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Abstract   Registration of whole-body radiographic images is an important task in 

analysis of the disease progression and assessment of responses to therapies. Nu-

merous registration algorithms have been successfully used in applications where 

differences between source and target images are relatively small. However, regis-

tration of whole-body CT scans remains extremely challenging for such algo-

rithms as it requires taking large deformations of body organs and articulated skel-

etal motions into account. For registration problems involving large differences 

between source and target images, registration using biomechanical models has 

been recommended in the literature. Therefore, in this study, we propose a patient-

specific non-linear finite element model to predict the movements and defor-

mations of body organs for the whole-body CT image registration. We conducted 

a verification example in which a patient-specific torso model was implemented 

using a suite of non-linear finite element algorithms we previously developed, ver-

ified and successfully used in neuroimaging registration. When defining the pa-

tient-specific geometry for the generation of computational grid for our model, we 

abandoned the time-consuming hard segmentation of radiographic images typical-

ly used in patient-specific biomechanical modelling to divide the body into non-

overlapping constituents with different material properties. Instead, an automated 

Fuzzy C-Means (FCM) algorithm for tissue classification was applied to assign 

the constitutive properties at finite element mesh integration points. The loading 

was defined as a prescribed displacement of the vertebrae (treated as articulated 

rigid bodies) between the two CT images. Contours of the abdominal organs ob-

tained by warping the source image using the deformation field within the body 

predicted using our patient-specific finite element model differed by only up to 

only two voxels from the actual organs’ contours in the target image. These results 

can be regarded as encouraging step in confirming feasibility of conducting accu-

rate registration of whole-body CT images using non-linear finite element models 
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without the necessity for time-consuming image segmentation when building pa-

tient-specific finite element meshes. 

1 Introduction 

 Analysis of disease progression and response to therapy often involves 

quantitative comparison of two or more medical images of the whole body (or 

entire body segments) at different times or in different modalities [1]. However, 

before such comparison can be done, the images need to be aligned in a process 

known as image registration [2].  

 

Numerous registration algorithms rely on image processing techniques have been 

proposed in the literature. Attempts have been made to use such algorithms for 

problems that involve rigid-body motions of articulated bones and non-linear de-

formations of soft tissues. They have proved to be successful only in the registra-

tion of selected body segments (e.g. neck images [3], [4]) and for limited range of 

rigid body motion and soft tissue (or soft organ) deformations. However, it has 

been recognised in the literature [5] [6] that registration of the whole body/torso 

images remains very challenging for the registration algorithms that are solely 

based on image processing techniques as it necessitates accounting for differences 

between images caused by complex rigid-body motions of articulated bones, non-

linear motions of body organs and large deformation of soft tissues. 

 

For registration problems involving large deformations of anatomical structures 

depicted in the image, many researchers advocate the use of patient-specific bio-

mechanical models [7-10]. Our previous research in the development and applica-

tion of algorithms for image registration in image-guided neurosurgery indicates 

that such algorithms can provide accurate and fast (within the real time constraints 

of image-guided neurosurgery) prediction of the deformation field within the or-

gan (brain) undergoing surgery. In this study, we apply the experience and algo-

rithms obtained in this research to the problem of registration of whole-body CT 

images. We use registration of the torso CT images as an example to demonstrate 

how we propose to solve the problem of efficient generation of computational 

grids (finite element meshes) for patient-specific models required for computation 

of deformations within the body and demonstrate the accuracy of such computa-

tion.   
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2 Methods 

2.1 Patient-Specific Biomechanical Model 

How to generate patient-specific biomechanical models quickly and 

reliably remains unresolved [11]. In this study, a set of methods are introduced to 

achieve this goal.  

2.1.1 Generation of FEM Meshes 

In this study, the Finite Element Method (FEM) is employed to compute 

the movement and deformation of the whole body. It is widely accepted that the 

accuracy of the FEM heavily depends on the quality of mesh generation [12]. In 

practice, the tetrahedral mesh is the most popular type of discretisation in 

computational biomechanics due to the availability of automatic mesh generation 

for arbitrary geometries [6]. However, the 4-noded tetrahedral element has an 

intrinsic drawback of volume locking when the materials are incompressible or 

nearly incompressible. Thus, we use the hexahedron element to discretise the 

whole-body geometry.  

 

The whole-body CT scans were acquired from the Slicer Registration Library, 

Case #20: Intra-subject whole-body PET-CT (http://www.na-

mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C20b). This CT had 

slices with an acquisition matrix of 512 512 128  , yielding a spatial resolution of

0.98 0.98 5mm   . The whole-body geometry was built using the 3D SLICER 

(http://www.slicer.org/) and discretised by hexahedron elements using IA-FEMesh 

(http://www.ccad.uiowa.edu/MIMX/projects/IA-FEMesh) and Hypermesh (Altair 

Engineering, Troy, MI, USA).  

2.1.2 Material Properties 

Our previous studies show that the mechanical properties of the deformable 

continuum make little impact on the displacement results when the deformation 

problem is formulated as the pure displacement and displacement-zero traction 

problem [11] [13]. A FCM algorithm is adopted here to classify tissues and assign 

material properties automatically without the hard image segmentation for each 

organ [14]. The key step of the algorithm is to build the relationships between 

tissues and image intensity values. The FCM algorithm divides image intensity 

into different groups by computing the membership function between each pixel 

and all the specified cluster centres, and minimizing the objective function [14].  
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2.1.3 Loading 

The patient-specific biomechanical model is driven by an imposed 

displacement, which is extracted from a pair of corresponding organs in whole-

body images. We compare spines in these two whole-body CT scans because it is 

easy to distinguish the spine from surrounding soft tissues. Moreover, as a rigid 

structure, the displacement between two spines is calculated simply using the rigid 

registration, as show in Fig. 1. Considering the articulated structure, a whole spine 

is divided into separate vertebrae, and the rigid registration is applied to each pair 

of vertebra. Then, the deformation field between two spines is calculated by 
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                              (1) 

where D is the distance between two corresponding points in the source image and 

target image,
 

( , , )m m m mP x y z  is a point in the moving (source) image, while 

( , , )f f f fP x y z  is the corresponding point in the fixed (target) image, R is the rota-

tion transformation, T is the translation transformation and I is a diagonal matrix.  

       

(a)                                        (b)                                    (c) 

Fig. 1. Rigid registration of vertebra. (a) The vertebra from source images; (b) The vertebra from 

target images and (c) is the result of rigid registration for (a) and (b). 

2.2 Numerical Solution 

2.2.1 Total Lagrangian Explicit Dynamic Algorithm 

A detailed description of TLED algorithm can be referred in [15]. This 

algorithm refers all variables to the original configuration, and the second Piola-

Kirchoff stress and Green-Lagrangian strain are used. So, all the spatial 

derivatives with respect to spatial coordinates at original configuration can be pre-

computed. Moreover, the explicit scheme uses the central difference method to 
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temporally discretise derivatives so that discretised equation can be solved by one 

step without any iteration. 

2.2.2 Hourglass Control 

The combination of hexahedron elements and one point integration leads to 

hourglass modes (zeros-energy modes). To address this problem, an effective 

method for the hourglass control was presented in [16]. Also, this method was 

used for hexahedron and quadrilateral elements with arbitrary geometry even 

undergoing large deformations [17].  

3 Computation and Results 

3.1 Meshes of the Whole-Body Geometry 

The whole-body geometry is built from CT images and discretised by 

hexahedron elements, as shown in Fig. 2. The mesh quality is checked by two 

criteria, which are the Jacobian and warpage. In this study, the minimum Jacobian 

value is 0.35 and the maximum warpage value is 25. Total 51,479 elements and 

55,944 nodes are generated in the whole-body volume. 

3.2 Fuzzy C_Means Cluster Centres 

Before applying the FCM algorithm to calculate the cluster centres, the 

number of clusters should be determined. There is no standard criterion to 

determine how many clusters are needed in a specific application, because the 

number of clusters depends on the image intensity depicted in an image. In this 

paper, tissues in whole-body images are roughly divided into 8 groups, and they 

are able to distinguish differences between different tissues. Table 1 shows the 

computed cluster centres, the corresponding tissues and mechanical properties. 

3.3 Computed Results 

To validate the feasibility of using patient-specific biomechanical models 

and the TLED algorithm for the prediction of whole-body deformation, all the 

algorithms were implemented by programming in Matlab. The computing 

computer is with a standard Intel ○R  Core
TM

 i7-3930K @3.20GHz CPU and 

windows 7 Enterprise with Service Pack 1.  
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Fig. 2. Hexahedron meshes of the whole-body model. The discretised model consists of 51,479 

hexahedron elements and 55,944 nodes 

We verified the computation results by comparing the contours of abdomens, kid-

neys and lungs. This is because the comparison of abdominal contours can provide 

an overview of the accuracy of computation results, and the kidney and lung are 

the typical soft organs in the whole body. In addition, it is relative easy to get the 

contours for abdomens, kidneys and lungs from CT images. 

Table 1. Cluster centres and mechanical properties 

Cluster Centres -813 -476 -108 -31 41 185 396 777 

Tissues Lung Lung Fat Muscle Ligament Bone Bone Bone 

Young’s Modu-

lus (kPa) 

1.5 1.5 3.21 24.7 24.7 10
5
 10

5
 10

5
 

Poisson’s Ratio 0.35 0.35 0. 48 0. 48 0.49 0.48 0. 48 0. 48 

Mass Density 

(kg/m
3
) 

700 700 950 1059 1059 1817 1817 1817 

 
(1) Comparison of Abdominal Contour 

The comparison of abdominal contours is presented in Fig. 3. The 

abdominal contours are extracted from the target whole-body image (black solid 

line), the source whole-body image (blue dotted line) and the predicted image (red 

dashed line) which is warped by the computed deformation field, respectively. 

The difference between the black solid line and blue dotted line shows that the 

transformation from the source image to the target image is non-rigid. Also, it can 

be seen that the black solid line (target image) matches the red dashed line 
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(computed deformation) very well in the front and bio-lateral areas of the body. 

However, an apparent misalignment occurs on the right side of the back area of 

the body. The maximum misalignment is less than 0.01m, and the width of the 

body in x direction is 0.32m. Normalising the misalignment by the total width, the 

relative error is less than 3.2%. The misalignment might result from errors when 

performing rigid registration for vertebrae to calculate the deformation between 

two spines as the imposed displacement field.  

 

Fig. 3. Comparison of abdominal contours. The target image is represented by the black solid 

line, the computed deformation is represented by the red dashed line and the source image is rep-

resented by the blue dotted-solid line. 

(2) Comparison of Kidney Contours 

Fig. 4 shows the comparison of the cross section for kidneys. The red 

dashed line, the white solid line and the yellow dotted line represent the kidney 

contour in the deformed image, the target image and the source image, 

respectively. The difference between source image and target image is very big 

and nonlinear, while the use of patient-specific biomechanical model successfully 

predicts the transformation from the source image to the target image.  

 

(3) Comparison of Lung Contours 

In comparison with the abdomen and kidney, the structure of the lung is 

more complex. Fig. 5 shows that the source image (yellow dotted line) is very 

different from the target image (white solid line). However, after applying the 

computed deformation field to warp the source image, the predicted image (red 
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dashed line) can align to the target image. There may be two reasons for the 

misalignment. Firstly, the errors from rigid registration for vertebrae will influence 

the result of deformation prediction, as discussed previously. Secondly, the 

relative large space resolution in perpendicular direction and the quick variation of 

lung from one slice to another may cause the warped slice from the source image 

does not match exactly to the corresponding slice in the target image. 

 

Fig. 4. Comparison of contours for the kidney. The red dashed line is extracted from the target 

image, the white solid line is extracted from the computed deformation and the yellow dotted 

line is extracted from the source image.  

4 Conclusions 

Registration of whole-body CT scans is extremely challenging because 

non-linear deformations of body organs and articulated skeletal motions are 

involved and, accordingly, the differences between the source image and the target 

image are very large. Thus, a comprehensive patient-specific non-linear finite 

element model and the TLED algorithm are used to predict the deformation of 

body organs and soft tissues.  

 

Due to the efficiency of using hexahedron elements for the computation of incom-

pressible biological tissues, the whole-body geometry is discretised by hexahedron 

(8-noded brick) elements. Accordingly, an efficient hourglass control algorithm is 

employed to overcome the intrinsic zero energy mode of under-integrated hexahe-

dron elements. Moreover, the assignment of material properties is facilitated using 

the FCM algorithm for tissues classification without the hard image segmentation. 

 

 

Target Image

Computed Deformation

Source Image
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To drive the patient-specific model, an imposed displacement which is obtained 

using the rigid registration for corresponding vertebrae is applied on the spine. 

Fig. 5. Comparison of contours for the lung. The red dashed line represents the computed defor-

mation, the white solid line represents the target image and the yellow dotted line represents the 

source image. 

To the authors’ knowledge, it is the first time to use a patient-specific non-linear 

finite element model to conduct the whole-body image registration. In this work, 

we used a patient-specific torso example to verify the proposed algorithms, and 

the results confirmed that our methods facilitate the accuracy of predicting the or-

gans deformations. In the next step, we will analyse more torso examples to 

demonstrate the quantitative accuracy of our methods for the whole-body CT im-

age registration. 
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