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This paper presents an effective three-dimensional (3D) nonlinear explicit dynamic meshfree algorithm for the
simulation of soft tissue mechanical responses. In the algorithm soft tissues are considered to be hyperelastic
and nearly incompressible materials. The algorithm is based on the element-free Galerkin (EFG) method using
total Lagrangian formulation and moving least square (MLS) approximation. This approximation uses a
relatively large number of nodes for shape functions creation, which can significantly delay mesh distortion in
large deformation computations. Essential boundary conditions are imposed exactly by coupling MLS shape
functions with a finite element (FE) interpolation in the close region of essential boundary. Although volumetric
integration is not exact, the large support domains of the MLS shape functions alleviate some of the key
weaknesses of FE methods such as hour-glassing and volumetric locking. Explicit integration is performed in
time domain, using a recently proposed method to calculate the critical time step. Verification against the
results obtained using the established nonlinear finite element procedures available in the ABAQUS code
confirms the accuracy of the presented meshfree algorithm. Application of the algorithm in modeling of the
brain indentation indicates its ability to facilitate robust and accurate prediction of the organ responses
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subjected to large localized deformations consistent with the loading due to surgery.
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1. Introduction

Surgical simulators present a safe and potentially effective way
for surgical training, and can also be used in robot and computer
assisted surgery for operation planning. Robust, fast and accurate
numerical algorithms for predicting soft tissue deformations have
been identified as the key technology for the development of
practical surgical simulators [1]. In the context of computational
biomechanics, finite element (FE) algorithms accounting for both
geometric (i.e. large deformations and strains) and material non-
linearities have been developed [2-4]. Although the literature
indicates that the models implemented using FE algorithms can
facilitate accurate prediction of the organ responses during sur-
gery [5-7], they are still not widely adopted in surgical practice,
mainly because of the difficulties in handling very large deforma-
tions and discontinuities due to surgical cutting.

With the latest developments, meshfree/meshless methods [8-10]
have been suggested as a possible alternative to solve the above
difficulties. A key feature of meshfree methods is that a predefined
mesh is not necessary for field variable approximation/interpolation.
Various meshfree algorithms have shown very good performance in
handling mesh distortion for nonlinear problems [11-19]. However,
there are still some open topics for nonlinear explicit dynamic analysis
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using meshfree methods, such as handling essential boundary condi-
tions effectively, conducting numerical integration, and stable time
step calculation. For the above reasons, only a few published works
can be found on applying meshfree methods for nonlinear analysis of
soft tissue simulation [20-24]. This work expands the meshfree total
Lagrangian explicit dynamics (MTLED) algorithm presented in [20]
through the use of coupled MLS and FE shape functions to accurately
impose the essential boundary conditions, a more accurate volumetric
integration, and the use of a new stable time step estimation method
developed particularly for the explicit time integration in meshfree
methods. These numerical techniques have been proposed elsewhere,
and in this work we integrated them in a consistent verified meshfree
algorithm for soft tissue modeling.

In the next section we briefly introduce the formulations of
total Lagrangian explicit dynamics meshfree algorithm, and then
present three important implementation issues: numerical inte-
gration, treatment of essential boundary conditions and calculat-
ing stable time step. Verification results are presented next,
followed by the example of application in modeling of the body
organs (brain indentation), discussions and conclusions.

2. Meshfree total Lagrangian explicit dynamics algorithm
The presented algorithm is based on the meshfree EFG method

using the total Lagrangian formulation, where stresses and strains
are measured with respect to the original configuration allowing
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for pre-computing of most spatial derivatives before the time-
stepping procedure. The stress (second Piola-Kirchoff stress) and
strain (Green strain) measures used are appropriate for the
treatment of large deformations. Explicit time integration elim-
inates the need for solving large systems of equations during the
time-stepping procedure.

2.1. Moving least square approximation

Details of the MLS shape functions construction are available
in the literatures [25,26]. The discrete MLS approximation of a
function u(X), denoted by u"(X), is constructed by a combination of
monomials using n nodal parameters as follows:

WX = i PiX)ai(X) = PT(X)a(X) M

where m is the number of terms of monomials (polynomial basis),
p;i(X) are basis functions, X is the position of a material point in the
initial configuration, and a;(X) are the coefficients of the
approximation.

By introducing a weight function W(X—X;) and minimizing the
weighted L2 norm (JM5) as

n
J = ¥ WX-Xp' X X)-uX)P 2)
where n is the number of nodes within the support of X. Finally by
calculating the coefficients through the minimization, the MLS
approximation is obtained by

uh(X) = ,i HXu; = DX, 3)

where Us is the vector collecting the nodal parameters of the field
variables for all the nodes in the local support domain, and ¢;(X) is
the MLS shape function.

In this work, we create the MLS shape functions by using a linear
polynomial basis and quartic spline weight functions, defined as

1-6d"+8d°-3d" ford<1 5_ X=X

o=, 4)
0 for d>1 dwi (

WX-X) = {
where d,,; is the radius of the spherical influence domain of node X;.
We calculate d,; using the average distance between node
X; and its neighboring nodes, multiplied by a dilatation parameter.
This technique leads to high quality MLS shape functions even for
irregularly distributed field nodes.

2.2. Total Lagrangian explicit dynamics algorithm

After introducing MLS approximation into the weak form of
governing equations of solid mechanics using the total Lagrangian
formulation, the global system of discretized equations describing
the behavior of the analyzed continuum is the following:

MU — Fext _Fint _Fdamp (5)

where M is the mass matrix, U is the vector of nodal displacements
and F™ is the vector of internal nodal forces assembled as

. Nip N
F" = 3 (FiBl6S)Ix—x Wi (6)
I=1

where Njp is the total number of integration points (IP) distributed in
the problem domain, §S is the second Piola-Kirchoff stress vector at
time t, jF is the deformation gradient between the undeformed
configuration and the configuration at time t, W, is the weight
corresponding to integration point x,, °V is the initial volume of the
problem domain, and §By is the matrix of shape functions derivatives

in reference to the initial configuration in the following form:
$ox 0 0
0 ¢, O

0 0 ¢,
(t)BLO = 4)4/ (/),X 0 (7)

0 ¢, ¢y
¢, 0 oy

inwhich ¢, ¢, and ¢, are derivatives of shape functions with respect
to x, ¥y and z, respectively.

As the purpose of this work is to verify the algorithm rather than to
conduct a complete simulation of actual surgery, a simple Neo-
Hookean hyperelastic model is a logical choice. The Neo-Hookean
strain energy potential as used in ABAQUS is adopted in this
work [27]:

/Neo—Hooken :/%(7] _3)+’<2_0(]_1)2 (8)

where 4 is the initial shear modulus, ¢ is the initial bulk modulus, J is
the elastic volume ratio which equals to the determinant of deforma-
tion gradient, and I; =J~%/® tr(C) is the first deviatoric strain invar-
iant of the right Cauchy-Green deformation tensor C = F'F.

So the second Piola-Kirchoff stress in Eq. (6) is calculated as

b8 = pugJ %3 <6—%tr(C)C’l) +xoJJ—1)C! 9)

where § is the 3 x 3 identity matrix.
In Eq. (5) F**'is the vector of externally applied forces (volu-
metric forces, surface and nodal forces) assembled as

F = / ' ®f(x)b de+ /.<I),T(x)? dr (10)
Q2 JI

where b is the body force vector and 7 is the predefined surface
traction on the boundary. The damping force F*™ — cMU, where
c is the damping coefficient, introduces a mass proportional
damping which can be used to obtain the steady state solution,
as presented in the next subsection.

2.3. Dynamic relaxation solution algorithm

We introduce the damping force to dissipate the kinetic energy
when that the steady state of the deformed continuum needs to
be obtained, such damping does not have to be based on actual
phenomena related to e.g. material viscosity. To increase the con-
vergence speed towards the deformed state, we use the dynamic
relaxation (DR) technique detailed in [28-30] and solve the damped
equation of motion using the central difference method for integra-
tion in time domain. The resulting equation describing the iterations
in terms of displacements, derived from Eq. (5), is

Uk+1 =Uk +ﬂ(Uk7Uk_l)+aM71(FethFint) (]1)

In the above equation a=2h> /(2+ch) and p=(2-ch)/(2+ch),
where h is a fixed time increment and k indicates the kth time
increment. The iterative method defined by Eq. (11) is explicit as long
as the mass matrix is diagonal. Therefore, we use a lumped mass
matrix and a mass scaling algorithm that increases the convergence
speed of the method. The accuracy of the solution is evaluated using
a termination criterion which gives information about the absolute
displacement error [28]

U0 < U U <2 (12)
—

where U* is the solution,  is the spectral radius which approximates
the reduction in error, and 1 is the imposed accuracy. More details
about the adaptive computation of these parameters in order to
increase the convergence speed are given in [28].
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3. Numerical implementation
3.1. Numerical integration

Compared to finite element method (FEM), which has well defined
rules regarding numerical integration, accurate numerical integration
for meshfree methods is still an open topic. Meshfree shape functions
are generally not polynomials and are constructed using support
nodes located beyond the boundaries of integration cells, which makes
the numerical integration in meshfree methods much more challen-
ging [31]. For meshfree methods, Gaussian quadrature over a back-
ground mesh is typically used for numerical integration [9,20,31].
Some efforts have been made on the numerical integration issue of
meshfree methods, for example, the stabilized conforming nodal
integration technique proposed by Chen et al. [32-34]. By developing
the generalized gradient smoothing technique and using point inter-
polation method for field function approximation [35,36], Liu et al.
have developed a series of meshfree smoothed point interpolation
methods (S-PIM) [37-40], which conduct stabilized numerical inte-
grations on the generated smoothing domains.

In [20,41] we used regular (equally spaced) hexahedral background
grid to conduct the numerical integration in space. Such integration
grid can be easily constructed, which offers simplicity and flexibility
[20]. However, for complex geometries (such as those of many body
organs) it may introduce volume inaccuracy when the hexahedra are
intersected by a domain boundary. On possible solution to this
problem can be to use tetrahedral background grids that can be
automatically generated with integration cells conforming to the
boundary of analyzed continuum even for complex geometries.
Therefore, the meshfree algorithm we present in this study facilitates
application of tetrahedral background integration grids.

For tetrahedral grid, we use four Gauss points per cell, which
provides exact integration for polynomial up to second order.
Unfortunately, the MLS shape functions are not polynomials and
the Gaussian volumetric integration is not exact. Although there is
no rigorous proof theory, some authors claimed [13] that the
inaccuracy of numerical integration in meshfree methods can have
similar effects to the reduced integration used in FEM to suppress
volumetric locking for nearly incompressible materials. Although
in FEM the reduced integration can lead to other numerical
difficulties (hour-glassing), such problems can be generally
avoided in meshfree methods by making influence domains larger.

3.2. Imposing essential boundary conditions

A critical feature of MLS shape functions is that they do not
possess the Kronecker delta property (they are not interpolating).
Consequently, essential boundary conditions cannot be imposed in
the same way as in FEM. A number of techniques have been
developed to overcome this problem, including the penalty
method [42], the use of Lagrange multipliers in the Galerkin weak
form [43] and the transform method [11].

In the explicit time integration framework, the most efficient and
accurate method for imposing essential boundary conditions appears
to be the coupling of MLS and FEM shape functions near the essential
boundary [44]. Because the modifications are only made at shape
functions level, the method can be easily applied to all kinds of
problems and allows direct imposition of prescribed values to the field
variables on the essential boundaries, just like in FEM. The coupling
between FEM and MLS shape functions is accomplished by defining a
boundary region that includes elements containing the nodes for
which the essential boundary conditions are prescribed. The problem
domain is divided into two regions, the boundary region £2g and the
rest of the domain called the meshfree region . The displacement

approximation in the boundary region is calculated as:

uMLS +R(uFEM_uMLS) Xe QB

u?ﬁ = { MLS (13)
u X e Qum

where uMS s the displacement field approximated using the MLS

shape functions as in Eq. (3), uf®™ is the displacement field approxi-

mated using the FEM shape functions, and R is a ramp function [44].

3.3. Stable time step calculation

We use explicit time integration in the present numerical algo-
rithm because of its efficiency and suitability for parallel implementa-
tion. However explicit time integration is only conditionally stable and
requires an estimation of the maximum stable time step. The critical
time step of a numerical algorithm is directly related to the maximum
frequency of free vibration, which is determined by the mass and
stiffness of the system. Belytschko et al. [45] developed critical time
step bounds for meshfree methods, but their results are only valid for
2D problems with regularly distributed nodes. Furthermore, the
bounds become indefinite, due to division by zero, for interpolating
shape functions or shape functions that are not strictly positive [46].

Recently Joldes et al. [47] developed an effective method of
estimating the stable time step for meshfree methods. This estimation
method is valid for a specific case of lumped mass matrix construction,
where the mass associated with an integration point is distributed
equally to the nodes influencing that integration point. This approach
works well for the explicit time integration algorithm based on the EFG
and is used in the present work for calculating the critical time step as

Aterip ~ mlin (14)

2
[al
}‘max
where [, is the maximum eigenvalue of the stiffness matrix
contribution from integration point I, estimated as AL <nc,?-

max —
(BLO)},(BLO)},, in which n is the number of support nodes for integration
point I, ¢, is the dilatational wave speed and Byis the matrix of shape
function derivatives. Following [48], the dilatational wave speed c,, was
calculated as ¢y = \/A+2u/p, where 1 and p are Lamé’s constants.

4. Numerical verification

A cylinder of height 0.1 m and radius 0.05 m is studied, as shown in
Fig. 1. The cylinder is deformed by rigidly constraining one face (z=0),

0.1 -
0.08 -
0.06 -

0.04 .

002 N _— O
y 004
-0.05
Fig. 1. Thy cylinder is of height 0.1 m and radius 0.05 m.
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Table 1

Displacement at the node (0.05, 0, 0.05) in x direction and reaction force on the displacement face.

Compression Extension Shear

Displacement (m) Force (N) Displacement (m) Force (N) Displacement (m) Force (N)
Reference 0.00703 —6.9823 —0.00508 4.6673 0.00951 1.1188
Meshfree 0.007315 —7.2351 —0.005144 4.7128 0.009614 1.1405
Difference 4% 4% 1% 0.9% 1% 2%

while the opposite face (z=0.1 m) is displaced. We use the mass
density of 1000 kg/m>. As there is vast body of evidence [2,49-60] that
soft tissues can be regarded as hyperelastic (or hyperviscoelastic)
nearly incompressible continuum, we used Neo-Hookean material
with Young’s modulus in undeformed state equal to 3000 Pa, Poisson’
s ratio of 0.49, and density of 1000 kg/m?>. The loading (displacements)
were applied using a smooth curve that ensures zero velocity and
acceleration at the start of loading:

d(t) = dpmax - (10—15¢ +6t2) - £ (15)

Three basic experiments are presented: compression, extension
and shear of the cylinder. The computations were first performed
using the proposed meshfree algorithm with a maximum applied
displacement dpq = 0.02 m. The obtained results were compared to
those from the commercial finite element software ABAQUS [27] using
a fine mesh of 20-node quadratic brick, hybrid, linear pressure
elements (C3D20H) and the dynamic implicit solver.

For the meshfree algorithm, the dilatation parameter for
influence domain was taken as 1.6, the problem domain was
discretized using 7619 nodes and time step calculated using
Eq. (14) is 8.2e-5s. The reference solution of this problem was
obtained with ABAQUS using a mesh consisting of 33,897 nodes
and 7680 elements. Table 1 lists the displacement in x direction at
the middle node of the right edge of plane y=0 and the total
reaction force on the displaced face in the direction of the applied
displacements (along the z-axis for compression and tension, and
along the x-axis for shear). Compared with the reference solution,
the maximum relative difference in both displacement and reac-
tion force is smaller than 5%, which conforms the accuracy of the
results obtained using the presented algorithm. In Fig. 2, we
plotted the deformation shape of plane y=0, the displacements
on the right edge of this plane and time history of the total
reaction force on the displaced face. The results obtained using the
presented meshfree algorithm closely agree with the reference
solution from ABAQUS FE solver.

5. Application in soft organ modeling: brain indentation

To illustrate the performance of the meshfree algorithm intro-
duced in this study in simulation of the body organs we applied in
modeling of the experiments on the swine brain indentation
conducted by [61].

5.1. Model description

The swine brain used in the experiment had a mass of 89.9 g
and was approximately 92.5 mm, 62.5 mm and 28.5 mm in its
major axis, minor axis and height respectively. During the experi-
ments the bottom brain surface was glued to a glass plate and the
brain was laterally supported using two molds (Fig. 3a) with the
brain surface firmly sticking to the molds. Therefore, the nodes
defining the bottom brain surface and the areas in contact with the
molds were rigidly constrained (Fig. 3b). As in this study we focus

on evaluation of the performance of our meshfree algorithm rather
than on detailed modeling of the interactions between the
indentor and brain, the indentor was not directly simulated in
the model. The indentor was an aluminum cylinder of diameter
10 mm. The loading was applied by prescribing a constant velocity
of 1 mm/s (velocity of the indentor) on the nodes located in the
area that was in contact with the indentor when conducting the
experiments.

Geometry for the brain model was obtained from the magnetic
resonance image MRIs acquired before the experiments and
discretized using 21,498 nodes and 115,029 tetrahedral integration
cells as shown in Fig. 3b. In the meshfree algorithm, the dilatation
parameter for influence domain was taken as 1.6 and time step
calculated using Eq. (14) is 4.3e—4s. Neo-Hookean hyperelastic
model was used for the brain tissue for verifying the developed
algorithm. As explained in detail in [61], the subject-specific tissue
properties (shear modulus of 210 Pa) were determined from
compression of the cylindrical tissue samples extracted from the
brain after the indentation experiments. Poisson's ratio was 0.49
and the mass density was 10 kg/m>.

5.2. Results

As shown in Fig. 4, the indentor reaction force-indentation
depth relationship predicted by the model implemented using our
meshfree algorithm agrees very well with experimental results
throughout the simulation. These results also confirm that the
algorithm facilitates robust and accurate solution even for large
local deformation of the analyzed continuum.

The likely reasons for the differences between the simulation
and experiment results in Fig. 4 are that the pia mater (a think soft
tissue layer surrounding the brain) was not included in the brain
model we used (Fig. 3b). As stated in Section 5.1, the purpose of
this paper is to evaluate the performance of our meshfree algo-
rithm rather than to conduct a complete simulation of actual
surgery. Given the fact that only very limited information about
the mechanical properties of the pia mater is available [48] and
that the anatomical structure of the soft tissue layers (meninges)
surrounding the brain is still debated in the anatomical literature
[62], attempt to include the pia mater in the model would obscure
the algorithm evaluation with modeling uncertainties.

6. Conclusions

To address the need for simulating biological soft tissues under
large deformations we presented a total Lagrangian explicit
dynamics algorithm based on the element-free Galerkin method.
The coupling between the moving least square (MLS) and finite
element (FE) shape functions was used to impose essential
boundary conditions, which is simple and guarantees exact results.
The large support domains of the MLS shape functions eliminate
some of the weaknesses of FE method, such as hour-glassing.
Although the numerical volumetric integration is not exact, it seems
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Fig. 2. Compression, extension and simple shear of a cylinder. Left column: plane y=0 of the deformed cylinder. Middle column: displacements on the right edge of the
plane y=0. Right column: time history of the total reaction force on the cylinder's displaced face.
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Fig. 3. The swine brain indentation modeled using the presented meshfree algorithm: (a) set-up of the experiments, figure based on [61]; (b) domain discretization with
scattered field nodes and tetrahedral integration grid, where the pointed circle area including the nodes under prescribed displacement during the indentation.
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Fig. 4. Comparison of the experimental and modeling results on the reaction force
against displacement.

to prevent volumetric locking for the studied nearly incompressible
soft tissues materials. A dynamic relaxation scheme was used for the
computation of the steady state solution and the critical time step
estimation method ensures the stability of the present meshfree
algorithm. The results of our computations compare very well with
reference solutions obtained using the commercial FE software
ABAQUS, confirming the accuracy of the presented algorithm.
Application of the algorithm in modeling brain indentation indicates
its ability to facilitate robust and accurate prediction of the organ
responses.
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