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Abstract. We model and simulate avascular tumor growth in three dimensions 
using lattice gas cellular automata (LGCA). Our 3D models are an advance over 
current state-of-the-art where most 3D models are in fact only models of two 
and a half dimensions, i.e., a series of 2D models simulated to give an 
appearance of a 3D model. In our 3D model, we use binary description of cells 
and their states for computational speed and efficiency. The fate and 
distribution of cells in our model are determined by the Lattice Boltzmann 
energy. We simulate our model in a comparable size of lattice and show that the 
findings are in good agreement with biological tumor behavior.  
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1   Introduction 

The fact that one person out of three will be treated for some form of cancer in their 
lifetime [1] has motivated many researches into cancer over the past several decades. 
However, so far, neither incidence nor mortality of human cancer has been much 
diminished by conscious human intervention. A better understanding of the cellular 
basis underlying tumor growth may eventually open the door to its successful 
treatment, as will the development of novel drugs and therapies based on the results of 
molecular and cellular biological cancer research. It is hoped that a three dimensional 
model of tumor and its simulation will prove to be a milestone in this quest as such 
models are more representative of a tumor in vivo. 

The avascular growth phase of tumor is also called the primary growth phase. 
Growth of tumor in this phase depends on the supply of nutrients and its size is 
limited by the diffusion of these nutrients. Tumors in the avascular phase are 
considered relatively benign, and the detection and treatment of tumors at this stage 
provide a greater probability of having the disease cured. 

In our earlier work [2], we modeled and simulated avascular tumor growth in two 
dimensions. The model incorporated a heterogeneous population of cells – 
proliferating, quiescent, necrotic, apoptotic, and mutated cells. Mutation of cells gives 
rise to cells of a different phenotype that have the ability to survive at lower levels of 
nutrient concentration and reproduce faster. The concentration of nutrients available 
for each cell in the tumor volume is decided by solving the diffusion equation. 
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Although the model was able to capture the tumor growth dynamics at the cellular 
level, simulation of large size of tumor was not possible due to the computational 
burden of solving the diffusion equation. 

In our most recent work [3], we modeled the complete growth of an avascular 
tumor by employing cellular automata for the growth of cells and a steady-state 
equation to solve for nutrient concentrations. Through simulation, we showed that, in 
the case of a brain tumor, oxygen distribution in the tumor volume may be sufficiently 
described by a time-independent steady-state equation without losing the 
characteristics of a time-dependent diffusion equation. This made the solution of 
oxygen concentration in the tumor volume computationally more efficient, thus 
enabling simulation of tumor growth on a large scale. The results from our growth 
simulation compared well with existing experimental data on Ehrlich ascites 
carcinoma and tumor spheroid cultures. Nonetheless, a 3D model of tumor would 
serve a better purpose of investigating tumor growth dynamics due to its similarity 
with a tumor in vivo. However, the growth simulation of the model obtained by 
extending our model into 3D was unattainable due to excessive computational burden. 
Given that the 2D simulation of the complete growth of tumor using this approach 
required about 18 hours on average to complete in a desktop computer with a 3.2GHz 
processor and 12GB of RAM [3], it can be estimated that a 3D computation of the 
tumor growth to a similar size would take at least 10 days in a computer with the 
same specifications. A similar problem arose with an implementation of the 3D model 
in the Graphics Processing Units (GPUs) for general purpose computations due to 
insufficient memory to hold the complete data. 

Therefore, a majority of research in the area of tumor growth modeling is limited 
to pattern formation in a growing tumor [4-6] due to either the inherent time-
consuming nature of numerical solution to partial differential equations or simulating 
growth on a macro-scale starting from a few cells is computationally very expensive. 

In [7], a simulation of an early three dimensional model is presented. However, 
details of the method used for the development of their model are not presented. Their 
model does not include tumor heterogeneity. More importantly, the tumor resulting 
from the simulation of their model contains less than 1000 cells, and therefore, the 
size of tumor is extremely small to be able to be used for any practical studies. 

In [8], a three dimensional tumor model is developed using the finite element 
approach and is based on governing equations obtained via the thermodynamically 
constrained averaging theory. We have presented the limitations of the continuum 
approach of modeling tumor growth, the behavior of which is governed by the 
discrete state of each of its constituent cells, in our earlier work [3]. 

Another work in the development of a three dimensional model may be found in 
[9] where part of the secondary phase of tumor growth is modeled. Specifically, the 
development of vasculature inside the tumor is modeled using a hybrid discrete-
continuum approach. 

Most existing literature pass on the idea of developing a 3D model by suggesting 
that extending a 2D model into 3D is obvious and simple; and some leave it for future 
work. At their best, some present 3D models of tumor that are in fact models of two 
and a half dimensions in the sense that these models are a series of 2D models 
simulated to give an appearance of a 3D model. 
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In this paper, we present the Lattice Gas Cellular Automata (LGCA) model of the 
three dimensional growth of tumor. We use the binary description of cells and their 
states in our model for computational speed and efficiency. The fate and distribution 
of cells in our model are determined by the Lattice-Boltzmann Energy [10]. 

In the rest of this paper, we present, in order, the basics of lattice gas cellular 
automata, the transition rules, the formation of our 3D tumor growth model including 
the interaction and the transport steps, and finally, the results and discussion. 

2   Lattice Gas Cellular Automata 

The Lattice Gas Cellular Automata (LGCA) model was introduced by Hardy, de 
Passis, and Pomeau in 1976 [11] and is also called the HPP model, a name derived 
from its inventors. Initially used for the description of the molecular dynamics of a 
classical lattice gas, the LGCA was later used to model large numbers of uniformly 
interacting particles (cells). Although LGCA has been used to model many physical 
systems [12], it has been used only in [13] to model self-organized avascular tumor in 
2D. They simulated the LGCA model in only a 200x200 grid, a relatively small lattice 
for a 2D model. More information on their LGCA modeling approach is provided in 
their book [6]. However, the book only goes at length discussing biological pattern 
formation without offering the details of tumor growth modeling. 

LGCA employs a regular, finite lattice and includes a finite set of particle states, an 
interaction neighborhood and local rules which determine the movement of particles 
(cells) and their transitions between states [6, 12, 14]. LGCA differ from traditional 
CA by incorporating the movement of particles and an exclusion principle. The 
particles in the model select from a finite number of permissible discrete velocity 
channels.  The velocity specifies the direction and magnitude of movement, which 
may include zero velocity (rest). In a simple exclusion rule, only one particle may 
have each allowed velocity at each lattice site. 

Every node in the two-dimensional LGCA model is associated with five velocity 
channels, namely, stay, left, right, up and down. Similarly, each node in a three-
dimensional LGCA model has seven velocity channels associated with it – stay, left, 
right, up, down, front, and back. For the case of a two-dimensional LGCA model, the 
number of velocities and their possible directions are shown in Fig.1 (a). 

For a two-dimensional LGCA model, the velocities associated with a particular 
node maybe represented in binary format as shown in Fig.1 (b). The notations s, l, r, u 
and d in Fig.1 (b) represent stay (or rest), left, right, up and down respectively. The 
three-dimensional LGCA model will have f and b representing front and back 
respectively in addition to the five velocities in the two-dimensional LGCA model. 
For simulation purposes, binary representation means faster computation and smaller 
memory requirement thus leading to the possibility of simulation of a three-
dimensional tumor model. 
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a)   b)  
 
Fig.1 (a) The number of velocities available in a node and their possible directions for a 2D 
LGCA. (b) Examples of binary representation of some possible velocities at a node in a 2D 
LGCA. 

3   Transition Rules 

The transition rule of an LGCA has two steps [6, 14]. The first is an interaction step 
in which the state of each particle at each lattice site is updated. During this step, cells 
may appear (through reproduction) or disappear (through necrosis or apoptosis). 
Therefore, this step is neither number nor mass conserving. Moreover, the velocity 
state associated with each node in the lattice may change depending on the CA rule 
applied to them. 

The second step is the transport step in which cells move synchronously in the 
direction and by the distance specified by their velocity state. The velocity state for 
each node in the lattice in a two dimensional LGCA model is represented in the five 
velocity channels inside the node (shown in Fig.2 as five circles inside a node). The 
velocity state for each node in a three-dimensional LGCA lattice is similarly 
represented in the seven velocity channels inside the node. This step is always 
number/mass conserving. An example of the lattice configuration before and after the 
transport step is shown in Fig.2 for the case of a two-dimensional LGCA model. 
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Fig.2 Lattice configuration before (left) and after (right) the transport step. Particles have 
moved to the directions specified by the gray dots 

4   Formulation of the 3D LGCA Tumor Growth Model 

We choose a cubic geometry for the 3D tumor lattice and the von-Neumann 
neighborhood with a radius of 1 as the interaction neighborhood. We employ a fixed 
boundary condition with normal cells present at the boundary at all times. As an 
initial condition, one cancer cell is seeded at the centre of the lattice. 

The LGCA model incorporates a set of four states of cells for the four types of 
cells, namely, normal, proliferating, quiescent and necrotic cells. 

For 3D simulation, we store data in a 3D matrix that consists of 5 layers of 2D 
matrices as shown in Fig.3. The first and the second layers store the velocity states of 
the proliferating and necrotic cells respectively whereas the third and the fourth layers 
store the number of cancer and necrotic cells respectively in the von-Neumann 
neighborhood of each node (x, y, z). The fifth layer stores the information in the von-
Neumann neighborhood of a node (x, y, z), i.e., information in cells at positions(x, y, 
z), (x+1, y, z), (x-1, y, z), (x, y+1, z), (x, y-1, z), (x, y, z+1), and (x, y, z-1) and is used 
for imaging purposes. 

 
 

 
 
Fig.3 Layers of the 3D matrix used to store data for the 3D tumor growth simulation 
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4.1   Interaction Step 

As stated earlier, the first of the transition rules in the LGCA tumor growth model is 
an interaction step in which the state of each cell at each lattice site is updated. Unlike 
in the case of pure cellular automaton model coupled with oxygen diffusion equation 
[3], the fate of a cell in the case of the LGCA model is decided probabilistically by 
Lattice-Boltzmann Energies.  We calculate the Lattice-Boltzmann energy for the 
tumor growth model using three parameters – KC-C, KC-N and KN-N which are the 
coupling coefficients between cancer–cancer, cancer–necrotic and necrotic–necrotic 
cells respectively. The Lattice-Boltzmann energies for proliferation (Ep), quiescence 
(Eq), and necrosis (En) are given by equations 1, 2 and 3 respectively [15-17]. 
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where, 

C  =   Number of cancer cells in the interaction neighborhood 

N  =   Number of necrotic cells in the interaction neighborhood 

c cK −  =   Coupling coefficient between cancer – cancer cells 

c nK −  =   Coupling coefficient between cancer – necrotic cells 

n nK −  =   Coupling coefficient between necrotic – necrotic cells 

 
The Lattice-Boltzmann energies calculated using equations 1 – 3 are used to 

calculate the probabilities of proliferation, quiescence and necrosis by using equations 
4, 5 and 6 respectively. 
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where, 

proliferationP  =   Probability of proliferation 
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quiescenceP  =   Probability of quiescence 

necrosisP  =   Probability of necrosis 

  

4.2   Transport Step 

In the transport step, the second step in the transition rules, cells move synchronously 
in the direction and by the distance specified by their velocity state. The velocity state 
is determined by two factors [6, 13]: 
(a)  The path of least resistance: Cancer cells choose the path of least resistance to 

proliferate to, and hence, after cell division, the daughter cell moves to the node 
with the least density of cancer cells. We model this by determining the density 
of cancer cells in its neighborhood and changing the velocity state of the node 
such that the velocity points to the node that is the least dense. 

(b)  Chemotaxicity: Necrotic cells produce chemotactic signals that tend to bind the 
necrotic cells together by attracting necrotic cells in the neighborhood. To model 
this phenomenon, we record the count of necrotic cells in the neighborhood of 
each node. The velocity state of the node containing the necrotic cell is then 
changed such that the velocity points to the direction of the node that contains the 
least number of necrotic cells. 
After the velocity states at each node are determined, cells are transported 

synchronously in the directions specified by their velocity states. 

5   Results and Discussion 

We simulated the 3D LGCA tumor growth model on a desktop computer with a 
3.2GHz processor and 12GB of RAM. We chose a lattice size of 200x200x200 to 
simulate the tumor model so that the lattice remained sufficiently large and did not 
influence the geometry of the tumor during growth. The simulation could be run for 
about 90 time-steps. The simulation could not progress further due to the 
unavailability of memory. 

Fig.4 shows the tumor after (a) 20, (b) 40, (c) 50, and (d) 90 time-steps during the 
growth simulation of the 3D LGCA model. It is seen that during the initial growth 
stages, a core of quiescent cells (grey) appears at the centre of tumor surrounded by a 
rim of proliferating cells (Fig.4.a). Further growth progression leads to the appearance 
of a necrotic core (white) containing dead cells inside the tumor volume (Fig.4.5.b – 
d). This is similar to our earlier findings [2, 3] where we modeled tumor growth by 
employing the pure cellular automaton approach that was coupled with the solution to 
the oxygen concentration inside the tumor volume (Fig.5.a – d). 
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Fig.4 The tumor after 
of the 3D LGCA tumor model

 
 

The tumor after (a)
of the 3D LGCA tumor model

a)

c)

Fig.5 Tumor a

(a) 20, (b) 40, (c) 
of the 3D LGCA tumor model 

Tumor at various stages of growth for the 2D 

 50, and (d) 90 time

       b)

      d)

 
various stages of growth for the 2D 

90 time-steps during the growth simulation 

various stages of growth for the 2D CA 

steps during the growth simulation 

 

 

CA model 

 

steps during the growth simulation 
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Fig.6 The cross-sections of a growing tumor at depths of (a) 22, (b) 45, and (c) 67 cells from 
the boundary 

 
Fig.6 shows the cross-section of a growing tumor at depths of 22, 45 and 67 cells 

from the boundary. Once again, it is seen that the necrotic core (white) lies at the 
centre of the tumor and is encapsulated by quiescent cells (grey). The quiescent cells 
are similarly encapsulated by proliferating cancer cells that appear in the boundary of 
the tumor. 

To view the tumor in 3D, we implemented the model in 3D Slicer [18-20]. 3D 
Slicer is an open software platform developed for the analysis of three dimensional 
images especially for medical data. All image data obtained from the simulation of 
the LGCA tumor growth model need to be formatted to the DICOM (Digital Imaging 
and Communications in Medicine) standard [21] prior to being exported to 3D Slicer. 
Fig.7 shows the tumor in 3D at two different stages during the period of its growth 
after being implemented in 3D Slicer. 
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Fig.7 The 3D view of the tumor, after being implemented in 3D Slicer, at two different growth 
stages 

 
 
Although a quantitative study of the results could not be made due to the 

unavailability of experimental data, as such data are generally the property of 
pharmaceutical companies funding the trial, the qualitative findings here lead us to 
believe that a detailed simulation and study of 3D tumor growth may be conducted by 
following this approach.  
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