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Abstract—In this paper we evaluate the accuracy of
warping of neuro-images using brain deformation pre-
dicted by means of a patient-specific biomechanical model
against registration using a BSpline-based free form
deformation algorithm. Unlike the BSpline algorithm,
biomechanics-based registration does not require an intra-
operative MR image which is very expensive and cum-
bersome to acquire. Only sparse intra-operative data on
the brain surface is sufficient to compute deformation for
the whole brain. In this contribution the deformation
fields obtained from both methods are qualitatively
compared and overlaps of Canny edges extracted from
the images are examined. We define an edge based
Hausdorff distance metric to quantitatively evaluate the
accuracy of registration for these two algorithms. The
qualitative and quantitative evaluations indicate that our
biomechanics-based registration algorithm, despite using
much less input data, has at least as high registration
accuracy as that of the BSpline algorithm.

Keywords—Brain, Non-rigid registration, Intra-operative
MRI, Biomechanics, Edge detection, Hausdorff distance,
Cerebral gliomas.

INTRODUCTION

A novel partnership between surgeons and ma-
chines, made possible by advances in computing and
engineering technology, could overcome many of
the limitations of traditional surgery. By extending
the surgeons’ ability to plan and carry out surgical

Address correspondence to Karol Miller, Intelligent Systems for
Medicine Laboratory, The University of Western Australia, Perth,
Australia. Electronic mail: karol.miller@uwa.edu.au

interventions more accurately and with less trauma,
Computer-Integrated Surgery (CIS) systems could help
to improve clinical outcomes and the efficiency of
health care delivery. CIS systems could have a similar
impact on surgery to that long since realized in Com-
puter-Integrated Manufacturing (CIM).*°

Our overall objective is to significantly improve the
efficacy and efficiency of image-guided neurosurgery
for brain tumors by incorporating realistic computa-
tion of brain deformations, based on a fully non-linear
biomechanical model, in a system to enhance intra-
operative visualization, navigation and monitoring.
The system will create an augmented reality visuali-
zation of the intra-operative configuration of the
patient’s brain merged with high resolution pre-oper-
ative imaging data, including functional magnetic
resonance imaging and diffusion tensor imaging, in
order to better localize the tumor and critical healthy
tissues.

In this paper we are especially interested in image-
guided surgery of cerebral gliomas. Neurosurgical
resection is the primary therapeutic intervention in
their treatment.” Near-total surgical removal is diffi-
cult due to the uncertainty in visual distinction of gli-
omatous tissue from adjacent healthy brain tissue.
More complete tumor removal can be achieved
through image-guided neurosurgery that uses intra-
operative MRIs for improved visualization.*® The
efficiency of intra-operative visualization and moni-
toring can be significantly improved by fusing high
resolution pre-operative imaging data with the intra-
operative configuration of the patient’s brain. This can
be achieved by updating the pre-operative image to the
current intra-operative configuration of the brain
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through registration. However, brain shift occurs
during craniotomy (due to several factors including the
loss of cerebrospinal fluid (CSF), changing pressure
balances due to the impact of physiological factors and
the effect of anesthetics, and mechanical effects such as
the impact of gravity on the brain tissue) and hence
should be accounted for while registering the images.

Intra-operative MRI scanners are very expensive
and often cumbersome. Hardware limitations of these
scanners make it infeasible to achieve frequent whole
brain imaging during surgery. The pre-operative MRI
must be updated frequently during the course of the
surgical intervention as the brain is changing. An
alternative approach is to acquire very rapid sparse
intra-operative data and predict the deformation for
the whole brain. To achieve this we developed a suite
of algorithms based on brain tissue biomechanics for
real-time estimation of the whole brain deformation
from sparse intra-operative data.'’-!%-%

The aim of this paper is to demonstrate that our new
algorithms, due to their utilization of fundamental
physics of brain deformation, and their efficient reali-
zation in software, should enable at least as accurate
registration of high quality pre-operative images onto
the intra-operative position of the brain, as is now
possible with intra-operative MRI and state-of-the-art
non-rigid registration algorithm. We compare the
accuracy of registration results obtained from two
algorithms—(1) biomechanics-based Total Lagrangian
Explicit Dynamics (TLED) suite of algorithms,'”!%-*
that uses only the intra-operative position of the ex-
posed surface of the brain; and (2) BSpline-based free
form deformation (FFD) algorithm®’ as implemented
in 3D Slicer (www.slicer.org), that uses an intra-oper-
ative MRI as a target image. We present results for 13
neurosurgery cases,' sourced from a large retrospective
database of glioma patients available at the Children’s
Hospital in Boston. These cases were documented with
carefully acquired T1-weighted MRIs (resolution of
0.86 x 0.86 x 2.5 mm’) on a 0.5 T interventional
scanner, and they represent different situations which
may occur during surgery as characterized by tumors
located in different parts of the brain. The intra-
operative deformations for these thirteen cases ranged
between 3 and 10 mm.

The accuracy of these algorithms is compared
qualitatively by viewing and exploring the calculated
deformation fields and overlap of edges detected from
MRI images. In addition, the registration error for
each algorithm is also estimated quantitatively by
means of a novel edge-based Hausdorff distance
measure.’

"IRB approval was acquired for the use of the anonymised retro-
spective image database for this study.
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MATERIALS AND METHODS

Non-Rigid Pre-operative to Intra-Operative
Registration Using the BSpline Algorithm

Free form deformation (FFD) is a powerful tool for
modeling 3D deformable objects and widely used in
image morphing® and scattered data interpolation.?®-*®
The basic idea of FFD is to deform an object by
manipulating the underlying grid of control points.*” In
order to smoothly propagate the user-specified values at
the control points throughout the domain of the image,
a BSpline based FFD algorithm was proposed by Lee
et al.*® The BSpline algorithm was later adapted by
Rueckert et al.’” for non-rigid registration of medical
images. Since then the BSpline algorithm has become
one of the most widely used non-rigid registration
algorithm for medical images.?> >+3¢3°

Let us denote the domain of the image volume as

[Q={(xy,2)|x€[0,X),y€0,Y),z€[0,2)}].
Let also denote @ as a [n, x n, x n.|discrete grid of
control points with uniform spacing ¢, overlaid on the
domain Q. If @, ;; is a control point on the lattice @ at
location (i, j, k), where [{i,j,k} € {[-1,n,+ 1],
[—1,n,+1],[=1,n. 4+ 1]}], then, the deformation at
any point (x, y, z) within  can be written as a 3D
tensor product of the 1D cubic BSplines®’:

[Tlocal (X, Y, Z) = Z Z Z B[(M) Bm(V)Bn(W) ¢i+l.j+m,k+n]
(1)

where [| x]] represents the highest integer lower than x,

T R e
) J

w==—|£|], and By represents the /th

n, ny |’ n- n-

basis function of the BSpline,

Bo(u) = (1 —u)*/6

Bi(u) = (3u® — 6u*> +4)/6

Boy(u) = (=3u® + 3 + 3u+1)/6
Bs(u) = u*/6

[ ] (2)

The registration parameters are determined by opti-
mizing a cost function consisting of a similarity crite-
rion (for example mutual information), which
measures the degree of alignment between the fixed
and moving image, and a regularization term to obtain
a smooth transformation,’’

[C = —Ciimitarity (Tr, T(Im)) + 2Csmootn ()] (3)

where Z is a weighting parameter that defines the trade-
off between the alignment of images and the smooth-
ness of transformation. Ig and [y represent the
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intensities of the fixed and moving images. Cubic
BSplines have compact support, therefore a change in
a control point only affects the neighborhood of this
control point. A large spacing of control points allows
modeling of global non-rigid deformations, while a
finer grid of control points allows modeling highly
local deformations. The resolution of control point
grid also determines the number of degrees of freedom
of the transformation, and consequently, the compu-
tational complexity.

The basic components of an image-based registra-
tion algorithm,® used also by BSpline-based methods,
are presented in Fig. 1. The moving (pre-operative)
image (M) is transformed using the chosen transfor-
mation T (in this case the displacements of control
points) to obtain the transformed image T(M). The
transformed image is then compared with the fixed
(intra-operative) image (F) based on a chosen similar-
ity measure S. This similarity metric is used by an
optimizer to find the parameters of the transform that
minimizes the difference between the moving and fixed
image. Therefore an optimization loop is required,
which changes the transform parameters to find the
best agreement between the fixed and moving image.

In this paper we choose the robust, reliable and
commonly used implementation of the BSpline algo-
rithm in 3D Slicer (www.slicer.org). The use of this
widely available implementation (over 68,000 down-
loads of the latest version, Slicer 4) will facilitate
evaluation of our results by other researchers. Below,
the implementation of BSpline algorithm in 3D Slicer
is described briefly. A number of factors influencing
the registration results for image guided-neurosurgery
are also discussed in the following section.

Estimation of probability densities: The most commonly
used similarity measure in multi-modal non-rigid regis-
tration is mutual information. Calculation of mutual
information between the fixed and the transformed mov-
ing image requires the values of the marginal and joint
probability densities.> These probability densities are
usually not readily known; therefore they must be esti-
mated from discrete image data. In 3D Slicer the proba-
bility densities are estimated using Parzen windows.*' In

Similarity
Measure

Fixed Image

A

T(M)

3
| Moving Image #| Transformation
M

S(F,T(M))

this scheme, the densities are constructed by taking limited
number of intensity samples S; from the images and super-
imposing a kernel function K centered on S,

Implementation of similarity measure: The similarity
measure used in 3D Slicer BSpline registration module
is defined by Mattes er al.*® In this implementation, the
joint and marginal probability densities are estimated
from a set of intensity samples drawn from the images.
A zero-order BSpline kernel is used to estimate the
probability density function (PDF) of the fixed image
intensities. On the other hand, a cubic BSpline kernel is
used to estimate the moving image PDF.*

BSpline Registration for Image-Guided Neurosurgery

In the case of image-guided neurosurgery where the
pre-operative image is required to be registered with the
intra-operative (after craniotomy is performed) image,
the Bspline registration algorithm faces a number of
challenges. First of all, the large difference in intensities
between the pre-operative and intra-operative MRI
often influences the registration result. Intensity nor-
malization between the source and target image is
required to achieve decent registration results. Sec-
ondly, the presence of the skull in the craniotomy area
of the pre-operative image makes the registration pro-
cess difficult and can induce large error in the registra-
tion. In order to achieve good alignment the skull must
be stripped from both the pre- and intra-operative
images. In addition, selecting an appropriate set of
parameters (density of control point grid, number of
spatial samples and number of histogram bins) for a
particular registration case requires substantial training
and experience. Without performing proper intensity
normalization and setting appropriate control point
grid density, it is extremely difficult to obtain accurate
results using a purely image-based, non-rigid registra-
tion algorithm such as BSpline. Therefore, to determine
the effects of the intensity normalization steps and
control point mesh density on the registration results,
we conducted a parametric study of craniotomy-
induced brain shift. The results of this parametric study
are presented below.

Parameters

-

L]

FIGURE 1. Basic components of a general image-based registration process.
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Effect of control point mesh density: Figure 2 shows
the effect of control point mesh density on the regis-
tration result. In this figure the pre-operative and intra-
operative contours are overlaid on an axial slice.
As the control point mesh density is increased, the

alignment of brain contours improves, however, the
alignment of ventricle contours decreases. At a
20 x 20 x 20 control grid (Fig. 2c) the alignment of
brain contours is very good, but the alignment of
ventricles is poor. This confirms a well-known fact that

55
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FIGURE 2. Effect of control point mesh density on registration result: (a) Mesh Density 5 x 5 x 5, (b) Mesh Density 10 x 10 x 10
and (c) Mesh Density 20 x 20 x 20. (d)—(f) Canny edges extracted from intra-operative and the registered pre-operative image
slices overlaid on each other for three mesh densities. Red color represents the non-overlapping pixels of the intra-operative slice
and blue color represents the non-overlapping pixels of the pre-operative slice. Green color represents the overlapping pixels.
(g) Corresponding plots of edge-based Hausdorff distances at different percentiles. Detailed description of methods required to
generate this plot is given in “Quantitative Evaluation of Registration Results” section. All registration results were generated
using skull-stripped brain volumes with 50,000 spatial samples to calculate joint intensity histograms. The following color code is
used for contours in (a)—(c): light blue shade—ventricles in the intra-operative image; light blue contour—outline of parenchyma in
the intra-operative image; magenta contours—outlines of parenchyma and ventricles in the pre-operative image before registra-
tion; white contours—outlines of parenchyma and ventricles in the pre-operative image after registration.
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(9)
it —— Before intensity normalization
—— After intensity normalization
4t
£
o 3 |
I
2 'l
i
1 A : ; g =
0 20 40 60 80
Percentile

FIGURE 3. Effect of intensity normalization on the registration result: (a) intra-operative and warped pre-operative contours obtained
without intensity normalization overlaid on the intra-operative slice; (b) a zoomed-in view of the contour ventricles in (a); (c) corre-
sponding Canny edges extracted from intra-operative and the warped pre-operative image slices overlaid on each other; (d) intra-
operative and warped pre-operative contours obtained with intensity normalization overlaid on the intra-operative slice; (e) azoomed-
in view of the contour ventricles in (d); (f) corresponding Canny edges extracted from intra-operative and the warped pre-operative
image slices overlaid on each other; (g) plots of edge-based Hausdorff distances at different percentiles before and after intensity
normalization. Detailed description of methods required to generate this plot is given in “Quantitative Evaluation of Registration
Results” section. All registration results were generated using skull-stripped brain volumes with 50,000 spatial samples to calculate
joint intensity histograms. The following color code is used for contours in (a), (b), (d) and (e): light blue shade—ventricles in the intra-
operative image; light blue contour—outline of parenchyma in the intra-operative image; magenta contours—outlines of parenchyma
and ventricles in the pre-operative image before registration; white contours—outlines of parenchyma and ventricles in the pre-
operative image after registration. Color code for edges: Red color represents the non-overlapping pixels of the intra-operative slice,
blue color represents the non-overlapping pixels of the pre-operative slice and green color represents the overlapping pixels.
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unlike for biomechanical registration algorithms that
use the principles of mechanics governing the organ
deformation and require parameters with clear physical
(measurable) meaning, optimization of the registration
parameters of BSpline and other algorithms that rely
solely on image processing techniques is numerically
challenging. The BSpline registration using 20 x 20 x
20 regularization grid version has many more parame-
ters than the one using 10 x 10 x 10 grid and tends to
be more numerically unstable. Therefore, we used
10 x 10 x 10 grid to conduct registration of pre- and
intra-operative MRIs for 13 neurosurgical cases using
the BSpline algorithm.

Case 1
S —— Biomechanics
BSpline

af —— Rigid
0
£ 3
(]
I

2 L

1 L

0 20 40 60 80 100

Percentile

FIGURE 4. The plot of percentile edge-based Hausdorff dis-
tance between intra-operative and registered pre-operative
images against the corresponding percentile of edges for
axial slices showing relative accuracy of BSpline and biome-
chanics-based deformable registration methods as compared
to rigid registration. Detailed description of methods required
to generate this plot is given in “Quantitative Evaluation of
Registration Results” section.
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Effect of intensity normalization: In the pre-pro-
cessing step the intensity of the images was normalized
through bias field correction followed by histogram
equalization. The N4 algorithm® was used for non-
uniform bias field correction which assumes a Gauss-
ian model for the bias field and uses a multi-resolution
scheme for correction. Although intensity normaliza-
tion does not affect the alignment of brain contours
much, it significantly improves the alignment of the
ventricle contours (Fig. 3b).

In order to produce registration results using the
BSpline algorithm we estimated the marginal and joint
probabilities using 50 histogram bins and 50,000 spa-
tial samples. Prior to registration all pre-operative/
intra-operative image pairs were normalized using
histogram equalization and N4 bias field correction. A
10 x 10 x 10 grid was used to obtain the transform.
For such low density grid it is advantageous to set
regularization parameter A to zero.*>"’

The relative performance of BSpline and biome-
chanics-based registration against rigid registration—a
technique that is currently available to patients, is gi-
ven in Fig. 4.

Biomechanics-based Prediction of Deformations Using
Only the Information About the Position of the Exposed
Brain Surface

Unlike the BSpline registration algorithm, biome-
chanics-based registration methods do not require an
intra-operative image to update the pre-operative
image (see Fig. 5). The pre-operative image is seg-
mented first to extract the anatomical features of
interest. Based on this segmentation (which can be
acquired days before the surgery) a computational grid
(mesh) is generated. A biomechanical model is defined
further by incorporating boundary conditions (contact

Boundary
Conditions,
Material Properties

A 4

Biomechanical |_
Model

Loading

m———de e —

; Intraop. Info. :

FIGURE 5. Registration process based on a biomechanical model.
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between the skull and the brain for example) and
material properties for each tissue types. The model is
completed by defining the loading conditions that are
generally obtained from sparse intra-operative infor-
mation (such as surface deformation in the craniotomy
area). Once the model is constructed, a solver (finite
element or meshless) is used to compute the transform,
which is then applied to warp the pre-operative image.
The warping procedure requires the mapping of points
in the moving (pre-operative) image to the new loca-
tions in the transformed image. The intensity of the
points in the transformed image is determined by
interpolating intensities of the corresponding points in
the moving image. In the following sections the non-
linear finite element modeling procedure proposed by
Joldes er al.'” and Wittek er al.*® to predict the intra-
operative brain shift is briefly described.

Construction of Finite Element Mesh
for Patient-Specific Brain Models

A three dimensional (3D) surface model of each
patient’s brain was created from segmented pre-oper-
ative magnetic resonance image (MRI). Following our
previous studies on predicting craniotomy-induced
deformations within the brain,'>?%*"* in this inves-
tigation, different material properties were assigned to
the parenchyma, tumor and ventricles. Accordingly, to
obtain the information for building the computational
grids (finite element meshes), the parenchyma, tumor
and ventricles were segmented using the region grow-
ing algorithm implemented in 3D slicer, followed by
manual correction.

The meshes were constructed using low-order ele-
ments (linear tetrahedron or hexahedron) to meet the
computation time requirement. To prevent volumetric
locking the tetrahedral elements with average nodal
pressure (ANP) formulation were used.'® The meshes
were generated using IA-FEMesh’ and HyperMesh
(commercial FE mesh generator by Altair of Troy, MI,
USA). A typical mesh (Case 1) is shown in Fig. 6. This

Ventricles

Tumour//

FIGURE 6. Typical example (Case 1) of a patient-specific
mesh built for this study.

mesh consists of 14,447 hexahedral elements, 13,563
tetrahedral elements and 18,806 nodes. Each node in
the mesh has three degrees of freedom.

Displacement Loading

The models were loaded by prescribing displace-
ments on the exposed part (due to craniotomy) of the
brain surface. As this requires only replacing the brain-
skull contact boundary condition with prescribed dis-
placements, no mesh modification is required at this
stage. At first the pre-operative and intra-operative
coordinate systems were aligned by rigid registration.
Then the displacements at the mesh nodes located in
the craniotomy region were estimated with the inter-
polation algorithm we described in a previous publi-
cation.'®

As explained in our papers, for problems
where loading is prescribed as forced motion of
boundaries, the unknown deformation field within
the domain depends very weakly on the mechanical
properties of the continuum. This feature is of a
great advantage in biomechanical modeling where
there are always uncertainties in patient-specific
properties of tissues.*”

34,47

Boundary Conditions

The stiffness of the skull is several orders of mag-
nitude higher than that of the brain tissue. Therefore,
in order to define the boundary conditions for the
unexposed nodes of the brain mesh, a contact inter-
face’! was defined between the rigid skull model and
the deformable brain. The interaction was formulated
as a finite sliding, frictionless contact between the brain
and the skull. The effects of assumptions regarding the
brain boundary conditions on the results of prediction
of deformations within the brain have been analyzed
and discussed*-*" before.

Mechanical Properties of the Intracranial Constituents

If geometric non-linearity is considered,*’, the pre-
dicted deformation field within the brain is only weakly
affected by the constitutive model of the brain tissue.
Therefore, for simplicity a hyper-elastic Neo-Hookean
model was used.'* The Young’s modulus of 3000 Pa
was selected for parenchyma.’' The Young’s modulus
for tumor was assigned a value two times larger than
that for the parenchyma, keeping it consistent with the
experimental data of Sinkus e al.*® As the brain tissue
is almost incompressible, a Poisson’s ratio of 0.49 was
chosen for the parenchyma and tumor.*’ The ventricles
were assigned properties of a very soft compressible
elastic solid with a Young’s modulus of 10 Pa and

Poisson’s ratio of 0.1.*
BIOMEDICALENGINEE§NGSOCIETYW
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Solution Algorithm

A suite of efficient algorithms for integrating the
equations of solid mechanics and its implementation
on Graphics Processing Unit for real-time applications
are described in detail by Joldes et al.'”'® The com-
putational efficiency of this algorithm is achieved by
using: (1) total Lagrangian (TL) formulation®* for
updating the calculated variables; and (2) explicit
Integration in the time domain combined with mass
proportional damping. In the TL formulation, all the
calculated variables (such as displacements and strains)
are referred to the original configuration of the ana-
lyzed continuum.'” The decisive advantage of this
formulation is that all derivatives with respect to spa-
tial coordinates can be pre-computed. The Total
Lagrangian formulation also leads to a simplification
of material law implementation as these material
models can be easily described using the deformation
gradient.'’

The integration of equilibrium equations in the time
domain was performed using an explicit method.
When a diagonal (lumped) mass matrix is used the
discretised equations are decoupled. Therefore, no
matrix inversions and iterations are required when
solving nonlinear problems. Application of explicit
time integration scheme reduces the time required to
compute the brain deformations by two orders of
magnitude in comparison to implicit integration typi-
cally used in commercial finite element codes like
ABAQUS.! This algorithm is also implemented on
GPU (NVIDIA Tesla C1060 installed on a PC with
Intel Core2 Quad CPU) for real-time computation'” so
that the entire model solution takes less than 4 s on
commodity hardware.

The application of the biomechanics-based approach
does not require any parameter tuning, and the results
presented in “Results’ section demonstrate the predic-
tive (rather than explanatory) power of this method.

Methods for Evaluation of Registration Accuracy
Qualitative Evaluation

Deformation field. The physical plausibility of the
registration results are verified by examining the
computed displacement vector at voxels of the pre-
operative image domain. The deformations are com-
puted at voxel centers only for a region of interest near
the tumour.

Overlap of edges: To obtain a qualitative assess-
ment of the degree of alignment after registration, one
must examine the overlap of corresponding anatom-
ical features of the intra-operative and registered
pre-operative image. For this purpose, tumors and
ventricles in both registered pre-operative and
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intra-operative images can be segmented and their
surfaces can be compared.*® Image segmentation is
time consuming, subjective, not fully automated and
not suitable for comparing a large number of image
pairs.” Therefore in this paper Canny edges* are used
as feature points. Edges are regarded as useful and
easily recognizable features, and they can be detected
using techniques that are automated and fast. Canny
edges obtained from the intra-operative and regis-
tered pre-operative image slices are labeled in differ-
ent colors and overlaid (as shown in “Overlap of
Canny edges” section).

Quantitative Evaluation

Edge-based Hausdorff distance: The Hausdorff dis-
tance is a popular measure to calculate similarities
between two images.’ It is defined based on two sets of
feature points, A and B. We begin with a definition of
the traditional point-based Hausdorff distance (HD)
between two intensity images I and J. Let 7 and J be
the binary edge images derived from I and J respec-
tively, and A = {qay, ..., a,} and B = {by, ..., b,} are
the set of non-zero points corresponding to the non-
zero pixels on the edge images. The directed distance
between them A(A, B) is defined as the maximum dis-
tance from any of the points in the first set to the
closest point in the second one:

[h(A,B) = argmax {argmin la — b||2]] 4)
acA beB

[h(B,A) = argmax {arg min ||b — a||2]] (5)
beB acA

The HD between the two sets H(A, B) is defined as
the maximum of these two directed distances:

[H(A,B) = max(h(A, B), h(B, A))] (6)

Several improvements of the directed distance have
been proposed.”® One of them is the percentile Haus-
dorff distance, which is very useful for identifying
outliers. The percentile directed distance is defined as:

o B) = P [argminfa 1L, [] ()
acA beB
where P is the Pth percentile of [[arg min |ja — b||2] ]
beB

The above definition of Hausdorff distance sets an
upper-limit on the dissimilarities between two images.
It implies that the value indicated by Eq. (6) generally
comes from a single pair of points. The other point
pairs have a distance less than or equal to that value.
Such a measure is very useful for template based image
matching. However, while measuring the misalign-
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ments between two medical images, it is desirable to
calculate the distance between local features (in the
case of brain MRI considered here, the automatically
detected Canny edges) in two images that correspond
to each other. To calculate such a distance we define
the edge-based Hausdorff distance.

We define directed distance between two sets of

edges as
]] (8)

,be}] are

€ e
a; = b;

[h.(A°, B°) = arg max [arg min‘

aseA’ bieB’

where [A° = {a5,...,d’,}] and B¢ = {b],...
two sets of edges.

The quantityl_[J a;j — by | in Eq. (8) is nothing but
the point based Hausdorff distance between two point
sets [M = {my,...,my}] and [T ={n,...,t,}] repre-
senting edges [¢] and [b¢] respectively,

[\

a — b|| = d(a — b) = max(h(T,M), h(M, T))]

©)
Now the edge-based Hausdorff Distance is defined as
[H.(A,B¢) = max (/. (A°, B°), h.(B°, A%))] (10)

Similar to the percentile point-based Hausdorff
distance, one can construct a percentile edge-based
Hausdorff distance:

e (A, BY) = PP

aseA’

arg min‘

e e
a; = b;
b;?eB"

] (11)

This percentile edge-based Hausdorff distance
(Eq. 11) is not only useful for removing outlier edge-
pairs, but also can be interpreted in a different way.
The Pth percentile Hausdorff distance, ‘D’, between
two images means that ‘P’ percent of total edge pairs
have a Hausdorff distance below D. Therefore, instead
of reporting only one Hausdorff distance value (using
Eq. 10), Eq. (11) can be used to report Hausdorff
distance values for different percentiles. A plot of the
Hausdorff distance values at different percentiles (see
“Quantitative Evaluation of Registration Results”
section) immediately reveals the percent of edges that
have misalignments below an acceptable error.

In order to obtain these curves of Hausdorff distance
values at different percentiles, each pre-operative/intra-
operative image pair was cropped into a common re-
gion-of-interest (ROI) which encloses the tumor. These
ROI sub-volumes were then super-sampled (0.5 mm x
0.5 mm x 0.5 mm) to obtain isotropic voxels. This was
done to improve the precision of Canny edge detection*
used in the registration accuracy evaluation process. The
edge-based Hausdorff distance (HD) was used to cal-
culate the misalignment between slices along both axial

and sagittal directions. The directed distances for all
edge pairs (see Eq. 8) were recorded and the edge-based
Hausdorff distance values at different percentiles of
directed distances were plotted.

Pre-processing—OQutlier Removal: Although edges
are supposed to be representative of consistent features
present in two separate images, outliers are very
common if the intensity ranges of the images are dif-
ferent. It is often the case in multi-modal image reg-
istration. Therefore, pre-processing of the extracted
edges is required to remove outliers before the edge-
based Hausdorff distance could be calculated. We used
a pre-processing step called the “round-trip consis-
tency” procedure® that removes the pixels of one image
that do not correspond to the other image.

RESULTS

Qualitative Evaluation of Registration Results
Deformation Field

The deformation fields predicted by the biome-
chanical model and obtained from the BSpline trans-
form are compared in Fig. 7. These deformation fields
are three dimensional. However, for clarity, only ar-
rows representing 2D vectors (x and y components of
displacement) are shown overlaid on undeformed pre-
operative slices. Each of these arrows represents the
displacement of a voxel of the pre-operative image
domain. In general the displacement fields calculated
by the BSpline registration algorithm are similar to the
predicted displacements by the biomechanical model at
the outer surface of the brain, but in the interior of the
brain volume the displacement vectors differ in both
magnitude and direction. In three of the cases (cases 8,
11 and 12) the difference in the displacement fields is
smaller compared to the other cases.

Overlap of Canny Edges

From Fig. 8 we can see that misalignment between
the edges detected from the intra-operative images and
the edges from the pre-operative images updated to the
intra-operative brain geometry are much lower for the
biomechanics-based warping than for BSpline regis-
tration. The edges obtained from the images warped
with both registration algorithms have higher similar-
ity for cases 8, 11 and 12 than the other cases. This is
due to the fact that the deformation fields predicted
using the biomechanical model and BSpline registra-
tion have higher similarity for these three cases. For
instance, large misalignments between the edges
obtained from the intra-operative image and edges
from the pre-operative image registered using BSpline
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FIGURE 7. The predicted deformation fields overlaid on an axial slice of pre-operative image. An arrow represents a 2D vector
consisting of the x (R-L) and y (A-P) components of displacement at a voxel centre. Green arrows: deformation field predicted by

the biomechanical model. Red arrows: deformation field calculated by the BSpline algorithm. The number on each image denotes a
particular neurosurgery case.
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3
5 .

FIGURE 8. Canny edges extracted from intra-operative and the registered pre-operative image slices overlaid on each other. Red
colour represents the non-overlapping pixels of the intra-operative slice and blue colour represents the non-overlapping pixels of
the pre-operative slice. Green colour represents the overlapping pixels. The number on each image denotes a particular neuro-
surgery case. For each case, the left image shows edges for the biomechanics-based warping and the right image shows edges for

the BSpline-based registration.
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algorithm can be observed for Case 2. For this case
there was a large intra-operative brain shift (8 mm)
and the deformation field obtained using BSpline
algorithm significantly differs from deformation pre-
dicted using the biomechanical model. This is an
indication that the biomechanics-based warping may
perform more reliably than the BSpline registration
algorithm if large deformations are involved.

Quantitative Evaluation of Registration Results

The plot of percentile edge-based Hausdorff dis-
tance (HD) vs. the corresponding percentile provides
an estimation of the percentage of edges that were
successfully registered in the registration process. As
the accuracy of edge detection is limited by the image
resolution, an alignment error smaller than two times
the original in-plane resolution of the intra-operative
image (which is 0.86 mm for the thirteen cases con-
sidered) is difficult to avoid.*® Hence, for the thirteen
clinical cases analyzed here, we considered any edge
pair having HD value less than 1.7 mm to be suc-
cessfully registered. This choice is consistent with the
fact that it is generally considered that manual neu-
rosurgery has an accuracy of no better than 1 mm.>>*¢
It is obvious from Figs. 9 and 10 that biomechanical
warping was able to successfully register more edges
than the BSpline registration for all thirteen cases.

The percentage of edges successfully registered by
the two registration algorithms (i.e., warping using the
biomechanical model and the BSpline registration) for
each analyzed case is listed in Table 1. The percentage
of successfully registered edges is slightly higher for
image warping using biomechanical model than that
for BSpline registration (with an exception for Case 7).
It can be noted that the Hausdorff distance values in
the sagittal plane are generally higher than those in the
axial plane. This is most likely caused by an interpo-
lation artifact (due to the poor resolution in the sagittal
plane) introduced in the re-slicing process.

For all 13 cases, the percentile edge-based HD
curves tend to rise steeply around 90th percentile.
Hence, it can be safely assumed that most edge pairs
that lie between 91 and 100 percentile do not have any
correspondence (possible outliers). The 90th percentile
HD values for all cases are listed in Table 2.

DISCUSSION

From the results presented in ““Results” section, it is
evident that the application of intra-operative defor-
mation predicted a using patient-specific biomechani-
cal model'”"** to warp pre-operative images ensures
at least as high registration accuracy as that of 3D

Slicer’s BSpline registration module. Biomechanical
models are especially effective in neurosurgery cases
where intra-operative brain shift is large (Case 2 for
instance). Another distinctive advantage of using the
biomechanical model is that it does not need the intra-
operative image at all to compute deformation. Only
the displacement of a limited number of points on the
exposed intra-operative brain surface in the craniot-
omy area is required. For image warping using the
intra-operative brain deformation predicted using a
patient-specific biomechanical model, the required
number of intra-operative data points is reduced by
four orders of magnitude compared to purely image-
based registration, from about 10° to about 10%. The
most appealing and convenient way of acquiring the
current, intra-operative position of the exposed surface
of the brain, that we need to define the loading of our
models, is the use of the tracking pointer tool available
within the commonly-used Medtronic’s Stealth neu-
ronavigation system that enables the surgeon to select
(by touching) a number of points on the brain surface
(technical details are available online at http://www.
na-mic.org/Wiki/index.php/Stealthlink_Protocol) and
determine their positions in the images using software
tools implemented in 3D Slicer.***** Stereo-vision
using cameras or laser range scanners installed in an
operating theatre are validated alternatives for cap-
turing the displacements of the cortical surface. The
examples include the studies by Ji er al.'®"!

Intra-operative MRIs, used in this study, are not
necessary for aligning the patient’s intra-operative
position with the pre-operative image. Rigid registra-
tion can be performed using, e.g., the ExacTrac sys-
tem'® available in BrainLAB (BrainLAB AG,
Germany, www.brainlab.com) or Stealth neuronavi-
gation system from Medtronic.

We chose the widely used BSpline implementation
available in 3D Slicer. The purpose of this study is to
show that state-of-the-art biomechanical registration
algorithms (that require only very sparse information
about the intra-operative brain geometry) can facilitate
registration accuracy similar to that provided by
commonly used algorithms that rely solely on image
processing techniques (and therefore require intra-
operative MRI). The choice of the robust and com-
monly used implementation of BSpline algorithm in
3D Slicer fits this purpose very well. Moreover, the use
of widely available and reliable implementation facili-
tates the evaluation of our results by other researchers.
To strengthen the conclusions of this work an alter-
native implementation and alternative algorithms for
image-based alignment should be evaluated in future
work.

The construction of the finite element mesh requires
segmentation of pre-operative neuroimages. The difficulties
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FIGURE 10. The plot of Hausdorff distance between intra-operative and registered pre-operative images against the percentile of

edges for sagittal slices. The horizontal line is the 1.7 mm mark.
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TABLE 1. Percentage of edges successfully registered for
13 patient specific cases.

Percentage of edges successfully registered

Axial slices Sagittal slices

Case Biomechanics  BSpline  Biomechanics  BSpline
1 70 63 61 47

2 56 45 38 41

3 54 29 54 33

4 66 54 67 46

5 58 45 54 33

6 59 51 58 53

7 75 81 61 76

8 75 70 69 65

9 52 43 52 46

10 61 55 61 57

11 82 77 81 62

12 63 59 58 60

13 81 67 82 62
Average 65.54 56.85 61.23 52.38

TABLE 2. 90th percentile Hausdorff distance values (mm) for
thirteen patient-specific cases.

Non-rigid registration algorithm

Axial slices Sagittal slices
Case Biomechanics  BSpline  Biomechanics  BSpline
1 2.43 2.75 2.75 3.54
2 2.43 3.36 2.72 3.87
3 2.19 3.10 2.43 3.44
4 2.15 2.75 2.15 2.61
5 2.58 3.36 2.58 3.87
6 3.14 3.44 3.32 3.75
7 2.34 2.15 2.39 2.34
8 2.34 2.73 2.34 2.96
9 3.00 4.03 3.66 4.32
10 2.73 3.14 2.85 3.41
11 1.99 2.52 2.10 2.65
12 2.81 3.28 3.14 3.78
13 1.99 2.85 1.99 2.65
Average 2.47 3.03 2.65 3.32

associated with segmentation of tumors when building fi-
nite element meshes for biomechanical models of the brain
were discussed in our previous study.* It is worth noting,
however, that the analysis of sensitivity of computed brain
deformations to the complexity of the biomechanical
models used?” demonstrates that even assigning exactly the
same material properties to the tumor as to the rest of the
parenchyma, therefore avoiding tumor segmentation en-
tirely, leads to only minimal (and for practical purposes
negligible) deterioration in the accuracy of predicted dis-
placements.

This strongly suggests that accuracy of prediction of
the intra-operative deformations within the brain

obtained using our biomechanical models are, for
practical purposes, insensitive to segmentation errors.
This is reinforced by our recent results’' indicating that
the accuracy of such predictions only slightly
(approximately 0.1 mm) decreases if, in the process of
building computational grids and assigning mechanical
properties for the models, segmentation is replaced
with fuzzy tissue classification (that does not provide
clearly defined boundaries between different anatomi-
cal structure within the organ and tends to introduce
local tissue misclassification).

Modeling of resection is a very challenging problem
of computational biomechanics due to discontinuities
and large local strains caused by tissue removal/sepa-
ration. Such discontinuities alter the topology of finite
element meshes while large local strains lead to mesh
distortion and deterioration of the solution accuracy.
To address these challenges, in our recent studies'> we
proposed a meshless algorithm (in which the analysed
continuum/body organ is discretised using a cloud of
points) for surgical dissection simulation.

We believe that the results presented in this paper
have the potential to significantly advance the way
imaging is used to guide the surgery of brain tumors.
Presently, our experience has demonstrated the great
utility of intra-operative MRI in ensuring complete
resection, particularly of low grade tumors. However,
this often comes at the expense of significantly longer
operating times, as well as being resource intense. For
example, the decision to acquire a new volumetric image
requires expertise from technologists, radiologists, and
others. At hospitals that have at their disposal the intra-
operative MRI, the ability to know when imaging is
needed, as well as the potential reduction in the number
of imaging acquisitions promises to make intra-opera-
tive MRI a much more effective and efficient technique.

Even more importantly, we believe that the use of
comprehensive biomechanical computations in the
operating theatre may present a viable and economical
alternative to intra-operative MRI. The brain defor-
mation modeling algorithms proposed here may lead
the way towards allowing updated representations of
the brain position even without intra-operative MRI
and therefore bring the success of image-guided neu-
rosurgery to a much wider population of sufferers.
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