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a b s t r a c t

This study proposes a computationally efficient algorithm for determining which pairs of points among many
predetermined pairs in three dimensions will maintain straight line visibility between one another in the
presence of an arbitrary surface mesh of triangles. This is carried out in the context of meshless numerical
methods with the goal of implementing near-real-time discontinuity propagation simulation. A brief overview
is given of existing discontinuity modelling techniques for meshless methods. Such techniques necessitate
determination of which key pairs of points (nodes and quadrature points) lack straight line visibility due to the
discontinuity, which is proposed to be modelled with a surface mesh of triangles. The efficiency of this
algorithm is achieved by allocating all quadrature points and surface mesh triangles to the cells of an overlayed
three-dimensional grid in order to rapidly identify for each triangle an approximately minimal set of
quadrature points whose nodal connectivities may be interrupted due to the presence of the triangle, hence
eliminating most redundant visibility checking computations. Triangles are automatically split such that any
size of overlayed cubic grid cells can be employed, and the parameters governing triangle splitting and binning
have been examined experimentally in order to optimise the visibility algorithm.

Crown Copyright & 2015 Published by Elsevier Ltd. All rights reserved.

1. Introduction

This work seeks to make an addition to meshless numerical
methods as applied to emerging fields such as computational biome-
chanics, in which one of the present challenges is near-real-time
simulation of soft tissue cutting. In applications of biomechanical
simulation, meshless methods have many practical advantages over
FEM. Presently, the most important is that accurate model generation
of patient-specific organ geometry from pre-operational images can
be automated, while FEM models comprised of workable elements
require days of adjustment by an analyst [1,2]. Removal of this
workflow bottleneck makes meshless methods an ideal candidate
for implementation in near-real-time intra-operational surgical simu-
lations of tissue deformation, which for many procedures demands
simulation of cutting.

Attempts to model discontinuities within meshless simulations
have mostly been focused on cracks and their propagation. Rabczuk
et al. [3,4] use nodes in the crack path to superimpose a discontin-
uous enrichment function to the nearby displacement field. Use of
these so-called “cracked particles” applies only to finely cracking
solids and not to deforming soft bodies with arbitrary discontinuities,
and the existence of discontinuities only at particular particles limits

the accuracy with which they can be modelled. Level-set functions
proposed by Osher and Sethian [5] and applied to FEM crack growth
modelling by Stolarska et al. [6], have also been applied to the
problem of using meshless methods to model surgical cutting of brain
tissue in two and three dimensions by Jin et al. [7]. In two dimensions,
discontinuities are represented by a series of straight line segments,
each of which uses the vector between the segment's beginning and
end to define a level-set function with values of opposing signs on
opposing sides of the segment, and another such vector and level-set
function perpendicular to the end of the segment. This allows a natural
division of the space into four subdomains. By calculating the two
function values for each of any two points in space, it can be
immediately determined whether the line segment under considera-
tion will block straight line visibility between the points, allowing
appropriate adjustment of support domains. This idea can be extended
to three dimensions [8], and can also make use of level-set functions
whose zeroes are not straight line segments or planes, allowing more
complex discontinuities without additional segments, provided that an
appropriate closed-form level-set function can be found. A potential
drawback to this method is that it requires intricate piecewise function
definitions to define jagged or curved shapes, which may entail speed
and accuracy reductions. It is also difficult to update the level-sets for
intersecting discontinuities or sharp changes in the direction of the cut.

Krysl and Belytschko [3,9] have previously proposed and
implemented meshes of triangular elements for modelling of
arbitrary crack growth in conjunction with the visibility criterion.
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At a time step in which crack growth occurs, only the new portion
of the discontinuity needs to be considered to alter the necessary
support domains. For each new triangle in the propagating crack,
its bounding box, inflated by the simulation's largest support size,
is used as a maximum region in which shape functions could
possibly need to be altered due to that discrete portion of the
discontinuity. When a set of new triangles is added to extend the
crack, for each quadrature point enclosed within the union of all
the maximum regions, the rays between it and each associated
node are checked for intersection with the new triangles. If the ray
intersects the triangle, the “visibility criterion” between the two
points of interest fails, and the node is removed from the
quadrature point's list of neighbours which influence the local
shape functions.

An efficient algorithm for finding which quadrature points are
contained within a given maximum region is not proposed in their
paper. For a particular crack growth time step there may be many such
regions requiring identification of contained quadrature points, and it
may be too slow to retrieve the appropriate points from lists of global
quadrature point coordinates to permit real-time growth simulation.
In furthering the strategy put forward by their paper, it is worth noting
that it is not necessary to check all the quadrature points found in the
union of the maximum regions against every contained triangle, but
rather just the ones inside each individual inflated bounding box
against its associated triangle. Additionally, an inflated bounding box
will always include unnecessary quadrature points near the corners,
which can be mostly eliminated by instead using an appropriately
inflated bounding sphere.

In many applications, surface meshes of triangles may be the
most desirable method for representing either static or propagating
discontinuities. An analyst may easily manually place the vertices of a
set of triangles interconnected such that they closely replicate a real
discontinuity. Accurate automation of surface mesh creation from an
existing three dimensional image featuring a clear discontinuity is
also a simple task compared to that of automatically meshing a
volume. For propagating discontinuities, addition of triangles to the
outer edges of the surface is a natural operation which does not
require adjustment to the existing discontinuity.

In Sections 2 and 3, this paper outlines an algorithm for efficiently
conducting the visibility checks required to model meshless methods
discontinuities with a surface mesh of triangles. Section 4 presents
experimental findings pertaining to execution times which justify its

use in near-real-time applications such as surgical simulation, even
for meshes composed of very many triangles.

2. Algorithm overview

Quadrature points which are more distant than the simula-
tion's largest nodal support size from all points on a triangular
discontinuity portion cannot have visibility blocked from the
nodes that influence their local shape functions, and so they do
not need to have their neighbouring nodes checked for straight
line visibility. By cycling through every triangle comprising the
surface mesh, and identifying as small as possible a set of
quadrature points which contains all of those sufficiently nearby
to warrant nodal visibility checks, the number of visibility criterion
checks required to appropriately adjust the nodal support domains
due to the discontinuity will be minimised.

As a simple and computationally efficient way of enclosing all
of the quadrature points within the maximum support size
distance from all points of a triangle, bounding spheres are
proposed for each triangle. The surface of each sphere is such that
all points are at least the maximum support size away from all
points on the triangle which it surrounds. It is not viable to find
which of the simulation quadrature points lie within the sphere by
checking all of their Euclidian distances from its centre. Rather,
inspiration is drawn from the field of computational contact
mechanics, in which the “bucket search” algorithm (proposed by
Benson and Hallquist [10]) is commonly used to efficiently detect
the occurrence of contact between two disjoint bodies in a
simulation. The adaptation of this algorithm as applied to the
present problem begins with superposition of a three-dimensional
grid of cubic cells over the physical coordinates. Each surface mesh
triangle and each quadrature point is allocated (or “binned”) into a
unique cell, with triangles being split until they each fit into a
unique cell within certain overhang tolerances. With each triangle
approximately confined to a single cubic cell, the bounding sphere
can be approximated by a “sphere of cubes” consisting of a set of
grid cells, centred upon the cell containing the triangle. This
scenario is demonstrated in Fig. 1.

The set of cells required to fully include a bounding sphere of a
particular radius given a particular cell length can be precom-
puted, such that all the quadrature points already allocated to that

Fig. 1. A sphere of cubes viewed along the cell grid x-axis – with visible overestimations, the sphere of cubes includes the entire idealised bounding sphere of the triangle of
concern, which in turn includes all quadrature points whose nodes may fail the visibility criterion due to the triangle. The idealised sphere is inflated slightly to allow for the
0.45 cell length maximum possible overhang of the triangle vertices into cells adjacent to the triangle's allocation cell.
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set of cells can be rapidly identified. For the sphere of cubes to
fully contain the sphere in which quadrature points must be
checked, its outermost cubes will inevitably contain a fractionally
small amount of superfluous quadrature points. The complete
algorithm is summarised below.

1. Load the quadrature point locations, node locations, and lists
of nodes local to each quadrature point.

2. Superimpose cubic grid cells of a fixed side length over the
existing physical coordinates.

3. Allocate each quadrature point to the grid cell in which it
lies, forming cubic clusters of points.

4. Split all surface mesh triangles to sizes small enough to allow
allocation to unique grid cells, according to a criterion allowing
a certain amount of triangle overhang, which is detailed below.

5. Loop through every triangle in the resulting surface mesh.
5.1 Find the smallest sphere of cubes which contains all quad-

rature points close enough to the current triangle that some
of their nodes could be blocked from straight line visibility.
This process is detailed below.

5.2 Loop through all of the quadrature points located within the
sphere of cubes.

5.2.1 Loop through all nodes associated with the current quadrature
point. Perform a straight line visibility check between the
current quadrature point and current node in the presence of
the current triangle. If visibility is blocked, remove the node
from the list of nodes affecting that quadrature point.

The overhang is quantified for each triangle vertex as the
maximum distance in a Cartesian direction that it extends beyond
the edges of the cell in which its triangle's geometric centre lies.
The time-optimal permissible overhang depends upon the parti-
cular splitting algorithm used, and for the algorithm proposed in
Section 3, the value is experimentally found to be approximately
0.45 cell lengths. A triangle is allocated to the cell containing its
geometric centre only when all of its vertices are within this
overhang, or else it is split further.

To find the optimal sphere of cubes for a particular triangle, the
corresponding bounding sphere is first identified. Its centre is that of
the cell to which the triangle has been allocated, and its radius
expressed in cell lengths is the maximum support size in cell lengths,
plus 0.5 (because the triangle does not exist exactly at
the centre of its allocated cell), plus the maximum overhang in
cell lengths (because some of the triangle's vertices may extend
outside of the cell by up to this amount). Since detection of which
cells lie fully or partially in the original sphere is slow for large radii, a
precomputed list has been generated, which maps spheres of various
radii to the corresponding sets of cubes. Necessary cubes for radius
increments of 0.1 cell lengths were precomputed, so that the radius of
the sphere under consideration must be rounded up only very slightly,
minimising the possible associated overestimations. The appropriate
cubes for each radius are simply those which have at least one vertex,
face centre or edge centre within the sphere, as this detects all cubic
cells which are entirely or partially within the sphere. The time
performance of the algorithm depends strongly upon the size of the
cubic cells relative to the mesh triangles, since this controls the
amount of necessary triangle splitting and the number of superfluous
quadrature points captured by the outer layer of the sphere of cubes.
An analysis of the optimal cell size due to these two competing
effects is performed in Section 4.

3. Splitting triangles

Since most triangles representing a given discontinuity surface
mesh will generally extend across multiple binning cells, it is

necessary to split them into smaller triangles of approximately the
same size as the cells. The algorithm for splitting mesh triangles
should rapidly produce low aspect ratio triangles and maintain
consistency of the surface mesh. A consistent surface mesh is here
defined as one in which all triangle edges connected to neighbour-
ing triangles are spanned exactly by the neighbouring triangle's
edge, rather than being divided. That is, no triangle's vertex can
divide the edge of a neighbouring triangle. This preserves the
ability to define the mesh as an index array used to retrieve
triplets from a set of vertex coordinates, as well as the ability to
treat the surface as a finite element mesh, which may be desirable
should analysts wish to track the motion of the discontinuity.
Below is a worded description of the proposed splitting algorithm,
which operates on triangles in a mesh on an individual basis. This
is accompanied by a visual example of the steps in Fig. 2. As an
example of the splitting algorithm's application in preserving
mesh consistency, Fig. 3 presents a simple surface mesh of
triangles which undergoes subdivision.

1. Divide the three sides of the initial triangle into equally sized
segments approximately equal to a given goal length.

2. Starting at the vertex common to the longest and second
longest sides of the original triangle and progressing towards
the shortest side, add consecutive adjacent triangles reaching
between the two longest sides until the segments of the second
longest side have all been used.

3. \(Conditional) If any segments connecting the longest and
second longest sides of the original triangle are longer than
the goal length, two consecutive triangles generated in Step
2 are merged into a quadrilateral which is then split lengthwise
into a strip of low aspect ratio triangles by using the goal length
to place new triangle vertices along the long quadrilateral
sides.

4. (Conditional) If the longest and second longest sides of the
original triangle were not divided into the same number of
segments, the final remaining triangular subsection of the original
triangle is filled by calling the algorithm again. The recursions of
the algorithm end when a triangle is reached whose sides are all
sufficiently small compared to the goal length that they escape
division, so that this last triangle is not split.

The key to maintaining a consistent mesh with a splitting
scheme that operates only on unique triangles is the identical
splitting of shared edges. The segment goal length is a convenient
way to achieve this given the need to allocate triangles to unique
grid cells of known side lengths. For initial mesh triangles of low
aspect ratio which encounter Step 4, triangles with very high
aspect ratio can occasionally be produced using this method. There
are many possible remedies for applications requiring mainte-
nance of only low aspect ratio triangles in the mesh. For example,
triangles in the potential trouble region can be checked against a
chosen upper threshold aspect ratio and if necessary can be
further split by an alternative, subordinate splitting scheme
selected to reduce the local aspect ratios while still maintaining
mesh consistency. If further splitting alone is insufficient, the
skinny triangles could be merged with adjacent ones and then
split to maintain mesh consistency.

In practice, even for goal lengths shorter than the cell length,
the final surface mesh may still contain triangles which do not
satisfy the cell allocation criterion. We have found experimentally
that maximum allocation speed is obtained when the maximum
permissible overhang of each triangle vertex from a cell in any
Cartesian direction is roughly 45% of the cell length. If there are
triangles in the split mesh which do not meet this criterion, a local
split of these triangles and their neighbours can be performed.
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4. Results

In addition to the maximum overhang for triangle grid cell
allocation, the execution time of the algorithm depends upon the
following parameters:

1. The size of the grid cells relative to the sizes of the initial mesh
triangles.

2. The number of triangles in the initial mesh.
3. The quadrature point density near the discontinuity.
4. The maximum support size.
5. The number of nearest neighbour nodes associated with each

quadrature point.

The former two parameters are experimentally optimised
while the quadrature point density is roughly homogeneous and
the latter two parameters are kept constant, with values appro-
priate to a practical simulation. The size of grid cells is normalised
by the mean area of the initial triangles in the mesh, and termed
the length-to-area ratio or LAR. For each of a set of test meshes
with a broad range of initial triangle counts, the time to complete
the algorithm is recorded for different cell lengths. Each mesh has
a LAR value which minimises the algorithm time and it is found
that this value depends upon the mesh's initial triangle count
according to a power law relationship (Fig. 4). This empirically

determined relationship has a strong fit and allows the ideal cell
size to be predicted based upon the number of triangles in the
initial mesh before the algorithm begins. The meshes are all
identical in shape, size and position to the one shown in Fig. 3.
To generate meshes with more triangular elements, the mesh
shown is pre-split with consecutively shorter goal lengths. The
problem geometry used for tests consists of 8000 quadrature
points and 4000 nodes randomly distributed in a cube of side
length two. Each quadrature point has its nearest eight nodes
listed as those originally influencing the shape functions at that
point. This results in a roughly constant density of quadrature
points and a maximum support size of 0.2864 units. The mesh is
small enough and positioned near enough to the centre of the
cubic problem geometry that no spheres of cubes extend outside
of it. All of the spheres of cubes therefore contain a similar
quantity of quadrature points.

There is an explosion in algorithm execution time when LAR is
lowered below optimal because a great deal of mesh triangles will
be produced, through which the algorithm must loop. Above
optimal, there is only a gentle overall increase in execution time
with slight oscillations – the overall trend is due to the inclusion of
more superfluous quadrature points at the sphere surface as the
cell size grows, while the oscillations are due to the changes in
triangle allocations throughout the mesh. Therefore, an interpola-
tive function which slightly overestimates the observed data is

Fig. 3. The splitting algorithm maintaining consistency of a mesh of triangles.

Step 1 

Step 2 

Step 3 

Step 4 

Fig. 2. A step-wise example of splitting a single triangle with the proposed algorithm.

N. Holgate et al. / Engineering Analysis with Boundary Elements 58 (2015) 1–64



desirable, since a slightly overestimated LAR can only subtly
increase the execution time from optimal, while a slightly under-
estimated LAR may reside below the explosion threshold and risk
a sudden large increase in execution time. The algorithm time
always increases with initial mesh triangle count, and so the
optimal value for the initial mesh triangle count is the minimum
number of triangles that adequately represent the discontinuity
under consideration.

To demonstrate the efficacy of the algorithm, its times to
complete all necessary visibility checks are compared to those of
both a brute force method and the more refined method of Krysl
and Belytschko [3,9]. The brute force method identifies candidate
quadrature points by taking the bounding box of the entire surface
mesh under analysis and inflating it by the maximum support size.
Many discontinuities which do not fill this region well will have
visibility checks performed with a large number of unnecessary
quadrature points far from the mesh. Identifying quadrature
points in inflated bounding boxes around each individual triangle,
as suggested by Krysl and Belytschko, does reduce superfluous
visibility checks. However, for large triangle counts, the process of
identifying these candidate points around every triangle is slow
without making use of a binning system, at which stage the
method essentially becomes the sphere of cubes algorithm, but
it would possess the relative hindrance of featuring unnecessary
candidates near the edges and corners of each box.

The discontinuity used for this demonstration is again that
shown in Fig. 3, which has a roughly cubic inflated bounding box

which is well spatially filled by its mesh. As such, this represents a
best-case scenario for the brute force method, since the number of
superfluous quadrature points within the bounding box is mini-
mal. The number of initial triangles is increased by pre-splitting
the mesh, so that its shape and bounding box are not changed. In
this scenario, the algorithm performs visibility checks in only
about half the time of the brute force method, as shown in Fig. 5,
while the method of Krysl and Belytschko exhibits intermediate
performance.

When the experiment is repeated for meshes which are such
that they do not spatially fill their bounding box, the factor of time
reduction between the brute force and other methods becomes
much higher, while the relative advantage of the binning algo-
rithm over the method of Krysl and Belytschko is unaffected by the
shape of the discontinuity. The implementations of the present
algorithm and the other methods have been done using MATLAB.
The results shown are indicative only of the relative advantage of
employing the algorithm over the other approaches; the absolute
times would be considerably less for a streamlined and paralle-
lised implementation.

Both the mesh splitting algorithm and the visibility check are
well suited for parallel implementation on a Graphics Processing
Unit (GPU). The splitting algorithm handles each triangle defining
the cut independently, and similarly, the visibility criterion is
checked for each triangle in the split mesh independently. The
computations can therefore be performed in parallel by a number of
threads equal to the number of triangles that need to be handled,

Fig. 4. The size of grid cells that leads to minimum execution time can be found for a chosen distribution of nodes and integration points based on the number of triangles in
the mesh and their mean area.

Fig. 5. Execution times for the binning algorithm and other visibility checking methods for various initial surface mesh triangle counts.
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similar to the algorithms performing finite element computations
presented in [11].

5. Conclusion

This paper describes an efficient algorithm for visibility checking
when discontinuities are represented by triangular surface meshes.
The main advantage of the present algorithm is that its speed is
independent of the shape of the discontinuity, since it treats each
triangle in the mesh individually and locally. The second advantage is
that it can handle meshes of many triangles with minimal increase in
execution time because binning avoids the need to conduct a search
through the global list of quadrature points for every triangle. A
dedicated implementation of the algorithm would help to facilitate
near-real-time simulation of cutting in which the discontinuities
were flexibly and robustly modelled as surface meshes of triangular
elements, even for meshes which are highly accurate models of their
represented discontinuities and which therefore consist of very many
triangles.
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