
Implementation of a Modified Moving Least 
Squares Approximation for Predicting Soft 
Tissue Deformation using a Meshless Method 

Habibullah Amin Chowdhurya, Grand Roman Joldesa, Adam Witteka, Barry 
Doylea, Elena Pasternakb and Karol Millera  

aIntelligent Systems for Medicine Laboratory (ISML), The University of Western Australia. 

bSchool of Mechanical and Chemical Engineering, The University of Western Australia. 

Abstract   In applications where the organic soft tissue undergoes large defor-
mations, traditional finite element methods can fail due to element distortion. In 
this context, meshless methods, which require no mesh for defining the interpola-
tion field, can offer stable solutions. In meshless methods, the moving least square 
(MLS) shape functions have been widely used for approximating the unknown 
field functions using the scattered field nodes. However, the classical MLS places 
strict requirements on the nodal distributions inside the support domain in order to 
maintain the non-singularity of the moment matrix. These limitations are prevent-
ing the practical use of higher order polynomial bases in classical MLS for ran-
domly distributed nodes despite their capability for more accurate approximation 
of complex deformation fields. A modified moving least squares (MMLS) approx-
imation has been recently developed by ISML. This paper assesses the interpola-
tion capabilities of the MMLS. The proposed meshless method based on MMLS is 
used for computing the extension of a soft tissue sample and for a brain defor-
mation simulation in 2D. The results are compared with the commercial finite el-
ement software ABAQUS. The simulation results demonstrate the superior per-
formance of the MMLS over classical MLS with linear basis functions in terms of 
accuracy of the solution.  

1 Introduction 

In case of brain surgery simulation, our vision is to enable a surgeon to 
interact with the computing facilities in the operating theatre and to visualize the 
results in real-time with high accuracy. In this way, a surgeon, without requiring 
any expert knowledge in numerical computation, would be able to evaluate the 
implications of each stage of a surgical procedure and explore potential alternative 
solutions. For this purpose, a robust and accurate method for solving the 
fundamental equations describing the biomechanical behaviour of the subject is an 
essential requirement. Conventionally, this kind of real-time computation in 



biomechanics depends on linear finite element algorithms which assume 
infinitesimal deformations [1, 2]. However, modelling of the brain for applications 
such as neurosurgical simulation and neuroimage registration for image-guided 
surgery is a nonlinear problem of continuum mechanics which involves large 
deformations and large strains with geometric and material nonlinearities. 
Therefore the infinitesimal assumption is not satisfied where such large 
deformations occur. Furthermore, in such cases, finite element methods can fail 
due to element distortion. In this context, meshless methods [3, 4] provide a better 
alternative. The complex finite element grid generation and element distortion 
problems are avoided, as only a cloud of points are required for discretising the 
model [5, 6] in meshless methods; a predefined mesh is not necessary. The 
meshless shape functions are important in approximating the unknown field 
functions to find the approximate solution to a problem governed by PDEs and 
boundary conditions using these arbitrarily distributed field nodes [4]. The 
Moving Least Squares (MLS) shape functions have been preferred predominantly 
in meshless methods [3, 7] due to the smoothness, continuity and consistency of 
the approximation field they create.    
 

The MLS method was first introduced by Shepard [8] to construct 
smooth approximations for fitting a cloud of points [9]. In 1981, Lancaster and 
Salkauskas [10] extended this method for general surface generation problems. In 
generating meshless shape functions, higher order polynomial basis functions are 
useful in approximating complex data distributions. They also have the potential 
to increase the accuracy of the simulation results compared with linear basis 
function. However, as the degree of polynomial basis is increased, more nodes 
need to be included in the support domain to be able to compute the shape 
functions. Consequently, the size of the support domain gets enlarged resulting in 
increased computational cost for a given discretisation. Furthermore, not all node 
distributions can be used in numerical computation for a given size of the support 
domain. Nevertheless, in most cases, a valid or “admissible” node distribution can 
be achieved by increasing the support domain size, which is often controlled by a 
dilatation parameter [11]. In this context, Joldes et al. [12] has recently presented a 
modified MLS approximation which allows higher order polynomial basis 
functions to be used under the same conditions as lower degree basis functions. 
Such an approximation can be used to create a more accurate meshless method 
without the need to change the nodal distribution or dilatation parameters used.  

 
This paper focuses on the evaluation of a meshless method based on the 

modified MLS (MMLS) shape function developed by Joldes et al. [12] in two 
specific cases of biomechanics simulations: extension of a soft tissue sample and 
simulation of a craniotomy induced brain shift. A comparison between the MMLS 
and the classical MLS with linear and quadratic basis in approximating a bivariate 
function is also presented.   



2 The Modified Moving Least Squares Method 

The procedure for constructing classical MLS shape function starts with 
the approximation of a function u(x), denoted by uh(x), which is defined by a 
combination of m monomials (also called basis functions) [4].  
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�
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where m is the number of terms in the basis ����, and �
���  are coefficients that 
depend on the spatial coordinates x. These coefficients are computed by minimiz-
ing an error functional defined based on the weighted least squares errors: 

 ���� = ∑ [������� − ����	���� − ����]���
   (2) 

where n is the number of nodes in the support domain of x. Rewriting in matrix 
form yields:   

 J = �����a − ���������a − �)  (3) 

Minimization is done by setting the partial derivatives of the error func-
tional	 J  to zero:  

 
 

 ! a
= ����a(x)− ���� = 0 (4) 

Finally, by solving the resulting system of equations, the MLS approxi-

mation is obtained as 
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Here, u is the nodal vector parameters of all the nodal field variables in 
the local support domain, $��� is the vector of MLS shape functions and &��� is 
known as the moment matrix. Generally, linear or quadratic basis functions and 
cubic or quartic weight functions are used to create the approximation.  



 
As can be seen from equation (6), the shape functions construction 

depends on the non-singularity of the moment matrix defined by equation (7). The 
necessary conditions for the moment matrix to be non-singular depend on the 
types of basis functions used. For example, in a two-dimensional case, the 
moment matrix is non-singular as long as there are at least 3 non-collinear nodes 
in the support domain for linear basis functions; whereas for a quadratic basis, at 
least 6 nodes are needed in the support domain. The support domain of a point x 
determines the number of nodes used to compute the approximation value at x. 
However, some nodal distributions can still lead to singular moment matrices even 
if enough nodes are included in the support domain. This type of scenario can 
occur, for example, if the nodes are distributed on two parallel lines in 2D. To 
overcome this problem, the traditional remedy is to enlarge the support domains in 
order to include more nodes. This, however, leads to higher approximation error 
and increased computational cost due to the more linearly dependent shape 
functions in the local area. Consequently, these limitations prevent the practical 
use of higher order polynomial basis for randomly distributed nodes despite their 
potential capability for better approximation of complex deformation fields and 
better convergence properties.  

 
In this context, Joldes et al. [12] developed a modified MLS with second 

order polynomial basis. The development of MMLS is based on the observation 
that a singular moment matrix mainly means that equation (4) used to compute the 
coefficients a(x) has multiple solutions, and therefore the functional (2) does not 
include sufficient constraints to guarantee a unique solution for the given nodal 
distribution. Based on this observation, for 2D, additional constraints are included 
in the functional (2) as 

 ���� =+,������� − ����	���� − ����- + /01�01�
�
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where, 

 3 = 4/01		/02		/215 (11) 

is defined as vector of positive weights for the additional constraints.  
The choice of the additional constraints ensures that, when the classical 

MLS moment matrix is singular (multiple solutions), we favour the solution 
having the coefficients for the higher order monomials in the bases equal to zero. 
By choosing the weights for the additional constraints as small positive numbers 
we can ensure that the classical MLS solution is little changed when the moment 
matrix is not singular. 

Using the same minimization procedure, the modified approximant is 
obtained as: 
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With the new shape function defined as 
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Here, H is a matrix with all elements zeros except the last three diagonal 
entries, which are equal to µ 

 7 = 89:: 9::9:: ;<�=�3�> ( 14 ) 

and the modified moment matrix is computed as: 

 ?@ = ����+ 6 = ?+ 6 ( 15 ) 

The small alteration of the moment matrix presented in the above 
equation is the only difference between the MMLS and the classic MLS with 
quadratic basis functions. Nevertheless, it can be shown that the nodal 
distributions which are admissible for the classical MLS with linear basis 
functions are also admissible for the presented MMLS [12]. 

  

3 Numerical Examples 

3.1 Approximation capability in 2D 

To assess the approximations capability of the modified MLS shape 
functions with quadratic basis, it is compared with classical MLS shape function 
with linear and quadratic bases. A quartic spline weight function with circular 
domain was used in the definition of all shape functions:  

 ��A� = B1 − 6A� + 8A: − 3AG				, A ≤ 10																																									, A > 1	 ( 16 ) 

where s is the normalized distance 

 A� = �� − K��L�  ( 17 ) 

and Rj is the radius of the influence domain of node xj. In this example, the same 
weights for all the additional constraints (µx

2=µxy=µy
2=µ) and a constant radius of 

influence for all nodes (Rj = R) were used, as we used node distributions with con-
stant nodal densities. A 2D rectangular problem domain was defined and the ge-



ometry was represented using both regular and irregular node distributions con-
sisting of 324 nodes, as shown in Fig.1. The irregular nodal distribution consisted 
of uniformly scattered nodes were obtained by using the Matlab Halton sequence 
function [13]. The use of this function ensures a uniform nodal density for the 
problem domain. The following function was used for testing the approximation 
accuracy in 2D using MLS and the MMLS for different values of / and R. The 
function was chosen to present a variety of behaviour in a surface which consists 
of Gaussian peaks with sharp descent.  

 ��M, N� = MO'01'21 ( 18 ) 

The approximation accuracy was determined using the root mean square 
error evaluated using a regular distribution of N=81*81 points: 

 LPQR = S∑ ���M� − ���M���T
�
 U  ( 19 ) 

The results are shown in Table1. 
 

(a) (b) 

Figure 1. a) Regular node distribution, b) Irregular node distribution. 

 

Table 1. Root mean square error (RMSE) in approximating V�K, W� = KX'KY'WY 
using 324 nodes with varying radius of nodal influence domain, R. 

Approximation 
method 

Regular node distribution Irregular node distribution 

R=2.0 R=1.5 R=0.8 R=2.0 R=1.5 R=0.8 

MLS, linear BF 0.0344 0.0272 0.0098 0.0361 0.0281 0.0118 

MLS, quadratic BF 0.0081 0.0058 Singular M 0.0107 0.0080 Singular M 

MMLS, / = 0.1 0.0109 0.0106 0.0092 0.0131 0.0125 0.0113 

MMLS, / = 0.01 0.0083 0.0064 0.0064 0.0109 0.0085 0.0089 

MMLS, / = 0.001 0.0081 0.0059 0.0035 0.0107 0.0080 0.0053 

MMLS, / = 0.0001 0.0081 0.0058 0.0029 0.0107 0.0080 0.0046 

 



 
  
Figure 2. Approximated function by modified MLS (µ=0.1, R=0.8) using a regular distribution of 324 

nodes.  

 
From the results, it can be seen that as the nodal influence domain radius 

is gradually decreased, the classic MLS with quadratic basis fails due to singular 
moment matrix whereas the modified MLS with quadratic basis is stable. The 
approximation accuracy of MMLS is found to be better than that of classical MLS 
with linear basis function. Moreover, it is also evident that if the value of µ is 
decreased, the MMLS accuracy approaches the accuracy of classical MLS with 
quadratic basis function.     

3.2 Applications in Biomechanics 

In brain biomechanics, for computing soft tissue deformation considering 
large deformation and large strain, Miller et al. [14] have developed an efficient 
finite element algorithm using total Lagrangian (TL) formulation and explicit time 
integration scheme. The algorithm is capable of handling both geometric and ma-
terial nonlinearities. The adoption of TL formulation allows pre-computation of all 
derivatives with respect to spatial coordinates and the explicit time integration 
based on the central difference method eliminates the necessity for iterations dur-
ing each time-step. These features resulted in significant reduction in the number 
of mathematical operations and constituted the base for real-time simulations. 
Several applications were developed in both surgical simulation and neuroimage 
registration based on this total Lagrangian explicit dynamics framework [15-19]. 
Motivated by the prospect of meshless method, Horton et al. [20] developed the 
Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithm based on the 
earlier work of Miller et al. [14]. MTLED is based on the Galerkin weak form and 
uses a regular background grid for integration. 



The modified MLS shape functions were incorporated in the MTLED al-
gorithm. For easy imposition of the essential boundary conditions, a regularized 
weight function [21] was used which possesses almost interpolating properties, as 
shown in Fig 3.  

 

 
(a) (b) 

Figure 3. Classic MLS and Modified MLS (µ = 0.01) with regularized weight function compari-

son, 12 nodes in 1-D, influence domain radius R = 3; a) regular, b) irregular nodal distributions. 
 

Next, two cases of biomechanics applications, an extension of a soft tis-
sue sample and craniotomy induced brain deformation are simulated using the 
meshless method which incorporates the MMLS with regularized weight func-
tions. The results obtained by the meshless method are compared with those ob-
tained using the commercial finite element software ABAQUS.  

 3.2.1 Extension of Soft Tissue Sample 

For the meshless computation of soft tissue extension, a 2D geometry 
(10cm x 4cm) was created and the domain and boundary were discretised using 57 
nodes. To ensure integration accuracy, a regular background grid was used con-
sisting of 1000 integration cells with one integration point per cell. For each node, 
the radius of the influence domain was constant (R = 1.4). Loading in terms of 
displacement (3cm) was applied to the nodes on the right hand side boundary and 
the left boundary nodes were fixed. Explicit integration was performed using the 
central difference method, with mass proportional damping added (dynamic relax-
ation) to control the oscillations in order to reach the steady state solution [17, 22]. 



For simplicity, following [16, 17], the hyper-elastic Neo-Hookean material 
model was chosen in this numerical experiment to capture the behaviour of soft 
tissues undergoing large deformation. For the finite element analysis in ABAQUS, 
identical constitutive material laws, loading and boundary conditions were used; 
the steady state solution was obtained using the static solver with the default con-
figuration. The simulation results and numerical details are presented in Fig.4 and 
Table 2.   

a)  

b)  
Figure 4. Differences of the computed deformation field over the whole problem domain, a) be-

tween classic MLS (linear basis) and ABAQUS; b) between modified MLS and ABAQUS. 
 

Table 2. Numerical details of comparison for the cases presented in Figure 4. 

Case Nodes Elements 
(ABAQUS) 

Integration 
points 

(Meshless) 

Average 
difference 

(mm) 

Maximum 
difference 

(mm) 

a) Classical MLS  57 84 1000 0.14996 0.73014 

b) MMLS (µ =10-10)  57 84 1000 0.10193 0.48192 



 
For the given nodal influence domain radius, the classical MLS with quadratic 

basis failed due to the singularity of moment matrix. The differences in computed 
deformation fields over the whole problem domain are shown in Fig.4. The results 
in Table 2 shows that the maximum and average difference in displacements be-
tween MMLS and ABAQUS are lower compared to those between classic MLS 
with linear basis and ABAQUS.  

 

 3.3.3 Simulation of Brain Deformation in 2D  

In order to simulate brain deformation, based on experimental data [23] and 
previous modelling experience [18, 24], the Young’s modulus for the brain 
parenchyma and the tumour was set to 3000 Pa and 6000 Pa respectively. Because 
of the fact that the brain tissue is almost incompressible [25], according to [24]  a 
Poisson’s ratio of 0.49 was assigned for both parenchyma and tumour. The 
ventricles are modelled as a cavity as the cerebrospinal fluid can freely move in 
and out of them. A variable load in terms of displacement was enforced on the 
nodes of the brain surface exposed by craniotomy. The interaction between skull 
and brain was modelled as finite sliding, frictionless contact and the skull was 
assumed to be rigid as it is orders of magnitude stiffer than the brain tissue. The 
brain model was discretised with 707 nodes, and for the meshless method 4988 
integration points were created from a triangular background grid with four 
integration points per cell. A constant influence domain (R=8) and same weights 
for the additional constraints (µ =10-7) were used in the meshless computation. 
Higher order plain strain elements with hybrid formulation were used in 
ABAQUS to handle the incompressibility of the soft tissues. The constitutive 
material laws, loading and boundary conditions were identical in both meshless 
and ABAQUS computations. The differences of the computed deformation field 
between classical MLS and modified MLS in comparison with ABAQUS are 
shown in Fig.5. Numerical details of the comparison are presented in Table 3. 

   
 



 
(a) 



 
(b) 

Figure 5. Differences of the computed deformation field in the brain a) between classic MLS (line-

ar basis) and ABAQUS; b) between modified MLS and ABAQUS. 

 

Table 3. Numerical details of comparison for the cases presented in Figure 5. 

Case Nodes Elements 
(ABAQUS) 

Integration 
points 

(Meshless) 

Average 
difference 

(mm) 

Maximum 
difference 

(mm) 

a) Classical MLS  707 1247 4988 0.14509 0.67531 

b) MMLS (µ =10-7)  707 1247 4988 0.12332 0.50729 

 
In this experiment, for the given support domain radius, the classic MLS with 

quadratic basis also failed due to the singularity of moment matrix, whereas the 
modified MLS with quadratic basis had no problem in computing the shape func-
tions. As shown in Table 3, the maximum and average differences between 
MMLS and ABAQUS are found to be lower compared to those between classic 
MLS with linear basis and ABAQUS.  



4 Conclusions 

In this paper we assessed the use of a modified MLS approximation with a 
meshless method for predicting soft tissue deformation. The approximation capa-
bility of the MMLS is evaluated against the classical MLS with linear and quad-
ratic basis functions for a bivariate function. The results show that the MMLS ap-
proximation with a quadratic basis is stable with the same support domain size as 
the classical MLS using linear basis functions. Moreover, when the value of the 
weight µ, associated with the additional constraints, is decreased, the accuracy of 
MMLS approaches the accuracy of classical MLS with quadratic basis functions. 

 
A meshless method using the MMLS shape functions was used for the simula-

tion of extension of a soft tissue sample and craniotomy induced brain defor-
mation. A regularized weight function was used in these examples to enforce the 
essential boundary conditions. The results were compared with results obtained 
using the commercial finite element software ABAQUS. In both cases, the results 
indicate that the MMLS shape functions, having a quadratic basis, provide better 
accuracy with the same support domain size, compared to classical MLS with lin-
ear basis. With the same support domain size, classical MLS with quadratic basis 
simply fails due to singular moment matrices.  
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