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SUMMARY 
 
This paper assesses the interpolation capabilities of the Modified Moving Least Squares (MMLS) 
shape functions. The proposed meshless method based on MMLS is used for a brain deformation 
simulation in 2D. The results are compared with the commercial finite element software ABAQUS. 
The simulation results demonstrate the superior performance of the MMLS over classical MLS 
with linear basis functions in terms of accuracy of the solution. 
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1   INTRODUCTION 
 
 Modelling the brain for neurosurgical simulation and neuroimage registration for image-
guided surgery is a non-linear problem of continuum mechanics which involves large deformations 
and large strains with geometric and material non-linearities. In such cases, finite element method 
can fail due to element distortion. In this context, meshless methods [1] provide a better alternative 
where predefined mesh is not necessary. In meshless method, shape functions are important in 
order to approximate the unknown field functions to find the approximate solution to a problem 
using some arbitrarily distributed field nodes. Among other shape functions, Moving Least Squares 
(MLS) are preferred because the created approximation field created by this method is more 
smooth, continuous and consistent.    
 
 However, in order to maintain the non-singularity of the moment matrix, the classical MLS 
places strict requirements on the nodal distributions inside the support domain. Due to such 
limitations, the practical use of higher order polynomial basis in classical MLS was not so trivial 
for randomly distributed nodes, although they possess the capability for more accurate 
approximation of complex deformation fields. In this context, a modified moving least squares 
(MMLS) approximation has been recently developed by ISML [2,3]. This paper assesses the 
interpolation capabilities of the MMLS. The proposed meshless method based on MMLS is used 
for a brain deformation simulation in 2D. The results are compared with the commercial finite 
element software ABAQUS.  
 
1.1 Modified Moving Least Squares (MMLS) method 
 
 The procedure for constructing classical MLS shape function starts with the 
approximation of a function u(x), denoted by uh(x), which is defined by a combination of 
basis functions [4]. After minimization and solving the resulting systems of equations, the 
classical MLS approximation is obtained as:  

 
 

( 1 ) 



 As can be seen from equation (1), the classical MLS shape functions construction is 
heavily depended on the non-singularity of the moment matrix defined by . The necessary 
conditions for the moment matrix to be non-singular depend on the types of basis functions used, 
and for higher order approximation, it demands more nodes to be put inside the support domain 
which results in more computational cost. Although the higher order polynomial basis has better 
approximation and convergence properties, these restrictions prevent the practical use of such 
functions.  
  
 In this context, Joldes et al. [2] developed a modified MLS with second order polynomial 
basis. Some vectors of positive weights for the additional constraints were added to error 
functional. In this approach, the modified approximant in obtained as: 

 
 

( 2 ) 

Where H is a matrix with all elements zeros except the last three diagonal entries, which are equal 
to μ 

 
 

( 3 ) 

Using this technique, it can be shown that the nodal distributions which are admissible for the 
classical MLS with linear basis functions are also admissible for the MMLS which uses higher 
order quadratic basis.  
 
2  METHODOLOGY 
 
 The approximation capability of the MMLS shape functions is assessed by comparing it 
with the classical MLS shape functions with linear and quadratic basis. In order to define all shape 
functions, a quartic spline weight function with circular domain was used. In this example, the 
same weights for all the additional constraints (µx

2=µxy=µy
2=µ) and a constant radius of influence 

(R) for all nodes were used. A 2D rectangular problem domain was defined and the geometry was 
represented using 324 nodes in both regular and irregular manner. 
 

The following function was used for testing the approximation accuracy in 2D for different 
values of  and R. The function was chosen to present a variety of behaviour in a surface.  

  ( 4 ) 

The approximation accuracy was determined using the root mean square error evaluated 
using a regular distribution of N=81*81 points: 

 
 

(5) 

 
The results are shown in Fig.1 and Table 1. 
 
 Next, a craniotomy induced brain deformation is simulated using the Meshless Total 
Lagrangian Explicit Dynamics (MTLED) algorithm [5,6]. The MMLS shape functions were 
integrated in the algorithm. A regularized weight function was used to impose the essential 
boundary conditions [7]. The Young’s modulus for the brain parenchyma and the tumour was set to 
3000 Pa and 6000 Pa respectively and a Poisson’s ratio of 0.49 was assigned for both parenchyma 
and tumour due to the incompressibility of the brain tissue. The interaction between skull and brain 
was modelled as finite sliding, frictionless contact. The skull was assumed to be rigid and the 
ventricles are modelled as a cavity. A variable load in terms of displacement was enforced on the 
nodes of the brain surface. In the meshless computation, the brain model was discretised with 707 
nodes, and 4988 integration points were created from a triangular background grid with four 
integration points per cell. A constant influence domain (R=8) and same weights for the additional 



constraints (µ =10-7) were used. The constitutive material laws, loading and boundary conditions 
were identical in both meshless and ABAQUS computations. Higher order plain strain elements 
with hybrid formulation were used in ABAQUS to handle the incompressibility of the soft tissues. 
The results are shown in Fig.2 and Table 2.  
 
3  RESULTS AND CONCLUSIONS 
 
3.2 MMLS Approximation capability in 2D 

 
From the results shown in Table 1, it can be seen that as the nodal influence domain radius 

is decreased, the classic MLS with quadratic basis fails due to singular moment matrix. However, 
the MMLS with quadratic basis is stable. The approximation accuracy of MMLS is found to be 
better than that of classical MLS with linear basis function. Moreover, it is also noticeable that if 
the value of µ is decreased, the MMLS accuracy approaches the accuracy of classical MLS with 
quadratic basis function.     
 

 Table 1. Root mean square error (RMSE) in approximating  
using 324 nodes with varying radius of nodal influence domain, R. 

Approximation method 
Regular node distribution Irregular node distribution 

R=2.0 R=1.5 R=0.8 R=2.0 R=1.5 R=0.8 

MLS, linear BF 0.0817 0.0636 0.0218 0.0861 0.0651 0.0272 

MLS, quadratic BF 0.0146 0.0100 Singular M 0.0179 0.0132 Singular M 

MMLS,  0.0220 0.0223 0.0203 0.0246 0.0125 0.0261 

MMLS,  0.0153 0.0114 0.0139 0.0186 0.0145 0.0209 

MMLS,  0.0147 0.0101 0.0072 0.0180 0.0133 0.0126 

MMLS,  0.0146 0.0100 0.0059 0.0179 0.0132 0.0099 

 

 
Figure 1. Approximated function by modified MLS (µ=0.1, R=0.8) using a regular distribution of 

324 nodes.  
 
 
3.2 Simulation of Brain Deformation in 2D 
 
 Table 2. Numerical details of comparison for the cases presented in Figure 5. 

Case Nodes Elements 
(ABAQUS) 

Integration 
points 

(Meshless) 

Average 
difference 

(mm) 

Maximum 
difference 

(mm) 

a) Classical MLS  707 1247 4988 0.14509 0.67531 

b) MMLS (µ =10-7)  707 1247 4988 0.12332 0.50729 



 
Figure 2. Differences of the computed deformation field in the brain a) between classic MLS (linear 
basis) and ABAQUS; b) between modified MLS and ABAQUS. 
 
 From the brain simulation results in Table 2, it can be seen that the maximum and average 
differences between MMLS and ABAQUS are found to be lower compared to those between 
classic MLS with linear basis and ABAQUS. Furthermore, for the given support domain radius, the 
classic MLS with quadratic basis failed due to the singularity of moment matrix. Therefore, it is 
apparent that the MMLS with quadratic basis, with the same support domain size, is stable and 
deliver better accuracy compared to the classical MLS with linear basis.     
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