||) (24)

where M is a scaling parameter greater than 1 and N; is the set of
indexes of neighboring nodes surrounding node x; (therefore R; is
based on a measure of nodal spacing). This selection of the radius
of influence will ensure that the moment matrix is not singular
and the shape functions can be computed even for irregular node
placement.

3.2. Integration accuracy

The elements of the stiffness matrices Kj in Eq. (15) can be
computed accurately by using a very large number of integration
cells and Gauss points. The same integrals can be computed using
the proposed adaptive integration scheme with different values for
the imposed accuracy 7 - we will use the notation Kj for the
obtained values. Because the diagonal terms of matrix K are always
non-zero, while many off-diagonal elements are zero, we define
the relative integration error for each element of K as:

K,‘j*—K,‘j o dKij
K T K

Eijrel _ ‘ (25)

The above error definition can be used to evaluate how well the
parameter 7 controls the integration accuracy for stiffness matrices.

3.3. Solution errors and convergence

The error in the solution of a problem with known analytical
solution u(x) is evaluated using the following relative error norms:

—uh?dQ
RENu = 11— 4"l _ (fo(u-u)"a0) . (26)
lullL, (fguzdg)”z

12

P 1/2
_h
— (fg(u,x ut) dQ>
RENux = i ”’ = ()1/2
ALy Joukde2
QY x

The integrals in the above relations are computed by dividing the
integration domain into a large number of integration cells, and using
a high order Gaussian quadrature for each integration cell.

Convergence studies are performed by studying the variation of the
above error norms with the spacing between discretization points.

27

3.4. Number of integration points required

Apart from accuracy, we also study the efficiency of the integration
scheme. We consider that an integration scheme is more efficient if it
requires a lower number of integration points for a given accuracy.

For a given starting integration domain, if we consider that the
procedure stops after n recursivity levels (n=1 means no subdivi-
sion of the integration domain required for integration, although a
subdivision is still required for error estimation), at each level the
domain is divided into s sub-domains, and N integration points are
used for each sub-domain, the total number of evaluations of the
function guiding the integration procedure is given by:

n+1_
Neval =N+Ns+...+Ns" =NS—1 (28)

s—1

The number of sub-domains s depends on the integration
domains used: in 1D the domains are intervals which can be
divided into 2, so s=2. In 2D the domains can be quadrilaterals or
triangles, and each can be subdivided into 4 (s=4) and in 3D the
domains may be hexahedrons or tetrahedrons, which can be
divided into 8 or 5 sub-domains (s=8 and s=5 respectively).
Other subdivision schemes are possible.

The number of integration points per integration domain can
vary, depending on the quadrature used. The number of recursivity
levels required is related to the desired accuracy 7.

3.5. One-dimensional example

We consider the same 1D boundary value problem (BVP) as
analyzed in [3]:
Ux(X)+gX) =0 inQ2=(0,1), (29)

in which comma denotes partial derivatives with respect to the
following subscripts, with boundary conditions:

u(0) = ugy (30)

ux(l)=ds (€2))

3.5.1. Discretization of the BVP equation
The weak form for Eq. (29) can be written, using test functions
v, as:

1 1
/ Uxx(X)V(X)dX + / gx)v(x)dx =0. 32)
0 0

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63 57

By using integration by parts of the first integral and re-
arranging the terms, Eq. (32) can be re-written as:

1 1
/ Ux(X)V x(X)dx+ U x(0)V(0) = ux(1)v(1)+ / gx)vx)dx. (33)

0 0

Eq. (33) is discretized with an approximation of the solution
constructed using the MF shape functions as a basis defined over n
points in the problem domain - Eq. (21). In the Galerkin method
the shape functions are used as test functions. Therefore, Eq. (33)
can be re-written (for each test function) as:

. 1)) . 1)
3z /0 04,0000 X+ 10 0) = (P (1) + /0 gdood. j=1.n
=1 .

(34)

We notice that the natural boundary conditions (31) can be
substituted directly in (34) while the essential boundary conditions
(30) have to be enforced. A usual method of enforcing the essential
boundary conditions is to require that all shape functions used in
(34) are 0 on the essential boundaries (have Kronecker delta
property). Such method does not increase the number of variables
(as the term containing u ,(0) disappears) but it normally requires a
modification of the MF shape functions. We avoid such modification
by adding the equations describing the essential boundary condi-
tions to the system of equations, while considering u,(0)=d, a
secondary variable. Therefore, the final discretized system of equa-
tions becomes:

n 1 X . . 1 .
5t [gheodheoderdod O =dif 0+ [goopody, j=1.n
k=1 J0 JO
¥ POk =u
k=1

(35)

Therefore, the integrals that need to be computed using a
numerical quadrature are based on the derivatives of the shape
functions

-1 X
Iy = /0 P 0P (%) dx (36)
as well as on the shape functions and function g:
1)
Fi= | seod/oo dx (37)

All these integrals need to be computed accurately in order to
obtain an accurate numerical solution.

a 1.4

0.8

0.6

()

0.4

0.2

0

-02 1

-04 L L L L L
0.5 0.55 0.6 0.65 0.7 0.75 0.8

3.5.2. Numerical integration procedure

We consider the non-uniform nodal distribution used in [3],
with nodal spacing of 0.1 everywhere in the problem domain
except the sub-domain (0.4, 0.6) where the nodal spacing is 0.01.
The MLS shape functions constructed using a scaling factor M=2
for defining the radius of influence are presented in Fig. 1 for sub-
domain (0.5, 0.8).

We define the function used to guide the subdivision of integra-
tion cells as:

feo=

n k 2
k§l (¢’x (X))
i (38)

k 2
()

k

The function in (38) has multiple outputs, therefore the relative
accuracy is computed and verified independently for each output
inside the adaptive integration procedure. The outputs of this
function are presented in Fig. 2.

Function g does not appear in the definition of function f.
Because function g is the second order derivative of the solution, it
should be smoother than the shape functions used for construct-
ing the solution.

The proposed procedure for performing numerical integration
using the adaptive integration scheme is described by the follow-
ing algorithm:

Algorithm 3. :

Step 1: Pre-computation of integration points Xi and associated
weights wi:

- For each initial integration interval [ak bk]

® Apply the recursive integration procedure (Algorithm 2) for
the function used to drive the subdivision, Eq. (38):
[Q, xik, wik]=integrate(f, [ak bk], T);

® Save the integration points and weights:
Xi=concatenate(xi, Xik); wi=concatenate(wi, wik);

® Save shape functions and their derivatives computed at
integration points during the evaluation of function f(x)
(to avoid re-computing them in the next step).

Step 2: Perform numerical integration

150

100

50

-50

-100 . I I . I
0.5 0.55 0.6 0.65 0.7 0.75 0.8

X

Fig. 1. One dimensional MLS shape functions (a) and their derivatives (b) for sub-domain (0.5, 0.8). We used a scaling factor M=2 for defining the radius of influence and
linear basis functions. Each curve represents the MLS shape function (or its derivative) corresponding to one of the nodes (represented as cirles).

58 G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63

- Compute the integrals (Egs. (36), (37)) over the domain by
using in Eq. (1) the integration points and weights determined
in Step 1.

3.5.3. Performance assessment
To assess the performance of the proposed integration scheme,
we study the following problem taken from [3]:

2 /1-2x\2 X—ay 2
2(x)=6x+ (;— <7> >exp<—(7>) 39)
and
(12
u(0) = exp (- E) (40)
w = —3-2(1=%e 1-ay’ 41
,x()—**<a2>xp *(7) (41)
with the solution
— N2
ux) = —x3+exp(—<¥)) (42)

By choosing the parameters a=0.5 and @=0.05 the solution
has a local character at x=0.5. The solution obtained using 5-point
Gaussian quadrature, with the integration cells being the intervals
between points, is presented in Fig. 3. These results match very
well the results presented in [3]. The total number of integration
points used is 140.

The solution obtained using the proposed adaptive cell sub-
division scheme, starting from the same initial integration cells,
combined with 3-point Gaussian quadrature is presented in Fig. 4.
We imposed a relative accuracy 7=0.01. The total number of
integration points used is 144.

The adaptive integration scheme improved the relative error
norms RENu from 0.0715 to 0.0088 and RENux from 0.0909 to
0.0363, while using almost the same number of integration points.
The relative error norms were computed using a 10-point Gaus-
sian quadrature and 1000 equal size integration cells.

The maximum and mean relative integration errors for the
elements of the stiffness matrix versus the number of integra-
tion points are presented in Fig. 5. The curve marked “Gn;

n=2,3,...” is obtained using n-point Gaussian quadrature for
a
2
1.8
1.6
1.4
L.
= 1.2
B
O
2]
0.8
0.6
0.4
02 : . . . ;
0.5 0.55 0.6 0.65 0.7 0.75 0.8

X

each integration cell, with the integration cells being the
intervals between points; n is increased at each step. The curve
marked “G10; decrease h” is obtained by doubling the number
of integration cells at each step (each integration cell used in
one step is divided into two equal integration cells for the
following step). The other curves are obtained by using the
presented adaptive integration procedure with different num-
bers of Gauss points per integration cell; the horizontal lines
indicate the levels of accuracy t used for the adaptive proce-
dure at each step.

From the results in Fig. 5 we can draw the following conclusions:

® There is a good correlation between the imposed accuracy T
and the obtained maximum error. Note: because we use a local
relative error estimate (see Algorithm 2), the global relative
error is not guaranteed to be less than the imposed accuracy
[20].

® The proposed adaptive integration procedure can achieve signifi-
cant increases in accuracy for a given number of integration points.
For example, for approximately 1000 integration points, the
proposed adaptive integration procedure using G10 quadrature
increases accuracy by 8 digits as compared to a uniform increase
in number of integration cells using the same quadrature
(curve 2).

® The proposed adaptive integration procedure can integrate all
elements of the stiffness matrix with high accuracy.

® For high integration accuracy, it is better to use a high order
Gaussian quadrature (G10) with the adaptive procedure, as it
leads to a lower total number of integration points.

A convergence study for the above problem is presented in
Fig. 6. Refined discretizations are obtained by adding a node in
between each two existing nodes. The grid spacing parameter h is
taken as the maximum distance between any two adjacent nodes
of the discretization.

The adaptive integration method ensures much better accuracy
and increased convergence rates compared with the 5-point
Gaussian quadrature while requiring slightly less integration
points when the imposed accuracy is 7=10"3. When the integra-
tion accuracy is increased to 7=10"°, the number of integration
points required increases while there is little change in the relative
error norms. This illustrates the fact that, for any accuracy greater
than 7=10"3, discretization error dominates the solution and any

25 T T T

K 0)?

5, (@

0.55 0.6

0.7

0
0.5

0.65
X

0.75 0.8

Fig. 2. The outputs of the function used to guide the adaptive cell division: (a) sum of shape functions (b) sum of shape functions' derivatives.

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63

59
a b
1 T T T 20 T
Numeric Numeric
o8 Y e Exact 1 15 L - Exact
Nodes Nodes
0.6 - + Integration points |
10
5 .
= gx 0
- 5"
5k
-10 +
-15
» 20
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
Fig. 3. Solution obtained using 5-point Gaussian quadrature. (a) The function u(x) and (b) its gradient u (x).
a 1 T T T 20 T T T T
Numeric Numeric
o8 4N = Exact 8 D L Exact ||
Nodes + Nodes
06 + Integration points |4
10 + 1
5 - ot
= 2 .
=1 = 0
5+
-10
-15 +
' 20
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X X
Fig. 4. Solution obtained using the adaptive interval subdivision scheme combined with 3-point Gaussian quadrature, for an accuracy r=0.01. (a) The function u(x) and

(b) its gradient u (x).

a
10° ~--Gn; n=2,34,5,10| |
dU 1 -©-- G10; decrease h
b —+— Adaptive G2
2 —*— Adaptive G3
10 1 N —— Adaptive G4 iy
* N\ —=&— Adaptive G5
N\ | —%=— Adaptive G10
107 | POt 1
-7 | 1 O R N\ S N I 1 A I e =)
® =
3
E 10° j
10° +)
107 | %ﬂ \ \ |

10°

Number of integration points

ij

mean(E"™)

R —Gnin=234510
107 O @ G10; decrease h
—+— Adaptive G2 I
"N, —%— Adaptive G3
10 L Q\ —— Adaptive G4
><\ A —&— Adaptive G5
& - —4A— Adaptive G10 H
10° .
Beo)
10° .
w0l &\\\\'\ \ |
107 ¢ X \]
10° 10° 10*

Number of integration points

Fig. 5. Maximum (a) and mean (b) relative integration errors for the elements of the stiffness matrix versus the number of integration points. Accuracy of the proposed
adaptive procedure is increased by changing the value of <. The first curve shows the change in accuracy with the increase of Gauss points per integration cell. The second
curve shows the change in accuracy with the decrease of integration cell size h. The horizontal lines indicate the levels of accuracy t used for the adaptive procedure at

each step.

60 G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63

further increase in integration accuracy has little influence on the
solution accuracy.

3.6. Two-dimensional example

As an example of 2D BVP we analyze the Poisson equation:

U(X)+Uyy(X)+8(X)=0 in£2, (43)
with the Dirichlet (essential) boundary condition
ux)=ux) onl. (44)

3.6.1. Discretization of the BVP equation
The weak form for Eq. (43) can be written, using test functions
v, as:

/Aude+/gde=0 (45)
Q JQ

where A=V? is the Laplace operator. By using Green's first
identity for the first integral and re-arranging the terms, Eq. (45)
can be re-written as:

/ vVu - vvdS2 — /(Vu -n)vdS = /gde (46)
Jo Jr JQ

where n is the outward pointing unit normal of boundary element
ds.

Eq. (46) is discretized with an approximation of the solution
constructed using the MF shape functions as a basis defined over n
points in the problem domain. By using the shape functions as test
functions, Eq. (46) can be re-written (for each test function) as:

i u"/Vd)k-V(/)idQ—/(Vu-n)(/JidS: /g(/)idQ, j=1.n (47)
=1 Je Jr Ja

Because the MF shape functions for the interior nodes do not
vanish on the boundary, the second integral in Eq. (47) is not zero.

We consider
g=Vvu-n (48)

as a secondary variable and discretize it on the boundary as:

ny

equations:
. n . . .
3 uk/ vk -vglda— ¥ ¢ w’qﬁ’dS:/qu’dQ,j:l..n
k=1 Je i=1 Jr Q
% P&k =, i=1.nb
k=1

(50

As seen from (50), the integrals that need to be computed using
a numerical quadrature are based on the derivatives of the shape
functions

kajz/gqﬁigb{xdﬂ and Iy, = /Qqﬁky(},’?’y dQ (51)
as well as on the shape functions:
Fi= / gf/d2 and F;— /y/"qs’ ds. (52)
Q r

3.6.2. Numerical integration procedure

We use either triangles or quadrilaterals as integration cells in
2D. Each integration cell is subdivided into 4 cells during the
adaptive integration procedure using the mid-points of the edges.
The function that guides the subdivision of integration cells is
defined considering the integrals that need to be computed (51)
and (52) as:

2
(#50)
2
(#hw)
2
(#'x)
1
For the same reasons as in the 1D case, function g and the

linear shape functions ! do not appear in the definition of
function f.

=
-

fx) = (53)

=~

M= I M= 1 M=

k

3.6.3. Performance assessment
To assess the integration performance we study problem (43)
with:

= 3 vq (49) £=0inQ={(xy)IX*+y*> <1} (54)
i=1
. . and
where n, is the number of nodes on the boundary, ¢' is the value of _ =5
q at node i and y' are linear shape functions defined for the u=x+y ©3)
boundary segments. By substituting the secondary variables in Eq. with the solution
(47) and considering the essential boundary conditions (44) for U Xt (56)
the nodes on the boundary, we obtain the discretized system of =Xty
a b . e
10" . 10 10*
o
e
102 O o < ¢ 9
& 10" | > ¢ H
= -3 5 % 3
é 10 é g 10
10% é
10-4 b4
oG5 e - G5 .
—O— Adaptive G5, t = 10° —o— Adaptive G5, < = 10 O Adaptive G5, T = 10°
—%— Adaptive G5, t = 10 —%— Adaptive G5, 1= 10® —*— Adaptive G5, 1= 10®
10° 10° o
10° 1 107 10" 10° 10" 10° 10% 10"

h

Fig. 6. Convergence study: relative error norms for the solution (a) and its derivative (b); number of integration points used (c). Note that the last two curves in plots (a) and
(b) are so close they cannot be visually distinguished.

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63 61

We use the scaling parameter M=1.2 for defining the nodal
influence domains, which ensures sufficient nodes are allocated to
each integration point for the computation of the shape functions.
The integrals over boundary segments are computed using 10-
point Gaussian quadrature. We used both quadrilateral (Fig. 7) and
triangular cells for integration, the triangular cells being obtained
by dividing the quadrilateral cells along the shortest diagonal.

The maximum and mean relative integration errors for the
elements of the stiffness matrix versus the number of integration
points are presented in Fig. 8. The curve marked “Tn; n=3,6" is
obtained using 3-points and 6-points quadratures for each trian-
gular integration cell as derived in [22]. The curve marked “Gn,n;
n=3,5" is obtained using 3 x 3 and 5 x 5-points tensor product
Gaussian quadratures for each quadrilateral integration cell. The
curves marked “T6; decrease h” and “G5,5; decrease h” are
obtained by dividing all integration cells into 4 smaller cells at
each step and applying the selected quadrature (T6 and G5,5) with
the resulting integration cells. The horizontal lines indicate the
levels of accuracy T used for the adaptive procedure at each step.

Similar conclusions as for the 1D case can be drawn from the
integration error study. Our numerical experiments have shown
that the benefits of the adaptive procedure, in terms of number of
integration points required for a given accuracy, are higher for
more irregular nodal distributions (as the shape functions have
more complicated shapes and are more difficult to integrate).

Similar to the 1D case, solution accuracy does not significantly
change once integration accuracy reaches a given value (Fig. 9).
This result suggests it is not necessary to obtain very high
integration accuracy, as it only leads to higher computational
effort (number of integration points, and therefore number of
function evaluations) without having any significant influence on
the accuracy of the solution (due to a much higher discretization
error). We propose that a convergence study should be performed
to determine the best integration accuracy for a given discretiza-
tion. Our proposed adaptive procedure is well suited for such
study, as it offers control over the integration accuracy through
parameter T.

4. Discussion and conclusions

In this paper we propose an adaptive integration procedure for
Mesh Free Galerkin Methods. A function constructed based on the
shape functions guides an adaptive integration cell division
process which stops only when the guiding function is integrated

a

1r
0.8
0.6
04 -

02

with a prescribed accuracy. The resulting distribution of integra-
tion points and corresponding weights can then be used to
compute all integrals involved in the solution of the BVP over
the problem domain.

The new adaptive quadrature has the following properties:

® The integration accuracy can be controlled by the analyst;

® The size of integration cells is automatically adjusted; the
adaptive method detects areas where the shape functions have
large variations and automatically increases the number of
integration cells to maintain integration accuracy;

® |t works for any shape and size of support domains;

® The adaptive procedure introduces new integration points only
in the areas where the integration accuracy is not sufficient;
therefore it creates an almost optimum number of integration
points for a given accuracy;

® The resulting distribution of integration points depends only on
the nodal discretization and the required accuracy;

® The procedure is especially effective in case of non-uniform
nodal distributions.

We test the efficiency and accuracy of the proposed procedure
for 1D and 2D BVPs and compare it with classical non-adaptive
integration methods. The new method can ensure more accurate
results using the same or lower number of integration points.

The initial integration cells used for the adaptive procedure do
not have to be constructed based on the nodal discretization of the
domain. We performed experiments with initial integration cells
unrelated to the discretization and obtained similar results. Even if
the initial integration cells are not related to the discretization, it is
important that the size of these cells is closely related to the
distance between nodes (see the discussion about characteristic
length in Section 2.1).

The proposed integration method is evaluated for simple linear
problems, in order to analyze its properties. For such problems the
computation time is usually not greatly influenced by the number
of integration points used, as the solution to the resulting system
of equations takes a lot longer to compute. The solution algorithms
that would greatly benefit from the proposed integration proce-
dure are those that are greatly influenced by the number of
integration points required. We intend to use the presented
integration procedure for solving 3D elasticity problems by explicit
algorithms in the context of a Total Lagrangian formulation [5,31],
in which most of the solution time is spend on computing stresses
at each integration point. Such explicit algorithms can also be used

Integration cells
Boundary

® Nodes
Integration points

Fig. 7. (a) Point distribution used for discretizing the 2D domain and quadrilaterals used as initial integration cells. (b) Example integration point distribution, obtained using

a Gaussian 2 x 2 tensor product quadrature for z=0.01.

62

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63

a
y - T6; decrease h
10 —OC— Adaptive T3 |}
—<— Adaptive T6
2
10" ¢ E
— 10-3
.
w
H
£ 10°} 5
10°
10° L E
10° 10* 10° 10° 10
Number of integration points
Cc
——g T T T
~t---Gn,n; n = 3,5
10"+ ~-8-- G5,5; decrease h |
. —O— Adaptive G3,3
-t —<— Adaptive G5,5
10° | :
107 Sa
ol ja]
Ty
x
g 10} 4
10°
10° F :
10* 10° 10°

Fig. 8. Maximum and mean relative integration errors for the elements of the stiffness matrix versus the number of integration points for triangular (a, b) and quadrilateral
(¢, d) integration cells. Accuracy of the proposed adaptive procedure is increased by changing the value of ©. The first curves in these plots show the change in accuracy with
the increase in number of integration points per cell. The second curve shows the change in accuracy with the decrease of integration cell size h. The horizontal lines indicate

Number of integration points

the levels of accuracy t used for the adaptive procedure at each step.

8.3

Solution error - RENu

7.7 |

7.6
10

Fig. 9. Solution error norms versus integration error (a) and number of integration points used (b). The adaptive integration procedure was used with a T19 quadrature.

107

8

107

10°

10° 10 10°

Integration error - max(Ei'jel)

b

el
)

mean(E.

Solution error - RENux

mean(E™)

102 e -=Tn;n=386 ||
~-&--T6; decrease h
—6— Adaptive T3
" —<O— Adaptive T6
10" ¢ E
g
10°
10° | .
107
10} .
. . | .)
10° 10* 10° 10° 10"
Number of integration points
-3 T T
10 - @Gn,n;n=35
B G5,5; decrease h
. . —©— Adaptive G3,3
107 | = —<— Adaptive G5,5 |5
10°
10° | 1
107
10° t 1
| . | %

3.7

10* 10°

Number of integration points

36 [

35

33 1

32

3.1

!

Accuracy was increased by decreasing the required accuracy 100x at each step starting from z=0.01.

10

10°

Number of integration points

10

G.R. Joldes et al. / Engineering Analysis with Boundary Elements 51 (2015) 52-63 63

for computing steady state solutions for non-linear problems
when combined with Dynamic Relaxation [32]. The use of Total
Lagrangian formulation means that the shape functions do not
change during the solution process, and therefore the distribution
of integration points used for numerical quadrature may not need
to be updated.

The main benefit of the method over other integration methods
consists in the possibility of controlling integration accuracy. Our
results show that after achieving certain integration accuracy, the
solution accuracy can no longer be significantly improved by
increasing the number of integration points. This suggests a
convergence study for the integration error may be appropriate,
to find the optimum level of integration accuracy needed.

Acknowledgments

The financial support of the Australian Research Council (Dis-
covery Grants no. DP1092893, DP120100402) and the National
Health and Medical Research Council (Grant no. APP1006031) is
gratefully acknowledged.

References

[1] Liu GR. Mesh Free Methods: Moving Beyond the Finite Element Method. Boca
Raton: CRC Press; 2003.

[2] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. Int] Numer Meth
Eng 1994;37:229-56.

[3] Dolbow J, Belytschko T. Numerical integration of the Garlekin weak form in
meshfree methods. Comput Mech 1999;23:219-30.

[4] Miller K, Joldes GR, Lance D, Wittek A. Total Lagrangian Explicit Dynamics
Finite Element Algorithm for Computing Soft Tissue Deformation. Commun
Numer Methods Eng 2007;23:121-34.

[5] Horton A, Wittek A, Joldes GR, Miller K. A meshless total lagrangian explicit
dynamics algorithm for surgical simulation. Int] Numer Method Biomed Eng
2010;26(8):977-98.

[6] Fries T-P, Matthies H-G. Classification and Overview of Meshfree Methods.
Brunswick, Germany: Technische Universitdt Braunschweig; 2003.

[7] De S, Bathe K-J. The method of finite spheres with improved numerical
integration. Comput Struct 2001;79:2183-96.

[8] Atluri SN, Kim H-G, Cho]JY. A critical assessment of the truly Meshless Local
Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) meth-
ods. Comput Mech 1999;24:348-72.

[9] Racz D, Bui TQ. Novel adaptive meshfree integration techniques in meshless
methods. Int] Numer Methods Eng 2012;90:1414-34.

[10] Babuska I, Banerjee U, Osborn JE, Li Q. Quadrature for meshless methods. Int]
Numer Methods Eng 2008;76:1434-70.

[11] Quak W, AHvd Boogaard, Gonzalez D, Cueto E. A comparative study on the
performance of meshless approximations and their integration. Comput Mech
2011;48:121-37.

[12] Chen J-S, Wu C-T, Yoon S, You Y. A stabilized conforming nodal integration for
Galerkin mesh-free methods. Int] Numer Meth Eng 2001;50(2):435-66.

[13] Rosca VE, VMA Leitao. Quasi-Monte Carlo mesh-free integration for meshless
weak formulations. Eng Anal Bound Elem 2008;32:471-9.

[14] BaniHani S, De S. Genetic algorithms for meshfree numerical integration. In:
Griebel M, Schweitzer MA, editors. Meshfree Methods for Partial Differential
Equations III. Berlin Heidelberg: Springer; 2007. p. 17-40.

[15] Strouboulis T, Babuska I, Copps K. The design and analysis of the Generalized
Finite Element Method. Comput Methods Appl Mech Eng 2000;181:43-69.

[16] Espelid TO, Genz A. DECUHR: an algorithm for automatic integration of
singular functions over a hyperrectangular region. Numer Algorithms
1994;8:201-20.

[17] Rice JR. A Metalgorithm for Adaptive Quadrature.] ACM 1975;22(1):61-82.

[18] Rice JR. Adaptive quadrature: convergence of parallel and sequencial algo-
rithms. Bull Amer Math Soc 1974;80(6):1250-4.

[19] Gander W, Gautschi W. Adaptive Quadrature—Revisited. BIT. Numer Math
2000;40(1):84-101.

[20] Gonnet P. A review of error estimation in adaptive quadrature. ACM Comput
Surv 2012;44(4):22.

[21] Garribba S, Quartapelle L, Reina G. SNIFF: efficient self-tuning algorithm for
numerical integration. Computing 1978;20:363-75.

[22] Dunavant DA. High degree efficient symmetrical Gaussian quadrature rules for
the triangle. Int] Numer Meth Eng 1985;21:1129-48.

[23] Smolyak SA. Quadrature and interpolation formulas for tensor products of
certain classes of functions. Soviet Math Doklady 1963;4:240-3.

[24] Cools R. An encyclopedia of cubature formulas. Journal of Complexity
2003;19:445-53.

[25] Bungartz H-J, Griebel M. Sparse grids. Acta Numerica 2004;13:147-269.

[26] Gerstner T, Griebel M. Numerical integration using sparse grids. Numer
Algorithms 1998;18:209-32.

[27] Gerstner T, Griebel M. Dimension-adaptive tensor-product quadrature. Com-
puting 2003;71:65-87.

[28] Zhang L, Cui T, Liu H. A Set of Symmetric Quadrature Rules on Triangles and
Tetrahedra.] Comput Math 2009;27(1):89-96.

[29] Li S, Liu WK. Meshfree Particle Methods. Berlin: Springer-Verlag; 2004.

[30] Lancaster P, Salkauskas K. Surfaces generated by moving least squares
methods. Math Comput 1981;37:155.

[31] Miller K, Horton A, Joldes GR, Wittek A. Beyond finite elements: a compre-
hensive, patient-specific neurosurgical simulation utilizing a meshless
method.] Biomech 2012;45:2698-701.

[32] Joldes GR, Wittek A, Miller K. An adaptive Dynamic Relaxation method for
solving nonlinear finite element problems. Application to brain shift estima-
tion. Int] Numer Methods Biomed Eng 2011;27(2):173-85.

http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref1
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref1
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref2
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref2
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref3
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref3
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref4
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref4
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref4
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref5
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref5
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref5
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref6
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref6
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref7
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref7
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref8
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref8
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref8
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref9
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref9
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref10
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref10
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref11
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref11
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref11
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref12
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref12
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref13
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref13
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref14
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref14
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref14
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref15
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref15
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref16
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref16
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref16
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref17
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref18
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref18
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref19
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref19
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref20
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref20
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref21
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref21
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref22
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref22
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref23
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref23
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref24
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref24
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref25
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref26
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref26
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref27
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref27
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref28
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref28
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref29
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref30
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref30
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref31
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref31
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref31
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref32
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref32
http://refhub.elsevier.com/S0955-7997(14)00249-5/sbref32

	Adaptive numerical integration in Element-Free Galerkin methods for elliptic boundary value problems
	Introduction
	Adaptive numerical integration
	Adaptive quadrature algorithms for univariate functions
	Adaptive quadrature algorithms in multiple dimensions
	Adaptive quadrature algorithm for elliptic boundary value problems

	Numerical experiments
	Moving least squares shape functions
	Integration accuracy
	Solution errors and convergence
	Number of integration points required
	One-dimensional example
	Discretization of the BVP equation
	Numerical integration procedure
	Performance assessment

	Two-dimensional example
	Discretization of the BVP equation
	Numerical integration procedure
	Performance assessment

	Discussion and conclusions
	Acknowledgments
	References

