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Meshless algorithm for simulation of soft tissue cutting for surgical simulation 

 

Abstract: Computation of soft tissue mechanical responses for surgery simulation and 

image-guided surgery has been dominated by finite element method that utilises a mesh of 

interconnected elements as a computational grid. Shortcomings of such mesh-based 

discretisation in modelling of surgical cutting include high computational cost and the need 

for re-meshing in the vicinity of cutting-induced discontinuity. The Meshless Total 

Lagrangian Adaptive Dynamic Relaxation (MTLADR) algorithm we present here does not 

exhibit such shortcomings as it relies on spatial discretisation in a form of a cloud of nodes. 

The cutting-induced discontinuity is modelled solely through changes in nodal domains of 

influence, which is done through efficient implementation of the visibility criterion using 

the level set method. Accuracy of our MTLADR algorithm with visibility criterion is 

confirmed against the established non-linear solution procedures available in the 

commercial finite element code Abaqus. 

 

Keywords: surgery simulation; soft tissue cutting; level set; meshless method; dynamic 
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1. Introduction 

Application of computational biomechanics in medicine includes computing soft tissue 

mechanical responses. Such computations have been dominated by the finite element method 

that makes it possible to accurately represent complex geometries of the body organs and 

account for non-linear constitutive properties of soft tissues and large deformations/strains 

induced by surgery. Recent examples include implementations of fully non-linear finite element 

procedures for fast computations of organ deformation for image-guided surgery on graphics 

processing units (GPUs) (Allard et al., 2012; Joldes et al., 2010a; Taylor et al., 2008) and 

software frameworks for surgical simulation (Allard et al., 2007; Allard et al., 2012; Joldes et al., 

2009b).  

Despite advancements in computational biomechanics, modelling and simulation of soft 

tissue cutting still remain one of the most challenging problems in surgery simulation. The 

difficulties are how to model surgical cutting and the non-linear geometric and material 

behaviour exhibited by soft organs (Fung, 1993; Miller et al., 2000; Wittek et al., 2008), and 

achieve high computation speeds. To increase the computation speed, some researchers modelled 

surgical cutting on surface meshes and predicted the deformation of soft tissue using mass-spring 

models (Choi, 2006; Meseure and Chaillou, 1997; Pan et al., 2011; Yuan et al., 2010; Zhang, 

2004) or boundary element model (Wang et al., 2006, 2007). Although such simplified 

approaches made it possible to achieve rapid computation speeds, they suffer from important 

shortcomings. A surface mesh is only suitable for modelling of cutting on membrane-like 

structures, such as intestine or gallbladder. Although layered surfaces can be employed, a surface 

mesh is unable to simulate progressive cutting in depth. Furthermore, while a mass-spring model 

features simple intrinsic mechanisms and high computational efficiency, it suffers from poor 
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precision and stability problems because damping for stable mass-spring systems is difficult to 

determine when topology changes due to cutting. The boundary element solutions have been so 

far developed for isotropic elastic materials in small deformation regime (Wang et al., 2006, 

2007) as the requirement of Green’s function limits its ability to deal with non-linear problems.  

Progressive surgical cutting has been modelled and simulated by subdivision of elements 

of the volumetric mesh using conventional finite element (FE) method (Bielser et al., 2004; 

Bruyns et al., 2002; Courtecuisse et al., 2010; Mor, 2001). Such approach requires sophisticated 

re-meshing technologies to generate new elements with good aspect ratio and map the field 

variables from the old mesh to the new mesh. Despite the exploration of speed-up technologies 

(e.g. implementation on GPUs, sub-structuring models into operational regions where re-

meshing is done and non-operational ones that do not require re-meshing), high computational 

cost and error accumulation due to re-meshing constrain the computational efficiency and 

accuracy of finite element method in modelling of cutting (Cotin et al., 2000; Courtecuisse et al., 

2010; Wu and Heng, 2005).  

As one possible solution to avoid re-meshing, (Vigneron et al., 2004) showed the 

potential of the extended finite element method (XFEM) for simulation of surgical cutting in 2D 

using linear elasticity assumption. Although XFEM has been proposed in the literature as a 

general method for modelling discontinuities due to cracks/cuts (Bordas and Moran, 2006; 

Stolarska et al., 2001), the fact that it requires construction of patient-specific finite element 

meshes is an important obstacle in surgery simulation. Despite recent progress, that includes 

octree-based hexahedral mesh generation and mesh refinement (Ebeida et al., 2011; Marechal, 

2009; Schneiders, 2000; Zhang and Bajaj, 2006), it is still difficult to mesh 3D highly irregular 

geometries (e.g. brain) automatically with good quality hexahedral elements that are regarded as 
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the most effective when dealing with the incompressibility of soft tissues (Doblaré et al., 2005; Ji 

et al., 2011; Miller et al., 2011). Linear elastic models are used in some simulations to reduce the 

computational burden (Basdogan et al., 1999; Cotin et al., 2000; Lim et al., 2006; Wang et al., 

2006, 2007). However, this simplification deviates from the intrinsic non-linear properties of soft 

tissue.  

There is extensive literature on determining and controlling the discretisation errors of 

methods of computational mechanics that are applicable in surgery simulation (for 

comprehensive summaries see (Bathe, 1996) and (Liu, 2003)). However, all the existing 

techniques used in surgery simulation are still at the exploratory stage as no research group has 

provided an effective verification or validation of the simulation results so far.  

In this paper, we propose a Meshless Total Lagrangian Adaptive Dynamic Relaxation 

(MTLADR) algorithm to predict the steady-state deformation of soft tissue caused by surgical 

cutting. Our algorithm belongs to the family of Element-Free Galerkin (EFG) methods which are 

well suited for solving problems with moving boundaries, such as the modelling of crack 

propagation (Belytschko et al., 1994; Belytschko et al., 2000; Belytschko and Tabbara, 1996; 

Rabczuk and Belytschko, 2007). The algorithm features a meshless spatial approximation based 

solely on nodes. The progressive surgical cutting is modelled by adding and/or splitting nodes on 

the cutting path and implementing visibility criterion (Belytschko et al., 1996) with the aid of the 

level set method (Osher and Sethian, 1988). Since building the connectivity between nodes and 

integration points does not rely on elements, the burden associated with the mesh generation and 

re-meshing required by the FE method is partly alleviated. With the capability of modelling large 

deformation and soft tissue non-linear behaviour, MTLADR algorithm has fast convergence to 

the steady state solution and is generally applicable for both 2D and 3D problems. In this paper, 
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we explain the surgical cutting modelling method and formulations of solution algorithm 

(MTLADR) in 2D. The simulation results are verified against well-established finite element 

procedures in the commercial finite element solver Abaqus (ABAQUS, 2009). 

The paper is organised as follows. Section 2 presents the method of simulating surgical 

cutting. The experiment of simulation and the verification of results are given in Section 3. The 

conclusions and discussion of future work are in Section 4. 

2. Methods 

We developed the meshless Total Lagrangian adaptive dynamic relaxation (MTLADR) 

algorithm to simulate the deformation of soft tissue during surgery. The topology changes 

introduced by surgical cutting are modelled by adding and/or splitting nodes along the cutting 

path with the help of the level set method (Osher and Sethian, 1988).  

Total Lagrangian formulation (Bathe, 1996; Horton et al., 2010; Miller et al., 2007), in 

which the calculated variables (such as stresses and strains) are referred to the initial 

(undeformed) configuration of the analysed continuum, is used as it exhibits the following 

features: 

 The error accumulation due to the stress/strain update associated with the Updated 

Lagrangian formulation typically used in commercially available finite element solvers 

(such as e.g. Abaqus and LS-DYNA) is eliminated; 

 The shape functions and their spatial derivatives can be pre-computed. This reduces the 

number of numerical operations (and the computation time) when compared to the Updated 

Lagrangian formulation (Miller et al., 2007). 

 In the literature, implicit integration in time domain is often recommended (Bathe, 1996) 

and used for quasi-static/steady-state problems including surgery simulation (Allard et al., 2007; 
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Allard et al., 2012; Taylor et al., 2008). Our rationale for application of dynamic relaxation is 

that, as indicated by our previous research on finite element algorithms for computation of the 

soft tissue responses (Joldes et al., 2011), it offers an excellent performance in terms of 

computation speed while preserving accuracy as good as the implicit integration. The solution 

accuracy is achieved by controlling the error through stringent convergence criteria. Following 

(Joldes et al., 2011), we used the displacement infinity norm for such criterion. Determining the 

stable time step for meshless methods with explicit integration in time domain has been 

addressed in our recent study (Joldes et al., 2012). 

 

2.1. Governing equations and solution 

In the MTLADR algorithm, the steady-state deformation of soft tissue at any stage of cutting is 

solved as the steady state part of the general equation of motion, in which an artificial mass 

proportional damping is included to increase the convergence speed (Underwood, 1983):   

                                                                  𝐌𝑼̈ + 𝑐𝐌𝑼̇ + 𝑭(𝑼) = 𝑹                                                         (1) 

where 𝐌 is the time-dependent lumped mass matrix; 𝑭 is the vector of internal nodal forces; 𝑹 is 

the vector of externally applied nodal loads; 𝑼 is the vector of nodal displacements; 𝑐 is the 

damping coefficient. 

A dynamic relaxation algorithm for solving non-linear finite element problems without 

cutting has been presented in (Joldes et al., 2009a, 2011). We adapt their strategy of estimating 

the damping coefficient to our meshless scheme. The nodal displacements at every time step of 

explicit integration are derived as   

                              𝑼𝑡+∆𝑡 = 𝑎 𝐌𝑡 −1( 𝑹𝑡 − 𝑭0
𝑡 ) + 𝑏 𝑼𝑡 + (1 − 𝑏) 𝑼𝑡−∆𝑡                                        (2)                                    
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                                                                  𝑎 =
(𝜌 + 1)2 ∙ ∆𝑡2

4
                                                                   (3) 

                                                            𝑏 = 𝜌2 + 1 ,                                                                                (4)                                  

where 𝑼𝑡+∆𝑡 , 𝑼𝑡  and 𝑼𝑡−∆𝑡  are the nodal displacement vectors (as field variables) at times 

𝑡 + ∆𝑡, 𝑡 and 𝑡 − ∆𝑡 respectively, ∆𝑡 is the time step, 𝐌𝑡  indicates the global time-dependent 

lumped mass matrix, and 𝜌  is the spectral radius which is adaptively calculated during the 

iterations:  

                                                              𝜌 = 1 −
2

√𝑘 + 1
                                                                            (5) 

                                                             𝑘 =
4

Δ𝑡2𝐴0
                                                                                    (6) 

                                             𝐴0 ≈
( 𝑼𝑡 − 𝑼𝑙 )

𝑇
( 𝑭 − 𝑭0

𝑙
0
𝑡 )

( 𝑼𝑡 − 𝑼𝑙 )
𝑇

𝑴𝒕 ( 𝑼𝑡 − 𝑼𝑙 )
                                                          (7) 

where 𝑼𝑙  is the vector of nodal displacements at a previous time point l close to t; 𝑭0
𝑡  is the 

global nodal reaction force vector at time t relative to initial configuration; 𝑭0
𝑙  is the global nodal 

reaction force vector at the previous time point l relative to initial configuration. More details on 

the derivation of Equation (7) are presented in (Joldes et al., 2011).  

 Introducing discontinuities by cutting can lead to spurious jumps and oscillations in the 

solution. Dynamic relaxation is very effective in damping out these oscillations without the need 

for any additional treatment. 

2.2. Modelling of surgical cutting in 2D 

Methods for modelling of discontinuity in the displacement and stress fields associated with 

cuts/cracks are still a hotly debated topic. An extensive review of such methods from the 
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perspective of the overreaching concept of partition of unity has been recently conducted by 

(Rabczuk et al., 2010).  

 In this study, we geometrically represent the progressing surgical cut as a series of line 

segments (as shown in Figure 1) and adapt the level set method proposed by (Osher and Sethian, 

1988) and developed by (Stolarska et al., 2001) to mathematically describe the locations of all 

nodes and integration points relative to the cutting path. The discontinuities induced by surgical 

cutting are modelled and traced using nodes with specific level set values and appropriate field 

values (the nodal displacement and the size of domain of influence). The effect of cutting is 

entirely reflected in the changes of the shape and size of the influence domain of nodes by 

efficiently implementing visibility criterion with the help of the level set method.  

 

[Possible location of Figure 1] 

2.2.1. Initialisation of level set values of nodes and integration points  

When the first cut (e.g. T0-T1 in (Figure 1)) is made, we mathematically represent the cutting 

direction as the zero level set of function 𝜓(x, y) in Equation (8). The endpoint of a cut is 

represented as the intersection of the zero level set of function 𝜓 with an orthogonal zero level 

set of function 𝜙(x, y) defined in Equation (9): 

                               𝜓(𝑥, 𝑦) = (𝑥 − 𝑥𝑒𝑝)
𝑉𝑦

‖𝑽‖
− (𝑦 − 𝑦𝑒𝑝)

𝑉𝑥

‖𝑽‖
                                                      (8) 

                               𝜙(𝑥, 𝑦) = (𝑥 − 𝑥𝑒𝑝)
𝑉𝑥

‖𝑽‖
+ (𝑦 − 𝑦𝑒𝑝)

𝑉𝑦

‖𝑽‖
                                                      (9) 

where (𝑥 , 𝑦)  is the coordinate of a given point in the problem domain; (𝑥𝑒𝑝, 𝑦𝑒𝑝)  is the 

coordinate of the endpoint of the cutting path. 𝑉𝑥  , 𝑉𝑦  are the components of vector 𝑽 
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representing the cutting direction, and ‖𝑽‖ is the length of vector 𝑽.  

The values of both level set functions 𝜓 and 𝜙 are calculated and stored for all the nodes 

and integration points to indicate their positions relative to the cutting path. The value of the 

level set function 𝜓 at a given point is the signed-distance from this point to the cutting direction. 

As illustrated in (Figure 2), the points with positive values of the level set function 𝜓 are all 

located at the same side of the cutting line segment L and its extension L1 while the points with 

negative values are all at the other side. Zero value of function 𝜓 indicates that the point is 

located right on the cutting line segment L or its extension line L1. Accordingly, the value of the 

level set function 𝜙 indicates the signed-distance from a given point to line segment L2 which is 

orthogonal to the cutting path at the endpoint. If a point is judged to be located on the cutting line 

segment L (zero value of function 𝜓 and negative value of function 𝜙), the associated value of 

function 𝜓 is set to a small  positive or negative value in order to allocate the point to one of the 

sub-domains S1 or S2 (Figure 2).   

[Possible location of Figure 2] 

2.2.2. Spatial discretisation of the cutting path 

The endpoint of the cut and the rest of the line segments representing the cutting path are 

discretised using nodes. If the computational grid obtained by discretising the geometry of the 

analysed continuum contains no node at the endpoint of the cut, we add a node there with zero 

values of level set functions 𝜓 and 𝜙 (Figure 3a). The rest of the cutting segments are discretised 

using nodes spaced at the average nodal interval of the computational grid. If there is no node at 

the discretised position, two nodes (having the same coordinates) are added at this position. If 

there is an existing node at the discretised position or elsewhere on the cutting path, we split this 
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node into two nodes having the same coordinates. 

Every two nodes added (or split) at the same position are allocated on opposite sides of 

the cutting path by appropriate values of the level set functions (Figure 3b,c). For one node, the 

level set function 𝜓 is set to a positive value smaller than the minimum size of the influence 

domain, while for the other one, the function 𝜓 is set to a negative value of the same magnitude. 

Both nodes are assigned with the same negative value of the level set function 𝜙 with magnitude 

less than the length of the cutting segment. Imposing the limit of the minimum size of the 

influence domain on the magnitudes of the assigned level set values ensures that the nodes fall 

into the confined area in which the nodal influence domains should be re-shaped to account for 

discontinuities introduced by cutting.  

[Possible location of Figure 3] 

Besides the level set values, appropriate field values are assigned to the newly added 

nodes. If the node is created at a new position, its displacements are interpolated (from the 

adjacent nodes) by Moving Least Squares (MLS) approximation and the size of its domain of 

influence is set to the average size of the influence domains of the surrounding nodes. If the node 

is created by splitting of an existing node, its displacements and the size of influence domain are 

inherited from the existing node. 

2.2.3. Update of level set values of nodes and integration points while cutting progresses  

When cutting progresses from one point to the next one, the level set values of functions 𝜓 and 𝜙 

at the nodes and integration points need to be updated. In the following algorithm, 𝜓𝑛  and 

𝜙𝑛 denote the values of functions 𝜓  and 𝜙  at step 𝑛 ; 𝜓𝑛+1  and 𝜙𝑛+1 denote the values of 

functions 𝜓 and 𝜙 at step 𝑛 + 1; (𝑥 , 𝑦) is the coordinate of a given node or integration point in 
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the problem domain; (𝑥𝑒𝑝
𝑛  , 𝑦𝑒𝑝

𝑛 ) and (𝑥𝑒𝑝
𝑛+1 , 𝑦𝑒𝑝

𝑛+1) are the coordinates of the cut endpoint at 

steps 𝑛 and 𝑛 + 1 respectively; 𝑉𝑥
𝑛+1, 𝑉𝑦

𝑛+1 are the components of the cutting vector 𝑽𝒏+𝟏 at step 

𝑛 + 1; vector 𝑽𝒏+𝟏 is defined by points (𝑥𝑒𝑝
𝑛  , 𝑦𝑒𝑝

𝑛 ) and (𝑥𝑒𝑝
𝑛+1 , 𝑦𝑒𝑝

𝑛+1).  

 

(1) Cutting direction does not change. When cutting progresses from one endpoint to the next 

without direction change, the values of level set function 𝜙 of the nodes and integration 

points whose 𝜙𝑛 ≥ 0 need to be updated. The update process is illustrated in (Figure 4). No 

update is done in the area where 𝜙𝑛 < 0 (indicated as non-update area 𝐴𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒  in 

(Figure 4)) while the rest of the analysed domain (where 𝜙𝑛 ≥ 0) is an update area 𝐴𝑢𝑝𝑑𝑎𝑡𝑒: 

                                                  𝜓𝑛+1 = 𝜓𝑛         𝑖𝑛 𝐴   = 𝐴𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒      𝐴𝑢𝑝𝑑𝑎𝑡𝑒                 (10)                                                                             

                                                   𝜙𝑛+1 = 𝜙𝑛         𝑖𝑛 𝐴𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒                                                (11)                        

                   𝜙𝑛+1(𝑥, 𝑦) = (𝑥 − 𝑥𝑒𝑝
𝑛+1)

𝑉𝑥
𝑛+1

‖𝑽𝒏+𝟏‖
+ (𝑦 − 𝑦𝑒𝑝

𝑛+1)
𝑉𝑦

𝑛+1

‖𝑽𝒏+𝟏‖
            𝑖𝑛 𝐴𝑢𝑝𝑑𝑎𝑡𝑒     (12)

 where A is the union of 𝐴𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒 and 𝐴𝑢𝑝𝑑𝑎𝑡𝑒 areas. 

 [Possible location of Figure 4] 

(2) Cutting direction changes. If the cutting direction changes, the update region 𝐴𝑐
𝑢𝑝𝑑𝑎𝑡𝑒

 is 

defined as the area where 𝜙𝑛̅̅ ̅̅ > 0 while the rest of the analysed domain is defined as the 

non-update region 𝐴𝑐
𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒

(Figure 5).  

a) Level set function 𝜙𝑛̅̅ ̅̅  is obtained by rotating function 𝜙𝑛  around the cutting path 

endpoint (𝑥𝑒𝑝
𝑛 , 𝑦𝑒𝑝

𝑛 ) (point T2 in (Figure 5)) until orthogonal to the cutting vector 

𝑽𝒏+𝟏: 

                                  𝜙𝑛̅̅ ̅̅ (𝑥, 𝑦) = (𝑥 − 𝑥𝑒𝑝
𝑛 )

𝑉𝑥
𝑛+1

‖𝑽𝒏+𝟏‖
+ (𝑦 − 𝑦𝑒𝑝

𝑛 )
𝑉𝑦

𝑛+1

‖𝑽𝒏+𝟏‖
            𝑖𝑛 𝐴                    (13)  
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where A is defined in Equation (10). 

b) Following changes in the cutting direction, the values of function 𝜓𝑛+1 of the nodes 

and integration points in the update region 𝐴𝑐
𝑢𝑝𝑑𝑎𝑡𝑒

are re-computed while no re-

computation is needed in the  nom-update region 𝐴𝑐
𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒

: 

                      𝜓𝑛+1(𝑥, 𝑦) = (𝑥 − 𝑥𝑒𝑝
𝑛+1)

𝑉𝑦
𝑛+1

‖𝑽𝒏+𝟏‖
− (𝑦 − 𝑦𝑒𝑝

𝑛+1)
𝑉𝑥

𝑛+1

‖𝑽𝒏+𝟏‖
            𝑖𝑛 𝐴𝑐

𝑢𝑝𝑑𝑎𝑡𝑒          (14)   

                                                   𝜓𝑛+1 = 𝜓𝑛          𝑖𝑛 𝐴𝑐
𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒                                                (15) 

c) Re-computation of function 𝜙𝑛+1is done in the entire analysed area A: 

                               𝜙𝑛+1(𝑥, 𝑦) = (𝑥 − 𝑥𝑒𝑝
𝑛+1)

𝑉𝑥
𝑛+1

‖𝑽𝒏+𝟏‖
+ (𝑦 − 𝑦𝑒𝑝

𝑛+1)
𝑉𝑦

𝑛+1

‖𝑽𝒏+𝟏‖
            𝑖𝑛 𝐴 .                (16) 

 

[Possible location of Figure 5] 

 

2.2.4. Update of the influence domain of the nodes affected by cutting 

The update of the influence domains of any node in the vicinity of the cutting path is 

implemented by finding and eliminating the points that are no longer influenced by the node due 

to the cutting path. In the following algorithm, 𝜓𝑖  and 𝜙𝑖  denote the values of the level set 

functions 𝜓 and 𝜙 at node 𝑖 while  𝜓𝑝 and 𝜙𝑝 denote the values of level set functions 𝜓 and 𝜙 at 

a point P in the influence domain of node 𝑖.  

(1) The influence domain of a node, which is defined as a circle in our algorithm, is updated if it 

intersects the cutting path (Figure 6). The selection criterion for the node whose influence 

domain needs to be updated is 

                                            |𝜓𝑖| ≤ 𝑅𝑖 and  𝜙𝑖 < 𝑅𝑖                                                         (17) 

where 𝑅𝑖 is the size (radius) of the influence domain of node 𝑖.  
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[Possible location of Figure 6] 

(2) The point is kept in the influence domain of the node if the node and the point are both 

located at the same side of the cutting path: 

                             𝜓𝑖 × 𝜓𝑝 ≥ 0                                                (18) 

(3) If the point and the node are located at the opposite sides of the cutting path,  

                                                   𝜓𝑖 × 𝜓𝑝 < 0                                                                    (19)                                                     

additional criteria need to be checked to decide whether the point is to be kept or eliminated 

from the influence domain of the node: 

(a) As illustrated in (Figure 7), the first selection criterion for the points that need to be 

eliminated from the influence domain of the node is: the node and the point are located in 

different subdomains S1 and S2, i.e. one of them is located in sub-domain S1 while 

another one is within sub-domain S2 or on line segment L2. The above selection criterion 

is expressed as (see also Figure 7): 

(𝜙𝑖 ≤ 0 AND 𝜙𝑝 < 0)  OR (𝜙𝑖 < 0 AND 𝜙𝑝 = 0)                    (20) 

(b) If the criterion (a) expressed by Equation (20) is not satisfied, there are only two 

alternatives for position of the point in relation to the node (Figure 7): either one is 

located in sub-domain S1 and another one is in sub-domain S4 or one is in sub-domain 

S2 and another one is in sub-domain S3. Therefore, we have to geometrically judge if the 

line segment linking the node and the point intersects the cutting path. If the intersection 

occurs, the point is removed from the influence domain of the node. 

(4) The following updates are made to account for the changes in influence domains: 

 For the points that are eliminated from the influence domains of the nodes, the shape 

functions and their derivatives are re-calculated. 
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 The global mass matrix is updated.  

[Possible location of Figure 7] 

The update procedure proposed in this section works well for direction changes of less 

than 90 degrees. If more abrupt changes in cutting direction have to be simulated, the procedure 

needs to be modified or a different approach for defining the discontinuity may be needed. The 

drawback, however, appears to be insignificant as surgical techniques employing cuts with 

abruptly changing direction are not reported in commonly used surgery textbooks (Greenfield 

and Mulholland, 2010; Westra et al., 2002). 

2.3. Description of MTLADR solution algorithm for surgical cutting simulation 

The complete Meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR) algorithm 

adapted for surgical cutting simulation can be described as follows: 

(a) Pre-computation and initialisation: 

 Compute the shape functions and their derivatives for each integration point. A regular 

grid of square integration cells is used for Gaussian quadrature; 

 Specify the time step for explicit integration in time domain and apply mass scaling to 

ensure the integration stability; 

 Create global lumped mass matrix by evenly distributing the scaled mass carried by each 

integration point to the nodes that influence it; 

 When simulating cutting of the deforming continuum, subject the continuum to loading 

through essential boundary conditions (i.e. by prescribing the displacements on the 

boundary) and compute the deformations within continuum.   

For each progressive cut: 
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(b) Cutting: 

 Update the shape functions and their derivatives at the integration points affected by 

cutting (section 2.2.4);  

 Determine the critical time step and update the mass scaling coefficients at the integration 

points;  

 Update the scaled global lumped mass matrix. 

(c) Relaxation: 

 Initialise the spectral radius for dynamic relaxation with a value close to 1 (e.g. 0.998), 

which attenuates the high-frequency oscillations in the solution but allows deformation 

propagation (small damping) (Joldes et al., 2009a);  

 For each time step of explicit integration:  

 Update 𝑼𝑡−𝛥𝑡 = 𝑼𝑡  and 𝑼𝑡 = 𝑼𝑡+𝛥𝑡  ;  

 Compute the global nodal reaction forces as described in (Horton et al., 2010); 

 Compute the nodal displacements at next time step (Equations 2 - 4); 

 Impose the essential boundary conditions; 

 Re-calculate the spectral radius (Equations 5 - 7). The spectral radius used in 

computations is smoothed in order to eliminate large jumps in its value. 

 Update 𝑼𝑙  and 𝑭0
𝑙  using the computed nodal displacements and global nodal reaction 

forces. 

 Following the update of 𝑼𝑙  and 𝑭0
𝑙 , the spectral radius is regarded as stabilised if the 

difference between the calculated spectral radius 𝜌 and the currently used one is less 

than a specified threshold.   



 

 17 

 If the convergence rate becomes stabilised, check the convergence criteria (Joldes et 

al., 2011). The time iteration is terminated if the convergence criterion is met. 

The computed nodal displacements at the end of Dynamic Relaxation in a Meshless 

method are in fact field variables. To compute the real displacements at any point (including the 

nodes), an interpolation needs to be performed using the meshless shape functions. 

3. Numerical results and algorithm verification 

3.1. Modelling and simulation of soft tissue cutting in 2D using MTLADR algorithm 

We simulate cutting in a deforming continuum having soft tissue-like material behaviour. The 

deformation preceding cutting is induced by elongating a square specimen of size of 0.1m by 

0.1m as illustrated in (Figure 8). One edge (x=0 m) of the specimen is rigidly constrained while 

the opposite one (x=0.1 m) is elongated by 0.02 m along the x-axis. The specimen is discretised 

into nodes. The number of nodes (6561) was selected based on the results of convergence 

analysis summarised in (Figure 9) and Table 1.  Because of the specimen’s rectangular shape, we 

distributed the nodes regularly. However, as indicated by (Horton et al. 2010), the Total 

Lagrangian meshless algorithm with MLS shape functions can be also applied for irregular node 

placements. 

Various non-linear material models can be used in the MTLADR algorithm through 

application of different formulae for calculation of the second Piola-Kirchhoff stress at the 

integration points. In our simulations we used the Neo-Hookean material model and modelled 

soft tissue as a soft and nearly incompressible continuum (Young’s modulus of 𝐸 = 3000 Pa , 

Poisson’s ratio of ν = 0.49, mass density of ρ = 1000kg/m3). As we verify the MTLADR 

algorithm against the established non-linear static solution procedures available in the 

commercial finite element code Abaqus (ABAQUS, 2009), we use the same form of the Neo-
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Hookean strain energy potential as the one in Abaqus:  

                                                     U =
𝜇0

2
(𝐼1̅ − 3) +

𝑘0

2
(𝐽 − 1)2                                                             (21)                                                                   

                                                     𝐼1̅ = 𝐽−1 ∙ 𝐼1           for 2D                                                                      (22) 

where 𝜇0 is the initial shear modulus; 𝑘0  is the initial bulk modulus; 𝐼1̅  is the first deviatoric 

strain invariant; 𝐽 is the volumetric change which equals to the determinant of the deformation 

gradient; 𝐼1 is the first invariant of the right Cauchy deformation tensor. From Equations  (21) 

and (22), we derive the second Piola-Kirchhoff stress tensor S for 2D problems as 

                 𝐒𝑖𝑗0
𝑡 = 𝜇0𝐽−1 (𝛅𝑖𝑗 −

1

2
𝐼1 𝐂𝑖𝑗0

t −1
) + 𝑘0𝐽(𝐽 − 1) 𝐂𝑖𝑗0

𝑡 −1
       𝑖 = 1, 2;  𝑗 = 1, 2                (23) 

where 𝛅ij is the Kronecker Delta tensor; 𝐂ij is the right Cauchy-Green deformation tensor. 

[Possible location of Figure 8] 

Cutting simulation is carried out along the pre-planned path on the deforming (stretched) 

specimen model (Figure 8). At any stage of cutting, the steady-state deformations within the 

specimen are predicted by the proposed MTLADR algorithm. The deformed shape of the 

specimen before the change of cutting direction is shown in (Figure 10a and 10b). The specimen 

at the end of cutting, i.e. after the change in cutting direction is introduced, is shown in (Figure 

10c). The total reaction force in x-axis direction (at the specimen’s edge x=0 m) and strain 

energy at the end of cutting, which formed the basis of the convergence analysis, are reported in 

(Table 1). 

[Possible location of Figure 9] 
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[Possible location of Figure 10] 

[Possible location of Table 1] 

3.2. Reference solution for MTLADR algorithm verification 

As discussed in Introduction, there are a number of difficulties (such as the need for re-meshing) 

when attempting to simulate cutting using the finite element method. Therefore, when obtaining 

the reference solution for MTLADR algorithm verification using the established non-linear static 

solution procedures available in the commercial finite element code Abaqus, we do not directly 

simulate cutting but instead apply elongation to a pre-cut specimen model. The edges of the 

elements were aligned and separated along the edges of the cut (Figure 11). The specimen 

dimensions are the same as those of the MTLADR model.  Implicit integration and standard 

linear quadrilateral plain strain elements with hybrid formulation are used in the Abaqus 

analysis. The boundary conditions are the same as the ones applied in the model solved using the 

MTLADR algorithm.  

[Possible location of Figure 11] 

As in both models (solved using the MTLADR algorithm and Abaqus) soft tissue is 

considered as a hyper-elastic material, the predicted deformations are independent of the loading 

history. This implies that despite the differences in method of introducing the discontinuity in the 

model using our MTLADR algorithm (cutting directly modelled) and reference model solved 

using Abaqus (the discontinuity introduced before deformation is applied), the steady state 

solution at the end of cutting should be the same.  
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H-refinement (mesh density increase) is used to obtain a converged reference solution in 

the model solved using Abaqus. As shown in (Table 2), the reaction force changes only by 0.3% 

and the strain energy remains virtually constant when the number of nodes increases from 7813 

to 31572. Therefore, the solution for 7813 nodes is taken as the benchmark for verification. The 

deformed state (reference solution) obtained using Abaqus is shown in (Figure 12).   

[Possible location of Table 2]  

[Possible location of Figure 12] 

3.3. Results of MTLADR algorithm verification  

The reaction force, strain energy and nodal displacements predicted when modelling surgical 

cutting using the proposed MTLADR algorithm agree well with the reference solution obtained 

using the commercial finite element solver Abaqus.  

The relative difference for the reaction force and strain energy calculated using the 

MTLADR algorithm and Abaqus solver at the end of cutting is 0.07% and 0.8% respectively. 

This is a very good agreement, considering that we used a grid of regular background integration 

cells for integration in the MTLADR algorithm, which is a source of integration errors along the 

cutting path, as the integration cells do not align with the geometry. Nevertheless, such regular 

integration cells are very easy to generate and do not require any mesh to be created. 

To enable verification of the predicted deformations, the nodal displacements obtained 

using the MTLADR algorithm were calculated (through interpolation using the MLS shape 

functions) for the nodal positions of the Abaqus model. For the nodal displacement magnitudes, 

the maximum absolute difference between the results obtained using the MTLADR algorithm 
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and Abaqus is 0.31mm (1.56% of the imposed elongation) and the average difference (averaging 

over all model nodes) is only 0.018mm (0.09% of the imposed elongation) (Figure 13).  

As illustrated in (Figure 13b), the absolute difference at most of the nodal positions 

(93.82%) is less than 0.05mm (0.25% of the imposed elongation) while it slightly increases to 

within 0.1mm (0.5% of the imposed elongation) for another 5.27% of nodal positions. At only 

few nodal positions (0.91%), the absolute difference ranges from 0.1 mm to 0.31 mm. 

Considering that the accuracy of the state-of-art image-guided neurosurgery techniques is not 

better than 1mm (Bucholz et al., 2004), the accuracy of the proposed MTLADR algorithm can be 

regarded as satisfying the requirements of computer-integrated surgery.  

[Possible location of Figure 13] 

 

4. Conclusions and discussion  

We developed the Meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR) 

algorithm, which belongs to the Element-Free Galerkin (EFG) family, for predicting the steady-

state deformation of soft tissue at any stage of cutting. The features of the MTLADR algorithm 

include: (1) the effective modelling of surgical cutting using nodes with the aid of the level set 

method; (2) the Total Lagrangian formulation that makes it possible to conduct the most time 

consuming computations before the start of time-critical simulations; (3) the adaptive Dynamic 

Relaxation that facilitates fast convergence to the deformed (steady) state; (4) the capability of 

modelling large deformations and non-linear material properties of soft tissues exhibited in 

surgery. The MTLADR algorithm can generally be used to solve both 2D and 3D problems, 

although only 2D examples are presented in this paper.  
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With the benefits of no meshing and no re-meshing, we model 2D surgical cutting by 

creating a pair of nodes at each discretised position on the cutting path and introducing one node 

at the endpoint of the cut. The nodes of each nodal pair on the cutting path are allocated to 

opposite sides of the cutting path by using specific level set values. For explicit time integration, 

the field variable values at these nodes are either inherited or computed (using MLS 

interpolation) from the surrounding nodes. The effect of cutting is entirely reflected through the 

changes in the domain of influence of the nodes by efficiently implementing the visibility 

criterion using the level set method.  

Numerical experiments are carried out to predict the behaviour of a deformed (stretched) 

specimen of soft tissue-like material during cutting. The computed reaction force, strain energy 

and nodal displacements exhibit good agreement with the reference solution obtained using the 

well established non-linear static solution procedures available in the commercial finite element 

software Abaqus.  

Further investigation is being undertaken to extend the proposed algorithms to modelling 

and simulation of soft tissue cutting in 3D. Maintaining high computational speed despite 

increase in the computational cost associated with 3-D modelling will be possible with the help 

of parallel computation on graphics processing unit (GPU). The literature suggests that this can 

be achieved with ease (Joldes et al., 2010a; Joldes et al., 2010b).  
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Table 1. The study of spatial convergence of MTLADR 2D cutting algorithm: comparison of the 

strain energy and the reaction force when the nodal density (indicated by the number of nodes) is 

increased. 

Number of nodes 121 441 1681 6561 25921 

Strain energy [J] 0.54382 0.52351 0.51358 0.50663 0.50546 

Reaction force [N] 49.5437 47.9239 47.1165 46.531 46.4683 
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Table 2. The H-refinement results for the model shown in (Figure 11) obtained using the non-

linear static solution procedures available in Abaqus.  Comparison of the reaction force and 

strain energy when the mesh density (indicated by the number of nodes) is increased. 

Number of nodes 144 515 1925 7813 31572 

Strain energy [J] 0.52627 0.51547 0.509889 0.506979 0.505576 

Reaction force [N] 49.2445 47.9239 47.2442 46.9095 46.7666 
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List of figures: 

Figure 1. The cutting path in the problem domain is represented by a series of line segments (T0-

T1, T1-T2 and T2-T3).  

Figure 2. The initialisation of level set values of functions 𝜓 and 𝜙 for nodes/integration points 

in the problem domain: 𝜓 = 0 on L and L1 and 𝜙 = 0 on L2. 

Figure 3. Illustration of the cutting path discretisation using nodes. After discretisation, the nodes 

are divided by the level set value of function 𝜓: (a) 𝜓 = 0 (cutting path); (b) 𝜓 > 0; (c) 𝜓 < 0. 

Figure 4. Progression of cutting without direction change (cutting line segments T0-T1 and T1-

T2 are co-linear). The shaded area, where 𝜙𝑛 < 0, is a non-update area A
non-update

 while the rest 

of the domain is an update area A
update

 . 

Figure 5. Progression of cutting with direction change: the cutting proceeds from point T2 to T3 

with direction change. Level set function 𝜙𝑛̅̅ ̅̅  is obtained by rotating level set function 𝜙𝑛 until it 

is orthogonal to the current cutting vector 𝑽𝒏+𝟏.The shaded area, where 𝜙𝑛̅̅ ̅̅  ≤ 0, is an non-update 

area 𝐴𝑐
𝑛𝑜𝑛−𝑢𝑝𝑑𝑎𝑡𝑒 while the rest is an update area 𝐴𝑐

𝑢𝑝𝑑𝑎𝑡𝑒 .  

Figure 6. The influence domain of node N1 intersects the cutting line L; points P1 and P2 should 

be eliminated from the influence domain of this node. The influence domain of node N2 goes 

through the cutting endpoint T only, so it does not need an update. 

Figure 7. Update of influence domains of the nodes affected by cutting. Points P3 and P4 are 

removed from the influence domain of node N (step 3.a of the algorithm for updating nodal 

influence domains). According to step 3.b of the algorithm for updating nodal influence domains, 

point P5 must be removed from the domain of influence of node N while points P6 and P7 are 

kept. 

Figure 8. Model for verification of the MTLADR algorithm. Cutting is carried out in the 

stretched specimen of soft tissue-like material along the pre-defined path shown using thick line 

segments. Dimensions are in metres (m). 
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Figure 9. Convergence study: variation of strain energy with the number of nodes used for 

discretisation. Comparison between MTLADR and Abaqus.  
 

Figure 10. Results obtained using the MTLADR algorithm showing different stages of cutting. 

Dimensions are in metres (m). 

Figure 11. The initial configuration of the finite element model with 7813 nodes built using the 

commercial finite element code Abaqus. Dimensions are in metres (m). 

Figure 12. The deformed state of the finite element model with 7813 nodes. The results are used 

as the reference solution for verification of the MTLADR algorithm. Dimensions are in metres 

(m).  

Figure 13 Results of verification the proposed MTLADR algorithm. Distribution of the absolute 

difference between the displacement magnitudes computed using the MTLADR algorithm and 

the reference results from the established non-linear static solution procedures available in the 

Abaqus commercial finite element code:  a) Spatial distribution. b) Statistical distribution. The 

displacements are at the nodal positions of the model (shown in Figure 11) built in Abaqus.  
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