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Abstract. We present an algorithm for modelling swelling and shrink-
ing of soft tissues based on the total Lagrangian formulation of the finite
element (FE) method. Explicit time integration with adaptive dynamic
relaxation is used to compute the steady state solution. The algorithm
can easily handle geometric and material nonlinearities; and is very effi-
cient because it allows pre-computation of important solution parameters
and does not require solution of large systems of equations. Swelling and
shrinking behaviour is modelled by applying a multiplicative decompo-
sition of the deformation gradient to separate the total deformation into
swelling/shrinking and elastic components. A hyperelastic constitutive
law is used to model the elastic behaviour of the material. Accuracy
of the algorithm is confirmed by successful verification against an estab-
lished FE code. The algorithm involves only vector operations and is well
suited for parallel implementation for increased computational speed.

Keywords: Finite element method, Biomechanics, Swelling, Growth,
Hydrocephalus, Multiplicative decomposition

1 Introduction

Many soft tissue pathologies and their respective treatments are accompanied by
swelling or shrinking of the affected area. Examples of swelling include oedema
caused by the abnormal accumulation of fluid within the tissue and the mass-
effect of tumour growth. Shrinking of tissues can be observed in hydrocephalus
and treatments such as osmodiuretics for the reversal of oedema induced swelling.

The biomechanics of swelling and shrinking has been studied in significant
detail and models of varying complexity have been suggested. Early studies in-
clude lumped parameter models [17] and finite element models with simplified 2D
geometry [16]. More recent developments include detailed 3D models based on
linear poroelasticity [10], mixture theory [9], models that account for finite defor-
mations [21] and nonlinear material behaviour of the solid phase [1, 2]. Although
these models have shown promising results, a significant challenge is presented



by the computational cost involved with solving the complex equilibrium equa-
tions that arise from the multiphase mixture theory and the limitations of linear
poroelastic models. Within the constrains of the operating theatre results are
required quickly and need to be computed on commodity hardware. To enable
simulations of entire organs undergoing swelling or shrinking there is a need for
computationally efficient and robust solution algorithms.

In this paper, we present an efficient algorithm for modelling swelling and
shrinking of soft tissues based on the total Lagrangian (TL) formulation of the
finite element (FE) method. In the TL formulation the FE equations are formu-
lated with respect to the initial (undeformed) configuration. Swelling and shrink-
ing behaviour is introduced by applying a multiplicative decomposition of the
deformation gradient to separate the total deformation into swelling/shrinking
and elastic components. The swelling/shrinking deformation is applied to the
initial reference configuration to obtain a (fictitious) intermediate stress-free
configuration. The elastic deformation is applied to the intermediate configu-
ration to obtain the final deformed configuration. A hyperelastic constitutive
law is used to model the elastic behaviour of the material. We do not consider
the physiological cause of the swelling. Instead, we impose a predefined swelling
stretch as a predefined function of time. Clearly, this model cannot be used to
make predictions of swelling or shrinking but it serves as a demonstration of
the method used to enforce swelling and shrinking behaviour in the finite ele-
ment mesh. Physiological models can be introduced at a later stage to define the
amount of swelling/shrinking at each point in the mesh.

The discretised equations are solved using explicit time integration. Adap-
tive dynamic relaxation [8] ensures rapid convergence towards the steady state
solution. A computational advantage of the total Lagrangian over the updated
Lagrangian formulations is that all derivatives with respect to the spatial coordi-
nates are calculated with respect to the original configuration and can therefore
be pre-computed. The advantage of using explicit time integration with dynamic
relaxation for modelling the deformation of soft tissues is that very fast compu-
tations are possible compared to similar implicit integration schemes. The stable
time step for the explicit method is directly related to the elastic modulus of the
material. Compared to structural materials such as steel, soft tissues have a low
modulus of elasticity, which allows relatively large time steps to be used making
the method especially attractive for modelling soft tissue deformations [15].

2 Methods

2.1 Total Lagrangian formulation of swelling and shrinking

A motion or deformation of a continuum body B ∈ R3 is a one-to-one (bijective)
mapping [4, 12, 19]

ϕt : B → St ∈ R3, (1)

that maps particles X ∈ B from the reference configuration B onto positions

x = ϕt(X) = ϕ(X, t), (2)



in the current configuration St ⊂ R3 at time t ∈ [0, T ]. A fundamental measure
of deformation is the deformation gradient [19]

F (X, t) = Dϕ(X) = ∂x/∂X. (3)

To ensure that the deformation between the spatial and material coordinates is
invertible and that the local condition of impenetrability of matter is not violated
the Jacobian determinant must satisfy [19]

J(X) = det[F (X)] > 0. (4)

Deformation due to swelling or shrinking can be introduced by considering
a (fictitious) stress-free intermediate configuration B̄st between the initial con-
figuration B and the deformed configuration St (Fig. 1). This concept was first
developed by Flory and Rehner [7] for swelling of polymers [5] and is similar to
that used for metal plasticity [19], thermal expansion [11] and biological growth
[18]. The total deformation F can be separated into elastic F e and swelling
deformation F s by a local multiplicative decomposition of the form [2, 11, 18]

F = F eF s. (5)

The deformation caused by swelling (Js > 1) and shrinking (Js < 1) are math-
ematically equivalent; henceforth the term swelling will be used exclusively to
refer to the volume change of the tissue.

It should be understood that F e and F s are not proper gradients and that
the intermediate configuration is incompatible in a global sense as indicated by
the overlapping neighbourhoods Oξ1 and Oξ2 of the points ξ1, ξ2 ∈ B̄st Fig. (1)
[13, 19]. Conceptually, the multiplicative decomposition can be thought of as the
disassembly of a finite element mesh (the initial undeformed configuration) and
the subsequent application of the local volumetric deformation due to swelling
on the individual elements. Unless the swelling deformation is homogeneous,
this intermediate configuration will be incompatible at the boundaries between
elements and the elements will no longer “fit together” (more precisely, the in-
termediate configuration is not a proper configuration because—except for the
special case of homogeneous swelling—a bijective mapping between the mate-
rial particles and R3 does not exist [6]). Compatibility of the final (deformed)
configuration is enforced by reassembling the mesh using the nodal connectivity
of the elements. For a formal exposition of the geometrical details the reader is
referred to [6, 12, 13].

For isotropic swelling the swelling deformation gradient can be written as

F s = λsI, (6)

where λs is the isotropic swelling stretch and I is the identity tensor. The elastic
deformation gradient can then be expressed simply as

F e = F (F s)
−1

= (λs)
−1F . (7)
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Fig. 1. Multiplicative decomposition of the deformation gradient F = F eF s for the
motion of two adjacent material points X1,X2 ∈ B to the spatial positions x1,x2 ∈ St.

The total Lagrangian (TL) formulation of the finite element method uses ro-
tation invariant measures of strain (Green–Lagrange strainE) and stress (second
Piola–Kirchhoff stress S) that are calculated with respect to the initial (unde-
formed) reference configuration B [3, 4]. The deformations F e and F s satisfy the
invertibility and impenetrability of matter requirements so that the usual push-
forward and pull-back operations can be performed to obtain the stress measures
with respect to the configurations B, B̄st and St [13]. For convenience, the (effec-
tive) elastic second Piola–Kirchhoff stress Se is introduced by the push-forward
of S onto the relaxed intermediate configuration B̄st scaled by the volume ratio
Js. The (total) second Piola–Kirchhoff stress with respect to the initial reference
configuration B can then be expressed as

S = Js(F s)−1Se(F s)−T . (8)

In practice, when using hyperelastic materials with the TL formulation of
the FE method, Se is computed using invariants of the elastic deformation gra-
dient F e; whereas, the nodal forces are usually computed using S and the total
deformation gradient F with respect to the initial reference configuration [3, 4].
This enables the swelling behaviour to be included entirely within the material
constitutive model. Standard element formulations can then be used to calculate
the element nodal forces and displacements in the usual manner. The Cauchy
stress can be obtained using the inverse Piola transformation

σ = J−1FSF T . (9)

2.2 Constitutive material model

At low strain rates the mechanical behaviour of soft tissues can be characterised
using a hyperelastic constitutive law [22]. Viscoelastic effects are ignored due to



the relatively slow loading speed involved with soft tissue swelling (on the order
of a few hours).

Hyperelastic materials are characterised by the existence of a strain energy
function W e(Ce) that relates the deformation to the second Piola–Kirchhoff
stress

Se = 2
∂W e(Ce)

∂Ce
. (10)

where Ce = (F e)TF e is the elastic right Cauchy–Green deformation tensor [4].
For hyperelastic materials that are isotropic with respect to the initial, unstressed
configuration the strain energy density W e(Ie1 , I

e
2 , I

e
3) can be expressed in terms

of the principal invariants Ie1 = traceCe, Ie2 = 1
2{(traceCe)2 − trace(Ce)2}

and Ie3 = detCe [4]. The classical (incompressible) neo-Hookean model with
strain energy density W e(Ie1) = µ(Ie1 − 3) is based on the assumption that the
deformation is isochoric (Je = 1). To account for (slight) compressibility of the
material we use the modified strain energy density [23]

W̄ e(Ie1 , J
e) = 1

2µ
(

(Je)−2/3Ie1 − 3
)

+ 1
2κ(Je − 1)2, (11)

where Je = detF e is used in place of Ie3 = detCe = (Je)2, and µ and κ are the
material constants. The behaviour for infinitesimal strains is identical to a linear
isotropic elastic model with shear modulus µ and bulk modulus κ. The second
Piola–Kirchhoff stress is computed as

Se = µ(Je)−2/3I +
(
−1/3µ(Je)−2/3Ie1 + κJe(Je − 1)

)
(Ce)−1, (12)

with respect to the relaxed intermediate configuration B̄st. The strain energy
density defined above is equivalent to the neo-Hookean model available in the
commercial FE software Abaqus [20] that will be used to verify our algorithm.

2.3 Numerical algorithm for swelling

Our aim is to determine the configuration of the tissue after swelling or shrink-
ing takes place; therefore, we are interested in the steady state solution. Our
algorithm is based on the total Lagrangian formulation of the FE method and
uses explicit time integration with adaptive dynamic relaxation to compute the
steady state solution [3, 4, 8, 15].

1. Initialisation:
(a) Compute shape function derivative matrices Bm

0 at each Gauss point m.
(b) Compute and diagonalise (constant) mass matrix M .
(c) Initialise nodal displacement d0 = 0, d1 = 0.

2. Time stepping (n is the step number and ∆t is the time step):
(a) Loop over Gauss points m:

i. Compute total deformation gradient Fmn = I +Bm
0 d

m
n .

ii. Compute elastic deformation measures F e,mn , Ce,m
n , Ie,m1n and Je,mn .

iii. Compute second Piola–Kirchhoff stress Smn using (8).



iv. Compute internal nodal forces f int,m
n = Fmn S

m
n B

m
0 w̄

m where w̄m

are the quadrature weights.
v. Scatter f int,m

n to global force vector f int
n .

(b) Obtain net nodal reaction forces fn = f ext
n − f int

n .
(c) Update nodal displacements using the central difference formula

dn+1 = dn + β (dn − dn−1) + αM−1fn, (13)

where α = 2∆t2/(2 + c∆t) and β = (2− c∆t)/(2 + c∆t). The damping
coefficient c is calculated using an adaptive procedure to obtain optimum
convergence towards the steady state solution [8].

(d) Check termination criteria [8].

2.4 FE model for algorithm verification

To verify the proposed algorithm we solved a simple model and compared the
results to those obtained using a thermal expansion analogy with the commercial
FE code Abaqus [20]. We used a cylinder with diameter and height of 10 cm
meshed using 35598 linear tetrahedral elements and 6710 nodal points. The nodes
on both end surfaces of the cylinder were fully constrained. The swelling stretch
was applied using a smooth (3-4-5 polynomial) loading curve [15]

λs(t) = (10− 15t+ 6t2)t3, (14)

where t is the relative time (varying from 0 to 1). The material parameters of
the hyperelastic material model (Sec. 2.2) were chosen to match the behaviour
of brain tissue with a mass density of 1000 kg/m3, Young’s modulus in the
undeformed state equal to 3000 Pa and Poisson’s ratio of 0.49 [14].

Abaqus does not offer swelling behaviour of hyperelastic materials so we used
the following thermal expansion analogy. The stretch in each principal direction
for an unconstrained material undergoing isotropic thermal expansion is

λθ = (1 + α∆θ), (15)

where α is the thermal expansion coefficient and ∆θ is the temperature measured
with respect to the reference temperature. By setting α = 1 the temperature
change is related to the isotropic swelling stretch used in our algorithm by

λs ≡ λθ = 1 +∆θ. (16)

The steady state solution was obtained using the algorithm described in
Sec. 2.3 and compared to the Abaqus/Standard [20] static solution.

3 Results

Simulations of constrained swelling and shrinking were performed to verify the
proposed algorithm (Sec. 2.4). The results (Fig. 2) show excellent agreement
between the proposed algorithm and the Abaqus/Standard [20] static solution
for both the reaction forces and the displacements .



(a) Swelling (λ = 1.5)

(b) Shrinking (λ = 0.8)

Fig. 2. Differences in displacements (left) and vertical nodal reaction forces along a line
of nodes on the bottom face (right) between our solution method and the equivalent
thermal expansion analysis in Abaqus/Standard. The lack of symmetry of the reaction
forces is due to the discretisation.

4 Conclusions

We developed an algorithm for modelling swelling and shrinking of soft tissues
based on the total Lagrangian formulation of the FE method with explicit time
integration and adaptive dynamic relaxation used to compute the steady state
solution. The algorithm can easily handle nonlinearities; and is very efficient be-
cause it allows pre-computation of important solution parameters and does not
require solution of large systems of equations. The algorithm was successfully
verified against an established FE code and is well suited for parallel implemen-
tation on graphics processing units (GPUs) for increased computational speed.
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