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Meshless algorithm for simulation of soft tissue cutting for surgical simulation

Abstract: Computation of soft tissue mechanical responses for surgery simulation and
image-guided surgery has been dominated by finite element method that utilises a mesh of
interconnected elements as a computational grid. Shortcomings of such mesh-based
discretisation in modelling of surgical cutting include high computational cost and the need
for re-meshing in the vicinity of cutting-induced discontinuity. The Meshless Total
Lagrangian Adaptive Dynamic Relaxation (MTLADR) algorithm we present here does not
exhibit such shortcomings as it relies on spatial discretisation in a form of a cloud of nodes.
The cutting-induced discontinuity is modelled solely through changes in nodal domains of
influence, which is done through efficient implementation of the visibility criterion using
the level set method. Accuracy of our MTLADR algorithm with visibility criterion is
confirmed against the established non-linear solution procedures available in the

commercial finite element code Abaqus.
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1. Introduction

Application of computational biomechanics in medicine includes computing soft tissue
mechanical responses. Such computations have been dominated by the finite element method
that makes it possible to accurately represent complex geometries of the body organs and
account for non-linear constitutive properties of soft tissues and large deformations/strains
induced by surgery. Recent examples include implementations of fully non-linear finite element
procedures for fast computations of organ deformation for image-guided surgery on graphics
processing units (GPUs) (Allard et al., 2012; Joldes et al., 2010a; Taylor et al., 2008) and
software frameworks for surgical simulation (Allard et al., 2007; Allard et al., 2012; Joldes et al.,
2009b).

Despite advancements in computational biomechanics, modelling and simulation of soft
tissue cutting still remain one of the most challenging problems in surgery simulation. The
difficulties are how to model surgical cutting and the non-linear geometric and material
behaviour exhibited by soft organs (Fung, 1993; Miller et al., 2000; Wittek et al., 2008), and
achieve high computation speeds. To increase the computation speed, some researchers modelled
surgical cutting on surface meshes and predicted the deformation of soft tissue using mass-spring
models (Choi, 2006; Meseure and Chaillou, 1997; Pan et al., 2011; Yuan et al., 2010; Zhang,
2004) or boundary element model (Wang et al.,, 2006, 2007). Although such simplified
approaches made it possible to achieve rapid computation speeds, they suffer from important
shortcomings. A surface mesh is only suitable for modelling of cutting on membrane-like
structures, such as intestine or gallbladder. Although layered surfaces can be employed, a surface
mesh is unable to simulate progressive cutting in depth. Furthermore, while a mass-spring model

features simple intrinsic mechanisms and high computational efficiency, it suffers from poor



precision and stability problems because damping for stable mass-spring systems is difficult to
determine when topology changes due to cutting. The boundary element solutions have been so
far developed for isotropic elastic materials in small deformation regime (Wang et al., 2006,
2007) as the requirement of Green’s function limits its ability to deal with non-linear problems.

Progressive surgical cutting has been modelled and simulated by subdivision of elements
of the volumetric mesh using conventional finite element (FE) method (Bielser et al., 2004;
Bruyns et al., 2002; Courtecuisse et al., 2010; Mor, 2001). Such approach requires sophisticated
re-meshing technologies to generate new elements with good aspect ratio and map the field
variables from the old mesh to the new mesh. Despite the exploration of speed-up technologies
(e.g. implementation on GPUs, sub-structuring models into operational regions where re-
meshing is done and non-operational ones that do not require re-meshing), high computational
cost and error accumulation due to re-meshing constrain the computational efficiency and
accuracy of finite element method in modelling of cutting (Cotin et al., 2000; Courtecuisse et al.,
2010; Wu and Heng, 2005).

As one possible solution to avoid re-meshing, (Vigneron et al., 2004) showed the
potential of the extended finite element method (XFEM) for simulation of surgical cutting in 2D
using linear elasticity assumption. Although XFEM has been proposed in the literature as a
general method for modelling discontinuities due to cracks/cuts (Bordas and Moran, 2006;
Stolarska et al., 2001), the fact that it requires construction of patient-specific finite element
meshes is an important obstacle in surgery simulation. Despite recent progress, that includes
octree-based hexahedral mesh generation and mesh refinement (Ebeida et al., 2011; Marechal,
2009; Schneiders, 2000; Zhang and Bajaj, 2006), it is still difficult to mesh 3D highly irregular

geometries (e.g. brain) automatically with good quality hexahedral elements that are regarded as



the most effective when dealing with the incompressibility of soft tissues (Doblaré et al., 2005; Ji
et al., 2011; Miller et al., 2011). Linear elastic models are used in some simulations to reduce the
computational burden (Basdogan et al., 1999; Cotin et al., 2000; Lim et al., 2006; Wang et al.,
2006, 2007). However, this simplification deviates from the intrinsic non-linear properties of soft
tissue.

There is extensive literature on determining and controlling the discretisation errors of
methods of computational mechanics that are applicable in surgery simulation (for
comprehensive summaries see (Bathe, 1996) and (Liu, 2003)). However, all the existing
techniques used in surgery simulation are still at the exploratory stage as no research group has
provided an effective verification or validation of the simulation results so far.

In this paper, we propose a Meshless Total Lagrangian Adaptive Dynamic Relaxation
(MTLADR) algorithm to predict the steady-state deformation of soft tissue caused by surgical
cutting. Our algorithm belongs to the family of Element-Free Galerkin (EFG) methods which are
well suited for solving problems with moving boundaries, such as the modelling of crack
propagation (Belytschko et al., 1994; Belytschko et al., 2000; Belytschko and Tabbara, 1996;
Rabczuk and Belytschko, 2007). The algorithm features a meshless spatial approximation based
solely on nodes. The progressive surgical cutting is modelled by adding and/or splitting nodes on
the cutting path and implementing visibility criterion (Belytschko et al., 1996) with the aid of the
level set method (Osher and Sethian, 1988). Since building the connectivity between nodes and
integration points does not rely on elements, the burden associated with the mesh generation and
re-meshing required by the FE method is partly alleviated. With the capability of modelling large
deformation and soft tissue non-linear behaviour, MTLADR algorithm has fast convergence to

the steady state solution and is generally applicable for both 2D and 3D problems. In this paper,



we explain the surgical cutting modelling method and formulations of solution algorithm
(MTLADR) in 2D. The simulation results are verified against well-established finite element
procedures in the commercial finite element solver Abaqus (ABAQUS, 2009).

The paper is organised as follows. Section 2 presents the method of simulating surgical
cutting. The experiment of simulation and the verification of results are given in Section 3. The

conclusions and discussion of future work are in Section 4.

2. Methods
We developed the meshless Total Lagrangian adaptive dynamic relaxation (MTLADR)

algorithm to simulate the deformation of soft tissue during surgery. The topology changes

introduced by surgical cutting are modelled by adding and/or splitting nodes along the cutting

path with the help of the level set method (Osher and Sethian, 1988).

Total Lagrangian formulation (Bathe, 1996; Horton et al., 2010; Miller et al., 2007), in
which the calculated variables (such as stresses and strains) are referred to the initial
(undeformed) configuration of the analysed continuum, is used as it exhibits the following
features:

e The error accumulation due to the stress/strain update associated with the Updated
Lagrangian formulation typically used in commercially available finite element solvers
(such as e.g. Abaqus and LS-DYNA) is eliminated:;

e The shape functions and their spatial derivatives can be pre-computed. This reduces the
number of numerical operations (and the computation time) when compared to the Updated

Lagrangian formulation (Miller et al., 2007).

In the literature, implicit integration in time domain is often recommended (Bathe, 1996)

and used for quasi-static/steady-state problems including surgery simulation (Allard et al., 2007;



Allard et al., 2012; Taylor et al., 2008). Our rationale for application of dynamic relaxation is
that, as indicated by our previous research on finite element algorithms for computation of the
soft tissue responses (Joldes et al., 2011), it offers an excellent performance in terms of
computation speed while preserving accuracy as good as the implicit integration. The solution
accuracy is achieved by controlling the error through stringent convergence criteria. Following
(Joldes et al., 2011), we used the displacement infinity norm for such criterion. Determining the
stable time step for meshless methods with explicit integration in time domain has been

addressed in our recent study (Joldes et al., 2012).

2.1.  Governing equations and solution

In the MTLADR algorithm, the steady-state deformation of soft tissue at any stage of cutting is
solved as the steady state part of the general equation of motion, in which an artificial mass
proportional damping is included to increase the convergence speed (Underwood, 1983):

MU + cMU + F(U) =R (1D

where M is the time-dependent lumped mass matrix; F is the vector of internal nodal forces; R is
the vector of externally applied nodal loads; U is the vector of nodal displacements; c is the
damping coefficient.

A dynamic relaxation algorithm for solving non-linear finite element problems without
cutting has been presented in (Joldes et al., 2009a, 2011). We adapt their strategy of estimating
the damping coefficient to our meshless scheme. The nodal displacements at every time step of

explicit integration are derived as

My =g MY 'R-EF)+b U+ (1 -Db)U ()



(p+ 1)? - At?
a=-—-

3

2 3)
b=p*+1, 4)

where 72y, U and *"2'U are the nodal displacement vectors (as field variables) at times

t + At, t and t — At respectively, At is the time step, ‘M indicates the global time-dependent

lumped mass matrix, and p is the spectral radius which is adaptively calculated during the

iterations:
=1 2 5)
p= Vk +1
k= 4 6)
—At24, (
tU _ lU T tF _ lF
(‘=)' GF~ir) -

T (tw- ) M( - W)
where U is the vector of nodal displacements at a previous time point | close to t; ¢F is the
global nodal reaction force vector at time t relative to initial configuration; F is the global nodal
reaction force vector at the previous time point I relative to initial configuration. More details on
the derivation of Equation (7) are presented in (Joldes et al., 2011).

Introducing discontinuities by cutting can lead to spurious jumps and oscillations in the
solution. Dynamic relaxation is very effective in damping out these oscillations without the need

for any additional treatment.

2.2.  Modelling of surgical cutting in 2D

Methods for modelling of discontinuity in the displacement and stress fields associated with

cuts/cracks are still a hotly debated topic. An extensive review of such methods from the



perspective of the overreaching concept of partition of unity has been recently conducted by
(Rabczuk et al., 2010).

In this study, we geometrically represent the progressing surgical cut as a series of line
segments (as shown in Figure 1) and adapt the level set method proposed by (Osher and Sethian,
1988) and developed by (Stolarska et al., 2001) to mathematically describe the locations of all
nodes and integration points relative to the cutting path. The discontinuities induced by surgical
cutting are modelled and traced using nodes with specific level set values and appropriate field
values (the nodal displacement and the size of domain of influence). The effect of cutting is
entirely reflected in the changes of the shape and size of the influence domain of nodes by

efficiently implementing visibility criterion with the help of the level set method.

[Possible location of Figure 1]

2.2.1. Initialisation of level set values of nodes and integration points

When the first cut (e.g. TO-T1 in (Figure 1)) is made, we mathematically represent the cutting
direction as the zero level set of function ¥ (x,y) in Equation (8). The endpoint of a cut is
represented as the intersection of the zero level set of function ¢ with an orthogonal zero level

set of function ¢ (x,y) defined in Equation (9):
l»b(x:y) = (x_xep)%_(y_yep)ﬁ (8)
P(x,y) = (x_xep)”VTx”-l' (y_yep)% (9)

where (x,y) is the coordinate of a given point in the problem domain; (xep,yep) is the

coordinate of the endpoint of the cutting path. V, , V, are the components of vector V



representing the cutting direction, and [|V|| is the length of vector V.

The values of both level set functions v and ¢ are calculated and stored for all the nodes
and integration points to indicate their positions relative to the cutting path. The value of the
level set function v at a given point is the signed-distance from this point to the cutting direction.
As illustrated in (Figure 2), the points with positive values of the level set function v are all
located at the same side of the cutting line segment L and its extension L1 while the points with
negative values are all at the other side. Zero value of function i indicates that the point is
located right on the cutting line segment L or its extension line L1. Accordingly, the value of the
level set function ¢ indicates the signed-distance from a given point to line segment L2 which is
orthogonal to the cutting path at the endpoint. If a point is judged to be located on the cutting line
segment L (zero value of function i and negative value of function ¢), the associated value of
function v is set to a small positive or negative value in order to allocate the point to one of the

sub-domains S1 or S2 (Figure 2).

[Possible location of Figure 2]

2.2.2. Spatial discretisation of the cutting path

The endpoint of the cut and the rest of the line segments representing the cutting path are
discretised using nodes. If the computational grid obtained by discretising the geometry of the
analysed continuum contains no node at the endpoint of the cut, we add a node there with zero
values of level set functions y and ¢ (Figure 3a). The rest of the cutting segments are discretised
using nodes spaced at the average nodal interval of the computational grid. If there is no node at
the discretised position, two nodes (having the same coordinates) are added at this position. If

there is an existing node at the discretised position or elsewhere on the cutting path, we split this
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node into two nodes having the same coordinates.

Every two nodes added (or split) at the same position are allocated on opposite sides of
the cutting path by appropriate values of the level set functions (Figure 3b,c). For one node, the
level set function i is set to a positive value smaller than the minimum size of the influence
domain, while for the other one, the function  is set to a negative value of the same magnitude.
Both nodes are assigned with the same negative value of the level set function ¢ with magnitude
less than the length of the cutting segment. Imposing the limit of the minimum size of the
influence domain on the magnitudes of the assigned level set values ensures that the nodes fall
into the confined area in which the nodal influence domains should be re-shaped to account for

discontinuities introduced by cutting.

[Possible location of Figure 3]

Besides the level set values, appropriate field values are assigned to the newly added
nodes. If the node is created at a new position, its displacements are interpolated (from the
adjacent nodes) by Moving Least Squares (MLS) approximation and the size of its domain of
influence is set to the average size of the influence domains of the surrounding nodes. If the node
is created by splitting of an existing node, its displacements and the size of influence domain are

inherited from the existing node.

2.2.3. Update of level set values of nodes and integration points while cutting progresses

When cutting progresses from one point to the next one, the level set values of functions y and ¢
at the nodes and integration points need to be updated. In the following algorithm, ¥™ and
¢ denote the values of functions i and ¢ at step n; Y™+ and ¢™*!denote the values of

functions i and ¢ at step n + 1; (x, y) is the coordinate of a given node or integration point in
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the problem domain; (x%,,y%) and (x4, y2) are the coordinates of the cut endpoint at
steps n and n + 1 respectively; V;***, V**1 are the components of the cutting vector V™t at step

n + 1; vector V™*1 is defined by points (x2,,y2,) and (x5, yiurt).

(1) Cutting direction does not change. When cutting progresses from one endpoint to the next
without direction change, the values of level set function ¢ of the nodes and integration
points whose ¢™ > 0 need to be updated. The update process is illustrated in (Figure 4). No
update is done in the area where ¢™ < 0 (indicated as non-update area A™on-update jp

(Figure 4)) while the rest of the analysed domain (where ¢™ > 0) is an update area A#Pdate;

1l}n+1 — d}n ind = Anon—update V) Aupdate (10)
¢n+1 — ¢n in Anon—update (11)
n+1
¢n+1(x’ y) — (X +1) ||Vn+1|| + (y y? +1)W in Aupdate (12)

where A is the union of Anen-urdate gnq gurdate gragg,

[Possible location of Figure 4]

date -
upaels

(2) Cutting direction changes. If the cutting direction changes, the update region A
defined as the area where ¢™ > 0 while the rest of the analysed domain is defined as the
non-update region A" “P*€ (Figure 5).

a) Level set function ¢™ is obtained by rotating function ¢™ around the cutting path

endpoint (x;‘p,yg;,) (point T2 in (Figure 5)) until orthogonal to the cutting vector

V‘n+1 .

7’1+1
o (x,y) = (x xep) ”Vn+1|| + (y yep) V]| inA (13)
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where A is defined in Equation (10).

b) Following changes in the cutting direction, the values of function y™** of the nodes

update

and integration points in the update region A, are re-computed while no re-

computation is needed in the nom-update region 47"~ "Pdate:

l/)n+1(x’ y) (x _ xe +1) ||Vn+1|| (y ye +1) ||Vn+1|| lTl Al:pdate (14)

1lj‘i’l‘l-l — lpn lTl A?On—update (15)

¢) Re-computation of function ¢™*is done in the entire analysed area A:

+1
<;b"+1(x, y) = (x +1) ||V"+1|| + (y Ve +1) W ind. (16)
[Possible location of Figure 5]

2.2.4. Update of the influence domain of the nodes affected by cutting

The update of the influence domains of any node in the vicinity of the cutting path is

implemented by finding and eliminating the points that are no longer influenced by the node due

to the cutting path. In the following algorithm, y; and ¢; denote the values of the level set
functions ¥ and ¢ at node i while 1, and ¢, denote the values of level set functions ¥ and ¢ at

a point P in the influence domain of node i.

(1) The influence domain of a node, which is defined as a circle in our algorithm, is updated if it
intersects the cutting path (Figure 6). The selection criterion for the node whose influence
domain needs to be updated is

[l <R;and ¢; <R; 17)

where R; is the size (radius) of the influence domain of node i.
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[Possible location of Figure 6]

(2) The point is kept in the influence domain of the node if the node and the point are both
located at the same side of the cutting path:
Wi X P, =20 (18)
(3) If the point and the node are located at the opposite sides of the cutting path,

P X1y <0 (19)
additional criteria need to be checked to decide whether the point is to be kept or eliminated
from the influence domain of the node:

(@) As illustrated in (Figure 7), the first selection criterion for the points that need to be
eliminated from the influence domain of the node is: the node and the point are located in
different subdomains S1 and S2, i.e. one of them is located in sub-domain S1 while
another one is within sub-domain S2 or on line segment L2. The above selection criterion
Is expressed as (see also Figure 7):

(¢; < 0 AND ¢, < 0) OR (¢; < 0 AND ¢, = 0) (20)

(b) If the criterion (a) expressed by Equation (20) is not satisfied, there are only two
alternatives for position of the point in relation to the node (Figure 7): either one is
located in sub-domain S1 and another one is in sub-domain S4 or one is in sub-domain
S2 and another one is in sub-domain S3. Therefore, we have to geometrically judge if the
line segment linking the node and the point intersects the cutting path. If the intersection
occurs, the point is removed from the influence domain of the node.

(4) The following updates are made to account for the changes in influence domains:
e For the points that are eliminated from the influence domains of the nodes, the shape

functions and their derivatives are re-calculated.
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e The global mass matrix is updated.

[Possible location of Figure 7]

The update procedure proposed in this section works well for direction changes of less
than 90 degrees. If more abrupt changes in cutting direction have to be simulated, the procedure
needs to be modified or a different approach for defining the discontinuity may be needed. The
drawback, however, appears to be insignificant as surgical techniques employing cuts with
abruptly changing direction are not reported in commonly used surgery textbooks (Greenfield

and Mulholland, 2010; Westra et al., 2002).

2.3.  Description of MTLADR solution algorithm for surgical cutting simulation

The complete Meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR) algorithm
adapted for surgical cutting simulation can be described as follows:
(a) Pre-computation and initialisation:
e Compute the shape functions and their derivatives for each integration point. A regular
grid of square integration cells is used for Gaussian quadrature;
e Specify the time step for explicit integration in time domain and apply mass scaling to
ensure the integration stability;
e Create global lumped mass matrix by evenly distributing the scaled mass carried by each
integration point to the nodes that influence it;
e When simulating cutting of the deforming continuum, subject the continuum to loading
through essential boundary conditions (i.e. by prescribing the displacements on the
boundary) and compute the deformations within continuum.

For each progressive cut:

15



(b) Cutting:

Update the shape functions and their derivatives at the integration points affected by
cutting (section 2.2.4);

Determine the critical time step and update the mass scaling coefficients at the integration
points;

Update the scaled global lumped mass matrix.

(c) Relaxation:

Initialise the spectral radius for dynamic relaxation with a value close to 1 (e.g. 0.998),
which attenuates the high-frequency oscillations in the solution but allows deformation
propagation (small damping) (Joldes et al., 2009a);

For each time step of explicit integration:

Update ‘U = *Uand ‘U = "' ;

Compute the global nodal reaction forces as described in (Horton et al., 2010);

= Compute the nodal displacements at next time step (Equations 2 - 4);

= Impose the essential boundary conditions;

= Re-calculate the spectral radius (Equations 5 - 7). The spectral radius used in
computations is smoothed in order to eliminate large jumps in its value.

= Update ‘U and }F using the computed nodal displacements and global nodal reaction
forces.

= Following the update of ‘U and {F, the spectral radius is regarded as stabilised if the

difference between the calculated spectral radius p and the currently used one is less

than a specified threshold.
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= If the convergence rate becomes stabilised, check the convergence criteria (Joldes et

al., 2011). The time iteration is terminated if the convergence criterion is met.
The computed nodal displacements at the end of Dynamic Relaxation in a Meshless
method are in fact field variables. To compute the real displacements at any point (including the

nodes), an interpolation needs to be performed using the meshless shape functions.

3. Numerical results and algorithm verification

3.1.  Modelling and simulation of soft tissue cutting in 2D using MTLADR algorithm

We simulate cutting in a deforming continuum having soft tissue-like material behaviour. The
deformation preceding cutting is induced by elongating a square specimen of size of 0.1m by
0.1m as illustrated in (Figure 8). One edge (x=0 m) of the specimen is rigidly constrained while
the opposite one (x=0.1 m) is elongated by 0.02 m along the x-axis. The specimen is discretised
into nodes. The number of nodes (6561) was selected based on the results of convergence
analysis summarised in (Figure 9) and Table 1. Because of the specimen’s rectangular shape, we
distributed the nodes regularly. However, as indicated by (Horton et al. 2010), the Total
Lagrangian meshless algorithm with MLS shape functions can be also applied for irregular node
placements.

Various non-linear material models can be used in the MTLADR algorithm through
application of different formulae for calculation of the second Piola-Kirchhoff stress at the
integration points. In our simulations we used the Neo-Hookean material model and modelled
soft tissue as a soft and nearly incompressible continuum (Young’s modulus of E = 3000 Pa,
Poisson’s ratio of v = 0.49, mass density of p = 1000kg/m3). As we verify the MTLADR
algorithm against the established non-linear static solution procedures available in the

commercial finite element code Abaqus (ABAQUS, 2009), we use the same form of the Neo-
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Hookean strain energy potential as the one in Abaqus:
U=2(0-3)+20-1)7? (21)

L=]1'1 for 2D (22)

where p, is the initial shear modulus; k, is the initial bulk modulus; I; is the first deviatoric
strain invariant; J is the volumetric change which equals to the determinant of the deformation
gradient; I, is the first invariant of the right Cauchy deformation tensor. From Equations (21)

and (22), we derive the second Piola-Kirchhoff stress tensor S for 2D problems as

t -1 1o -1 te. "1 ; :
0Sij = to) 7| 8; — §I1ocij + koJ(J — 1)4Cyj i=12j=1,2 (23)
where 8;; is the Kronecker Delta tensor; Cy; is the right Cauchy-Green deformation tensor.

[Possible location of Figure 8]

Cutting simulation is carried out along the pre-planned path on the deforming (stretched)
specimen model (Figure 8). At any stage of cutting, the steady-state deformations within the
specimen are predicted by the proposed MTLADR algorithm. The deformed shape of the
specimen before the change of cutting direction is shown in (Figure 10a and 10b). The specimen
at the end of cutting, i.e. after the change in cutting direction is introduced, is shown in (Figure
10c). The total reaction force in x-axis direction (at the specimen’s edge x=0 m) and strain
energy at the end of cutting, which formed the basis of the convergence analysis, are reported in

(Table 1).

[Possible location of Figure 9]
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[Possible location of Figure 10]

[Possible location of Table 1]

3.2.  Reference solution for MTLADR algorithm verification

As discussed in Introduction, there are a number of difficulties (such as the need for re-meshing)
when attempting to simulate cutting using the finite element method. Therefore, when obtaining
the reference solution for MTLADR algorithm verification using the established non-linear static
solution procedures available in the commercial finite element code Abaqus, we do not directly
simulate cutting but instead apply elongation to a pre-cut specimen model. The edges of the
elements were aligned and separated along the edges of the cut (Figure 11). The specimen
dimensions are the same as those of the MTLADR model. Implicit integration and standard
linear quadrilateral plain strain elements with hybrid formulation are used in the Abaqus
analysis. The boundary conditions are the same as the ones applied in the model solved using the

MTLADR algorithm.

[Possible location of Figure 11]

As in both models (solved using the MTLADR algorithm and Abaqus) soft tissue is
considered as a hyper-elastic material, the predicted deformations are independent of the loading
history. This implies that despite the differences in method of introducing the discontinuity in the
model using our MTLADR algorithm (cutting directly modelled) and reference model solved
using Abaqus (the discontinuity introduced before deformation is applied), the steady state

solution at the end of cutting should be the same.
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H-refinement (mesh density increase) is used to obtain a converged reference solution in
the model solved using Abaqus. As shown in (Table 2), the reaction force changes only by 0.3%
and the strain energy remains virtually constant when the number of nodes increases from 7813
to 31572. Therefore, the solution for 7813 nodes is taken as the benchmark for verification. The

deformed state (reference solution) obtained using Abaqus is shown in (Figure 12).

[Possible location of Table 2]

[Possible location of Figure 12]

3.3.  Results of MTLADR algorithm verification

The reaction force, strain energy and nodal displacements predicted when modelling surgical
cutting using the proposed MTLADR algorithm agree well with the reference solution obtained
using the commercial finite element solver Abaqus.

The relative difference for the reaction force and strain energy calculated using the
MTLADR algorithm and Abaqus solver at the end of cutting is 0.07% and 0.8% respectively.
This is a very good agreement, considering that we used a grid of regular background integration
cells for integration in the MTLADR algorithm, which is a source of integration errors along the
cutting path, as the integration cells do not align with the geometry. Nevertheless, such regular
integration cells are very easy to generate and do not require any mesh to be created.

To enable verification of the predicted deformations, the nodal displacements obtained
using the MTLADR algorithm were calculated (through interpolation using the MLS shape
functions) for the nodal positions of the Abaqus model. For the nodal displacement magnitudes,

the maximum absolute difference between the results obtained using the MTLADR algorithm
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and Abaqus is 0.31mm (1.56% of the imposed elongation) and the average difference (averaging
over all model nodes) is only 0.018mm (0.09% of the imposed elongation) (Figure 13).

As illustrated in (Figure 13b), the absolute difference at most of the nodal positions
(93.82%) is less than 0.05mm (0.25% of the imposed elongation) while it slightly increases to
within 0.1mm (0.5% of the imposed elongation) for another 5.27% of nodal positions. At only
few nodal positions (0.91%), the absolute difference ranges from 0.1 mm to 0.31 mm.
Considering that the accuracy of the state-of-art image-guided neurosurgery techniques is not
better than 1mm (Bucholz et al., 2004), the accuracy of the proposed MTLADR algorithm can be

regarded as satisfying the requirements of computer-integrated surgery.

[Possible location of Figure 13]

4. Conclusions and discussion

We developed the Meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR)
algorithm, which belongs to the Element-Free Galerkin (EFG) family, for predicting the steady-
state deformation of soft tissue at any stage of cutting. The features of the MTLADR algorithm
include: (1) the effective modelling of surgical cutting using nodes with the aid of the level set
method; (2) the Total Lagrangian formulation that makes it possible to conduct the most time
consuming computations before the start of time-critical simulations; (3) the adaptive Dynamic
Relaxation that facilitates fast convergence to the deformed (steady) state; (4) the capability of
modelling large deformations and non-linear material properties of soft tissues exhibited in
surgery. The MTLADR algorithm can generally be used to solve both 2D and 3D problems,

although only 2D examples are presented in this paper.
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With the benefits of no meshing and no re-meshing, we model 2D surgical cutting by
creating a pair of nodes at each discretised position on the cutting path and introducing one node
at the endpoint of the cut. The nodes of each nodal pair on the cutting path are allocated to
opposite sides of the cutting path by using specific level set values. For explicit time integration,
the field variable values at these nodes are either inherited or computed (using MLS
interpolation) from the surrounding nodes. The effect of cutting is entirely reflected through the
changes in the domain of influence of the nodes by efficiently implementing the visibility
criterion using the level set method.

Numerical experiments are carried out to predict the behaviour of a deformed (stretched)
specimen of soft tissue-like material during cutting. The computed reaction force, strain energy
and nodal displacements exhibit good agreement with the reference solution obtained using the
well established non-linear static solution procedures available in the commercial finite element
software Abaqus.

Further investigation is being undertaken to extend the proposed algorithms to modelling
and simulation of soft tissue cutting in 3D. Maintaining high computational speed despite
increase in the computational cost associated with 3-D modelling will be possible with the help
of parallel computation on graphics processing unit (GPU). The literature suggests that this can

be achieved with ease (Joldes et al., 2010a; Joldes et al., 2010Db).
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Table 1. The study of spatial convergence of MTLADR 2D cutting algorithm: comparison of the

strain energy and the reaction force when the nodal density (indicated by the number of nodes) is

increased.
Number of nodes 121 441 1681 6561 25921
Strain energy [J] 0.54382 0.52351 0.51358 0.50663 0.50546
Reaction force [N] 49.5437 47.9239 47.1165 46.531 46.4683
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Table 2. The H-refinement results for the model shown in (Figure 11) obtained using the non-

linear static solution procedures available in Abaqus. Comparison of the reaction force and

strain energy when the mesh density (indicated by the number of nodes) is increased.

Number of nodes 144 515 1925 7813 31572
Strain energy [J] 0.52627 0.51547 0.509889 | 0.506979 | 0.505576
Reaction force [N] 49.2445 47.9239 47.2442 46.9095 46.7666
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List of figures:

Figure 1. The cutting path in the problem domain is represented by a series of line segments (TO-
T1, T1-T2 and T2-T3).

Figure 2. The initialisation of level set values of functions v and ¢ for nodes/integration points
in the problem domain: ¥ = 0on L and L1and ¢ =0 on L2.

Figure 3. lllustration of the cutting path discretisation using nodes. After discretisation, the nodes
are divided by the level set value of function i: (a) 1 = 0 (cutting path); (b) ¥ > 0; (c) Y < 0.

Figure 4. Progression of cutting without direction change (cutting line segments TO-T1 and T1-
T2 are co-linear). The shaded area, where ¢™ < 0, is a non-update area A™"P%® \hile the rest

of the domain is an update area A"P%* |

Figure 5. Progression of cutting with direction change: the cutting proceeds from point T2 to T3
with direction change. Level set function ¢™ is obtained by rotating level set function ¢™ until it

is orthogonal to the current cutting vector V™1 The shaded area, where ¢™ < 0, is an non-update

non—update

update
¢ .

area A while the rest is an update area A,

Figure 6. The influence domain of node N1 intersects the cutting line L; points P1 and P2 should
be eliminated from the influence domain of this node. The influence domain of node N2 goes

through the cutting endpoint T only, so it does not need an update.

Figure 7. Update of influence domains of the nodes affected by cutting. Points P3 and P4 are
removed from the influence domain of node N (step 3.a of the algorithm for updating nodal
influence domains). According to step 3.b of the algorithm for updating nodal influence domains,
point P5 must be removed from the domain of influence of node N while points P6 and P7 are

kept.

Figure 8. Model for verification of the MTLADR algorithm. Cutting is carried out in the
stretched specimen of soft tissue-like material along the pre-defined path shown using thick line

segments. Dimensions are in metres (m).
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Figure 9. Convergence study: variation of strain energy with the number of nodes used for
discretisation. Comparison between MTLADR and Abaqus.

Figure 10. Results obtained using the MTLADR algorithm showing different stages of cutting.

Dimensions are in metres (m).

Figure 11. The initial configuration of the finite element model with 7813 nodes built using the

commercial finite element code Abaqus. Dimensions are in metres (m).

Figure 12. The deformed state of the finite element model with 7813 nodes. The results are used

as the reference solution for verification of the MTLADR algorithm. Dimensions are in metres

(m).

Figure 13 Results of verification the proposed MTLADR algorithm. Distribution of the absolute
difference between the displacement magnitudes computed using the MTLADR algorithm and
the reference results from the established non-linear static solution procedures available in the
Abaqus commercial finite element code: a) Spatial distribution. b) Statistical distribution. The
displacements are at the nodal positions of the model (shown in Figure 11) built in Abaqus.
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