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permit simulation of large-scale growth of tumours
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SUMMARY

We model complete growth of an avascular tumour by employing cellular automata for the growth of
cells and steady-state equation to solve for nutrient concentrations. Our modelling and computer simula-
tion results show that, in the case of a brain tumour, oxygen distribution in the tumour volume may be
sufficiently described by a time-independent steady-state equation without losing the characteristics of a
time-dependent diffusion equation. This makes the solution of oxygen concentration in the tumour volume
computationally more efficient, thus enabling simulation of tumour growth on a large scale. We solve this
steady-state equation using a central difference method. We take into account the composition of cells and
intercellular adhesion in addition to processes involved in cell cycle—proliferation, quiescence, apoptosis,
and necrosis—in the tumour model. More importantly, we consider cell mutation that gives rise to different
phenotypes and therefore a tumour with heterogeneous population of cells. A new phenotype is probabilis-
tically chosen and has the ability to survive at lower levels of nutrient concentration and reproduce faster.
We show that heterogeneity of cells that compose a tumour leads to its irregular growth and that avascu-
lar growth is not supported for tumours of diameter above 18 mm. We compare results from our growth
simulation with existing experimental data on Ehrlich ascites carcinoma and tumour spheroid cultures and
show that our results are in good agreement with the experimental findings. Copyright © 2013 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Cancer is a disease that accounts for more than one-fifth of all deaths in industrialised countries
of the Western world. Likewise, one person out of three will be treated for a severe cancer in their
lifetime [1]. In less-industrialised countries, they often manifest at younger ages than in industri-
alised countries. Unfortunately, overall, neither incidence nor mortality of human cancer has been
much diminished by conscious human intervention over the last decades. It is hoped that a better
understanding of the cellular basis underlying tumour growth will eventually open the door to its
successful treatment, as will the development of novel drugs and therapies based on the results of
molecular and cellular biological cancer research.

Tumour growth is a multistage process. Mutations in a single normal cell lead to loss of its home-
ostatic mechanism, which is the fundamental regulatory mechanism of cells. This leads to inap-
propriate mitosis (cell division) and loss of apoptosis, a process by which cells die after exceeding
their natural lifespan [2]. The normal cell thus transforms into a cancerous cell. The cell proliferates
unregulated and gives rise to a heterogeneous irregular tumour growth. The size of initial growth
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is dependent on the supply of nutrients, in particular, oxygen, through diffusion [3], and this initial
phase is called the avascular growth phase. Once tumour reaches the diffusion-limited size, it has
to recruit blood vessels to supply it with further nutrients. The tumour does so in the second phase
through angiogenesis. The new vessels enhance the supply of nutrients, allowing the tumour to enter
the vascular phase. At this stage, tumour cells proliferate aggressively and metastasise, thus invad-
ing the surrounding tissue. The characteristic properties that define cancer thus include uncontrolled
cell proliferation, altered differentiation and metabolism, genomic instability, and invasiveness with
eventual metastasis.

The avascular phase is also called the primary growth phase and is considered relatively benign.
The detection and treatment of tumour at this stage provide a greater probability of having the dis-
ease cured. On the other hand, the vascular phase, also called the secondary growth phase, is more
malignant, and treatment becomes far more difficult at this stage, on most occasions leading to
serious complications.

In this paper, we model tumour growth in the avascular phase. The size and shape of a tumour at
this stage are predominantly determined by its cellular composition, time required for cell division
(mitosis), cell mutation (phenotypical evolution), intercellular adhesion, concentration of vital nutri-
ents, and mechanical stresses from surrounding tissue, for example, in the case of a brain tumour,
mechanical stresses due to confinement in the skull. Most existing models either avoid solving for
nutrient concentration or simulate growth on a rather small size of lattice [4, 5]. Whereas the for-
mer is due to the inherent time-consuming nature of numerical solution to time-dependent partial
differential equations, the latter is because simulating growth on a macro-scale starting from a few
cells using cellular automata (CA) is computationally very expensive. Therefore, a majority of the
research in the area are limited to pattern formation in a growing tumour [4, 6] rather than in its
complete growth. In this work, we propose and demonstrate that a pure CA growth model coupled
with a steady-state solution to nutrient concentration, in the case of brain tumour, can be used to
simulate complete growth.

Tumour heterogeneity contributes to its irregular shape. A tumour mass consists of three types of
cells—proliferating, quiescent, and necrotic. Cells, mostly on the tumour boundary, that are exposed
to high levels of oxygen concentration undergo cell division and lead to tumour proliferation. In con-
trast, cells at the centre of tumour suffocate because of lack of oxygen and die (necrosis), forming
a necrotic core. Moreover, some cells die after naturally exceeding their lifespan (apoptosis) and
are seen scattered in the tumour mass. Some cells in the mass are exposed to nutrient levels that
are higher than suffocation levels but insufficient to promote proliferation. Such cells are dormant
and are called quiescent cells. They neither die nor undergo cell division. However, they participate
in the normal cell cycle once sufficient level of oxygen is restored. In addition, some tumour cells
mutate and give rise to a different phenotype that survive at smaller nutrient concentrations and
proliferate faster. This heterogeneous population of cells leads to different velocities of growth in
different directions, forming an asymmetric irregular tumour volume.

To date, tumour growth modelling approaches include the continuum [7-14], discrete, and hybrid
continuum—discrete approaches [15—18]. Continuum models are based on balance laws—balance of
mass of the several components of tissue, balance of momentum, and balance of energy—for the
description of cell population [11], while a set of reaction diffusion equations is devised for nutri-
ents and chemicals that influence growth. However, growth description through such modelling is
phenomenological, and it does not reflect the microscopic mechanisms of cancerous growth, such
as proliferation, necrosis, and apoptosis as well as the mechanical pressure inside tumour. Contin-
uum models, therefore, are not sensitive to small fluctuations in the tumour growth system. This
is a significant shortcoming as in some cases such small changes can be the leading cause in driv-
ing a nonlinear complex bio-system to a different state. Continuum approaches have however been
successfully used in modelling tissues on a macroscopic scale [19,20] primarily because cell-level
modelling for such a size is limited owing to existing computational power.

Discrete models, on the other hand, can represent individual cells in space and time and can
incorporate biological rules to define behaviour at the level of cells. Such models better respond
to small changes in the tumour system. In this paper, we make use of a hybrid discrete—continuum
approach in a bid to take advantage of the strengths of both of these approaches. In particular, we
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solve partial differential equations for the oxygen concentrations in the tissue, whereas CA are used
to model tumour growth at the cell level. CA is a collection of cells on a grid of a specified shape
that synchronously evolves through a number of discrete time steps, according to an identical set of
rules applied to each cell on the basis of the states of its neighbouring cells [21,22]. The grid can be
implemented in any finite number of dimensions, and neighbours are a selection of cells relative to
a given cell.

Mathematical modelling of tumour growth dates back to as early as 1972 when Greenspan [6]
modelled simple tumour growth by diffusion to study growth characteristics from the most easily
obtained data, that is, growth in terms of movement of the outer radius of tumour as a function
of time. His study concentrated on the steady-state histology with an objective to infer the major
internal processes that affected tumour growth and observed that growth retardation is an effect of
the formation of a necrotic core. Other studies that employ continuum models include the reaction
diffusion model by Gatenby er al. [8] to describe spatial distribution and temporal development
of tumour tissue. Ward et al. [9] modelled avascular tumour by using nonlinear partial differen-
tial equations that took into account only two types of cells—cancer and dead. Ferreira et al. [10]
extended the reaction diffusion model by including cell motility in their model. Ambrosi et al. [11]
described growth as an increase of the mass of the particles of the body and not as an increase of
their number and modelled growth using a continuum mechanics framework. Later, Byrne et al. [12]
built their model using the theory of mixtures, and Cristini et al. [13] performed nonlinear simula-
tions of tumour using the mixture model. An earlier review on mathematical modelling of tumour
is by Araujo et al. [14].

Cellular automata modelling of tumour growth is relatively young compared with continuum
modelling. One of the early CA models of tumour was developed by Qi et al. [4]. They modelled
tumour growth using two-dimensional CA on a very small grid size. Immune system surveillance
against cancer was taken into account. The model was based on the assumptions that cell division
occurs only in the presence of an empty space in one of its nearest neighbours and that dead cells
dissolve and disappear instead of forming a necrotic core as seen in in vivo tumours. Kansal et al.
[23] modelled growth to reproduce the macroscopic structure of a tumour arising from microscopic
processes. However, the transition rules used in the model are neither local nor homogeneous and
therefore deviate from the core definition of CA. Moreover, the nutrient gradient is always con-
sidered originating from the centre of the tumour mass and directed outwards towards the tumour
boundary. This does not resemble a biological growth situation because the necrotic core, which
is a mass of dead cells, does not consume nutrients. If nutrients are not consumed while still dif-
fusing, the computed gradient lasts for only a very short period after cells have become necrotic.
Dormann et al. [5] employed lattice gas CA to model a self-organised avascular tumour. Although
lattice gas CA is extensively used in fluid models, we propose that growth modelled purely using
CA at the level of a single cell will be more representative of in vivo tumour growth. Their model
was simulated in a 200 x 200 grid, a relatively small lattice, starting from 44 cancer cells, a fairly
large initial number of cells. Moreover, their model does not include the phenotypical evolution—
presence of mutated, more aggressive cancer cells—of tumour. A Study by Vermeulen et al. [6] on
tumour spheroid cultures provides evidence that a single cancer cell can self-renew and reconsti-
tute a complete and differentiated carcinoma, thus making the tumour population heterogeneous.
As tumour grows, proliferating cancer cells are thus seen to give rise to more aggressive phenotypes
different from the parent cell. Anderson [16] used a hybrid discrete—continuum model to examine
the effect of cell-cell and cell-matrix adhesion upon the invasion of healthy tissue by a growing
tumour. Specifically, the model considers early vascular growth just after angiogenesis has occurred
and so focuses on the secondary growth of tumour. Alarcon ef al. [17] made use of hybrid CA
as a basic theoretical framework to model tumour at a multiscale wherein intercellular processes
are represented by ordinary differential equations and extracellular processes by partial differential
equations. Gevertz et al. [24] employed CA to couple vascularisation with cellular growth in tumour.
The study thus focused on the angiogenic growth. Gerlee et al. [25] built a model for tumour growth
by employing CA together with an artificial neural network. Although oxygen concentration is not
explicitly solved for in their model, they concluded that tissue background oxygen concentration
affects the dynamics of tumour growth.
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Figure 1. The scheme of study. CA, cellular automata.

Wise et al. [26] provided a numerical algorithm for continuum modelling of diffuse interface in
multispecies tumour growth. Most recently, in [27], they extended the continuum diffuse-interface
method by incorporating a hybrid discrete—continuum method for cell movement to model tumour-
induced angiogenesis. Their latter work, directed on the secondary growth of tumour, concluded that
invasion may be a function of heterogeneity. Sottoriva et al. [18] implemented the cancer stem cell
concept to explain invasive tumour morphology using the hierarchical organisation of cell species.
Their model incorporates the phenotypical evolution of cancer cells. However, despite solving for
oxygen concentration to decide on the fate of cells, their model assumes that cells die if they are at
a depth of 60 cells or greater from the tumour boundary.

In the work presented here, we propose a number of improvements over the methods previously
presented in the literature. We build upon the CA model from our previous work [28] where we
showed that the heterogeneity of cells that compose a tumour leads to its irregular growth. We
incorporate the composition of cells and intercellular adhesion in addition to processes involved in
cell cycle—proliferation, quiescence, apoptosis, and necrosis—in our tumour growth model. More
importantly, we consider cell mutation that gives rise to a different phenotype and therefore a tumour
with heterogeneous population of cells. A new phenotype is probabilistically chosen and has the
ability to survive at lower levels of nutrient concentration and reproduce faster. The fate of cells
in our model is determined by the availability of nutrients whose concentration is described by a
partial differential equation. We use our method to simulate a complete avascular growth of tumour,
which, to our knowledge, has not been performed so far. Our method not only enables simulation of
tumour growth on a large scale but also permits a more computationally efficient growth simulation,
and so the growth simulation is faster. The scheme for this study is depicted in Figure 1.

2. THE CELLULAR AUTOMATA TUMOUR GROWTH MODEL

We represent tumour by a discrete set of cells on a two-dimensional lattice 2 of N x N cells with
zero-flux boundary conditions. Such a boundary condition is chosen so that the cancer cells do
not proliferate outside the brain tissue. We choose the Von Neumann neighbourhood. As shown in

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:542-559
DOI: 10.1002/cnm



546 S. M. B. SHRESTHA ET AL.

sic| | : '._C_=.
C .

(a) (b)

Figure 2. (a) The von Neumann neighbourhood consists of cells at positions (0,0), (£1,0), and (0, 1),

that is, the four yellow cells and cell C. (b) A daughter cell can take position at site 1, 2, 3, or 4 with equal

probability. However, the cell existing at that site has to be displaced to one of its neighbouring blue sites
first to create space for the daughter cell.

Figure 2a, the neighbourhood consists of the cell in consideration and four other cells at a length of
one cell on its right, left, top, and bottom. A CA is a point in the lattice representing a cell that can
be in a proliferating, quiescent, or necrotic (dead) state. The size of a cell is 10 wm x 10 pm [29].
Automaton rules will be given in Section 4.

3. SOLUTION TO THE OXYGEN DIFFUSION EQUATION

The oxygen distribution in the tumour volume and its immediate surroundings during the growth
process is governed by the reaction—diffusion equation

dc(r,t)
ot

where D = 1 x 107> cm? s~ ! [13] is the coefficient of diffusion, c(r, 7) is the magnitude of oxygen
concentration at the CA element at location r at time #, and k(r) is the rate of oxygen consump-
tion by the CA element at r and is dependent on the type of cell, k;. If we choose the number of
phenotypes to which a proliferating cancer cell can mutate or differentiate to be four, k; = kp,
J = 1,2,3,4 for proliferating cells of phenotypes I, II, III, and IV, respectively, and k; = kq for
quiescent cells.

In two dimensions, Equation (1) may be written as

de(x,yt) . (c(xy.1)  9*c(xy,1) ‘
o D ( Ix2 + a2 ki(x,y) 2

Teft < X < Trights F'top < ¥ < F'bottom

= DV2e(r,1) —ki(r), ki € (kp,»kpyrkpyr kpyr kg) (1

P2°>"P3> Pg>

subject to the boundary condition [30]

—4 -3
c(Fiefr ¥> 1) = ¢ (Feight, ¥,1) = O = 1 x 107" gcm Frop < ¥ < I'vottoms £ >0

_ -3
(X, Top, 1) = (X, Tootiom» ) = Op = 1 x 10 *gcm Fleft < X < I'righty ¢ >0
and initial condition
—6 -3
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Here, r4;, dir € (left, right, top, bottom), is the maximum radius of tumour in the left and right
x-directions and top and bottom y-directions at time 7. Oy [30] is the magnitude of oxygen concen-
tration in the healthy brain tissue. k,, [18,31] is the proliferating oxygen concentration threshold.
We choose the initial concentration of oxygen inside the tumour lattice to be equal to k,, so that the
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initially seeded cancer cells in the tumour are all in the proliferating state. We then solve for oxy-
gen concentration in a spherical volume. The concentration outside the volume is considered to be
equal to the oxygen concentration in a normal tissue. Therefore, in this part of the model, artificial
anisotropy is avoided.

Equation (2) may be solved by either an implicit or explicit method. Here, we choose the explicit
method for reasons explained shortly. In the explicit numerical method, for a stable solution to
Equation (2) to be achieved, the condition 0 < A < 1/ 2 has to be met where A = D(k/h?)
[32-34].

Here, A is the mesh ratio parameter, k is the space step size, and / is the time step size. To solve
for oxygen concentration at each site of a cell, we take the space step size to be equal to the size
of a cell. For such a space step size, the magnitude of time step that can be used from the pre-
ceding equation even when A = 1/2—the maximum possible value for A—is very small and is in
the order of a hundredth of a second. With the time required for a mitotic cycle being about 16 h
[30], the equation has to be solved about 1.5 million times for every mitotic cycle and is therefore
computationally very expensive.

Our experience [28,33,34] in addition to existing evidence [32] shows that implicit methods are
intrinsically computationally very intensive too and have no advantage over explicit methods in
terms of speed at such small space step size and very large total time for which the equation has to
be solved. Therefore, we solve Equation (2) using the explicit numerical method.

We find that in the case of brain tissue, both the rate of diffusivity, compared with that of other
tissues such as the bone, and the mitotic cycle time—16 h—are very high. Therefore, we hypoth-
esise that the oxygen distribution in the brain tissue reaches a steady state within a mitotic period.
First, we justify this hypothesis by showing that, in the case of brain tissue, the time-independent
steady-state equation can sufficiently describe the distribution of oxygen in the tumour lattice with-
out losing the characteristics of the time-dependent diffusion equation (Equation (2)). In the case of
a growing tumour, we will initially be interested in finding the distribution of oxygen in the lattice
before it is consumed by cells. This initial distribution prior to consumption is given by the equation

Je(x,y.t) _ - 0%c(x,y,t) N 0%c(x,y,t)
ot 0x2 dy?

The oxygen is consumed by the cells that compose the tumour volume during a mitotic period,
the time in which proliferation occurs. However, once proliferation has taken place, a significantly
high amount of time (16 h) has to elapse before another proliferation step takes place. Therefore,

for small concentrations of oxygen as seen in the tumour lattice, the left-hand side of Equation (3)
tends to O for such a long period. This leads to the steady-state equation

?c(x,y) n ?c(x,y)
0x2 w2 ),

which is subject to the boundary condition

3)
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— -3
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Here, ¢ is an integer multiple of the mitotic period. Equation (2), which is a boundary and
initial value problem, thus reduces to a boundary-value-only problem represented by Equation (4).
Equation (4) may be used to solve for the concentration of oxygen in the tumour volume after every
mitotic period. After consumption by cells, the concentration of oxygen in the tumour lattice is
given by

Pc(x,y) n Pc(x,y)
0x2 dy2

where Ro, < 0 means that the cells will become necrotic. Ro, = 0 is the residual amount of oxygen
left after consumption by cells. When R, > 0, the residual oxygen is available for further diffusion.

) ki(x.¥), = Ro, 5)
t
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Next, to further strengthen our confidence in this hypothesis, we compared the oxygen distri-
bution in various sizes of brain tumour lattices by solving both the time-dependent (parabolic)
diffusion equation and the time-independent steady-state (elliptic) equation, in this case, the Laplace
equation. Figure 3 shows the plots for lattice sizes of 200 x 200 cells (Figure 3a, b), 400 x 400
cells (Figure 3c, d), and 2000 x 2000 cells (Figure 3e, f) wide. The size of the lattices was fixed
while solving for oxygen concentration, meaning that the equations are solved for a fixed size of
tumour. Interestingly, we observed that the pattern and magnitude of oxygen distribution in the
tumour volume were very similar in both the time-independent and time-dependent cases. Although
the difference in the magnitude of concentration increased and peaked between 40 and 60 cells from
the tumour boundary to a maximum of about 14%), it sharply dropped to less than 3% at a depth of a
hundred cells for tumours of radius greater than 100 cells. In both cases, the concentration reached
near-zero levels at about 100 to 120 cells from the tumour boundary.

Further, we also tested this hypothesis against varying sizes of the tumour lattice by solving both
the time-dependent and time-independent equations on a growing tumour for increasing times. We
chose to increase the size of tumour lattice from 3 x 3 cells to 240 x 240 cells with a corresponding
increase in the number of mitotic periods to capture the growth of in vivo tumour.

Figure 4 shows the oxygen profiles from the tumour boundary to its centre for blocks of time.
In this study, we chose to compare the oxygen profile in the growing tumour after every 10 mitotic
cycles, and hence, each block, x, is equal to 10 mitotic cycles. Time blocks, shown as vertical lines
in the plots, except the first block, are multiples of x. The size of tumour corresponds to the size
obtained while growing during the blocks of mitotic periods. We observed that the oxygen profiles
in the case of the time-independent solution (Figure 4a) are similar to those of the time-dependent
solution (Figure 4b) and that they follow analogous trends. Concentrations obtained through the
solutions to the time-independent steady-state equation (Figure 4c) and the time-dependent diffu-
sion equation (Figure 4d) for each of the mitotic blocks differed from as little as 1% for smaller
sizes of tumour such as 100 cells in diameter to at the most 6% for larger sizes of tumour such as
240 cells in diameter (Figure 4e). It is worth noting here that the maximum of the differences occurs
at the tumour core, and this difference will continue to increase for larger diameters of tumour. This
will not, however, affect the growth dynamics because the core consists of necrotic cells that do
not consume oxygen. For all lattice sizes, the difference between the oxygen concentration obtained
through the steady-state solution and that obtained through the time-dependent solution is minimal
(about 1%) where it matters the most, that is, towards the tumour boundary. Therefore, the viable
cells in both cases are exposed to similar amounts of oxygen.

Hence, we choose to use the time-independent equation (Equation (4)) for solving the oxygen
concentration in our model. Whereas the time-dependent equation required about 5.33 h to solve
for oxygen concentration in a growing lattice size that grew to a maximum of 120 x 120 cells, the
time-independent solution to the growing lattice of the same size took only about 6 min in a 3.2-GHz
personal computer with 4 GB of random access memory.

We solve Equation (5) using the central difference method to determine the oxygen concentration
at each node in the lattice. We use the Dirichlet boundary condition with the oxygen concentra-
tion at the boundary being constant and equal at all times to the oxygen concentration level of a

healthy tissue at 1 x 10™* g em™3 [30]; that is, ¢ (Fef, ) = ¢ (Frights ¥) = €¢(X, F'iop) = € (X, Fhotiom) =

1 x 107* g cm™3. For simulation purposes, we convert the oxygen diffusivity in brain tissue as well
as the rates of consumption by cells to the unit of a cell (Table I). To further save computation
time, we solve the diffusion equation after every 10 mitotic cycle times. Our experience through
previous work [28,33,34] indicates that it is sufficient to solve the diffusion equation after every 10
mitotic cycle times to obtain a desirable solution, whereas solving the equation after larger steps of
mitotic cycle times such as 20 or more has a smoothing effect on the oxygen profile and hence is
undesirable.

Our model describes the avascular tumour growth wherein the size of the tumour is relatively
small and so has a very small microenvironment in contact with it. Therefore, it is sufficient to
assume a homogeneous soft microenvironment for the growing tumour. For larger sizes of tumour,
the effect of pressure on its growth may be incorporated by following our earlier work [35].
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Figure 3. (a, c, e) Oxygen profiles (concentrations in grammes per cell) using steady-state time-independent

(Laplace) and time-dependent equations for fixed lattice sizes of 200 x 200, 400x400, and 2000 x 2000 cells,

respectively. Profiles are shown from the tumour boundary to its centre. (b, d, f) The difference in oxygen
concentration corresponding to the three lattice sizes.

4. AUTOMATON RULES

1. The state of a CA element determines the type of cell in that element. The applied CA rules
depend on the type of cell.

2. If an automaton element is a cancer cell, it can divide into daughter cells if all of the following
is true.

(a) The level of oxygen concentration C’(x, y) at the position of that element is equal or
greater than the proliferative threshold, k, =1 x 1076 gcm™3 [18, 31], implying that
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the steady-state time-independent and time-dependent solutions for different tumour diameters
(in number of cells).

proliferation of a cancer cell occurs only when the amount of oxygen available to the cell
is enough to let it do so.

We assume that if a cancer cell is completely surrounded by cancer cells only, the cell will
not have enough nutrients such as glucose to permit it to undergo cell division despite the
availability of oxygen because of the effect of ‘crowding’. Therefore, at least one normal
cell should exist either to the right, left, top, or bottom of the cell for the cancer cell to
divide into daughter cells [5, 18]. If this is the case, the normal cell is pushed to one of the
normal cell’s neighbourhood, and the cancer cell proliferates into this vacant space.

The age of the cell has not exceeded its lifespan. Cells have their biological lifespan. We
allow cells to reproduce until five generations [6, 15, 28]. At this point, if the cell division
does not lead to mutated daughter cells, the cell will die naturally.
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Table I. Variables used in the cellular automaton model.

Variable Symbol Value

O, diffusion coefficient D 10 cell s—1

O, concentration of healthy tissue Oy 10713 gcell™!

O3 consumption rate of proliferative cells kp 10715 gcell™! 57!
05 consumption rate of quiescent cells kq 5x10716 g cell™1 s71

When (a), (b), and (c) are all true, tumour growth is permitted. An empty place for the
daughter cell is created in one of its neighbouring sites by displacing cells in the surrounding
outwards. However, the position in which the daughter cell will move into would not be known
yet and therefore is evaluated first. If cell C can reproduce, the daughter cell can take at ran-
dom one of four positions 1, 2, 3, or 4 (yellow sites in Figure 2b) with equal probability. Once
the position the daughter cell is going to occupy is determined, the normal cell occupying that
position is pushed to one of the sites in the neighbourhood of the normal cell (blue sites in
Figure 2b) with equal probability. Therefore, growth is a result of two processes—propagation
of a normal cell into its neighbourhood to create a space for the daughter cell followed by the
proliferation of a cancer cell into this vacant position from where a normal cell was displaced.

Recent models [4,23,36] assume the presence of at least one pre-existing empty space in the
neighbourhood of a CA element (to be occupied by a daughter cell) as a necessary condition
for a proliferating cell to divide. While simplifying the modelling process, this is not an accu-
rate description of the way in which proliferation occurs. Rather, biologically, an empty space
is created followed by proliferation of a daughter cell into this space [1]. This is accounted for
in our model as described in rule 2.

3. If the level of oxygen concentration C*(x, y) falls below the proliferative threshold value k,, =
1 x 107® g cm™3 but is greater than the necrotic threshold value k, = kq =5x 1077 gem™
[18, 37] and the state of the automaton element is proliferating, the state changes to the
quiescent state.

4. If the level of oxygen concentration C’(x, y) falls below kg, the state of an automaton element
in both the proliferating and quiescent states changes to the necrotic state.

5. In the case of an automaton element that is in the quiescent state, if the local level of oxy-
gen concentration is restored to or above the proliferative threshold &, it changes to the
proliferating state.

6. We model intercellular adhesion by considering the number of similar external automaton ele-
ments a cell is attached to, Q. [16]. If Q. = 2, a cell adheres to its neighbours, whereas if
Q. < 2, the cell is allowed to migrate.

7. Cancer cells differentiate as they reproduce [1, 6]. This gives rise to a cell of a phenotype
different from the parent cell. The new phenotypes, in general, have more aggressive prolif-
erating capability, meaning that they can survive and reproduce at smaller levels of oxygen
concentrations than that required by their parent cell. Similarly, when these daughter cells
mature and reproduce, they may mutate to cells of yet another phenotype that can proliferate
even more aggressively, thus requiring even less oxygen to survive and reproduce. To model
mutation, we consider four different phenotypes. Initially, all cells are of phenotype 1. A cell
can mutate with a probability P_mut = 0.1 to one of phenotypes II, III, or IV. Although
the value of P_mut as 0.1 is an arbitrary first approximation, this value corresponds to the
fraction of mutated or differentiated cancer cells observed in various solid malignancies [6].
Phenotype II can proliferate at half the nutrient concentration required by phenotype I and can
reproduce at half the time required by phenotype I. We proceed similarly to determine the time
and oxygen required by phenotypes III and IV to proliferate. Anderson [16] used, in addition
to the one earlier, a random mutation sequence where all the cells are initially assigned to one
of 100 phenotypes randomly, and through mutation, another phenotype is selected randomly.
He concluded that although these two methods for considering tumour cell heterogeneity are
different, they ultimately produce similar results.
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8. When the age of a cell equals its lifespan, we check if it can mutate. If the cell can mutate, it
can acquire a different phenotype as mentioned in rule 7. The age of the cell is then reset to 0.
Otherwise, the cell will die because it exceeded its lifespan naturally (apoptosis).

5. THE TUMOUR GROWTH ALGORITHM

The tumour growth algorithm follows the steps listed as follows:

Load a two-dimensional lattice with a grid size of N x N.

Prescribe the boundary conditions.

Seed five nodes at the centre of the lattice with proliferating cells.

Initialise time stepping.

Calculate the oxygen concentration level, C*(x, y), at all nodes in the lattice using the finite

difference method as described in Section 3.

If at a node in the lattice, the cell is in the proliferating state and if C*(x, y) = k,,, cell division

occurs as described in automaton rule 2.

7. Ifatanode, kg < C I(x,y) < k,, change the state of the cell at that node to the quiescent state.

8. If at a node, C*(x, y) < kq, change the state of the cell at that node to the necrotic state, that
is, both proliferating and quiescent cells will be dead.

9. Repeat 6-8 for 10 time steps.

10. After 10 time steps, if dead cells are present in the tumour mass, compute the average radius
of the necrotic core.

11. Because dead cells do not consume oxygen, calculate the new distribution of oxygen concen-
tration, C*(x, y), at all nodes in the lattice starting from the edge of the tumour where it meets
the healthy tissue to the boundary of the necrotic core.

12. Repeat 6-8 for the next 10 time steps. In addition, if at a node, C*(x, y) = ky, and if the cell at
that node in the lattice is in the quiescent state, change the state of the cell to the proliferating
state.

13. Repeat 10-12 and proceed until the edge of grid is reached.

NS

=

6. RESULTS AND DISCUSSION

6.1. Comparison with tumour spheroid cultures

We performed 24 growth simulations with time-independent oxygen distribution for both homoge-
neous and heterogeneous tumours on a lattice growing from 3x3 cells to 2000 x 2000 cells. The
maximum thickness of the proliferating rim obtained averaged at 79 cells in a mean tumour diameter
of 322 cells (Figure 5a). The rim thickened as the tumour grew from a diameter of about three cells
to about 322 cells. Thereafter, the thickness reduced sharply at first and then kept fluctuating about
an average of 10 cells when the diameter exceeded 640 cells on average. This agrees well with the
experimental data on fibroblast cultures in [38]. The maximum thickness in their spheroid cultures
was obtained between 15% and 21% of the total growth period. The maximum rim thickness in our
simulation occurred at approximately 14% of the total growth period. Although the rim thickened to
a maximum a little early during the growth period in our time-independent model, we attribute this
to the exclusion of glucose in our model. Glucose supports proliferation when the concentration of
oxygen is poor [37].

6.2. Time-independent versus time-dependent oxygen diffusion solutions

The amount of oxygen available to the viable cells was above the proliferative threshold and there-
fore was enough for cells to survive and reproduce in both time-independent (steady-state) and
time-dependent cases (Figure 5b). The maximum difference in the concentration at the boundary
of the necrotic core between the time-independent and time-dependent solutions was 13%. So, the
core could be between 6 and 11 cells thinner when predicted using the time-independent model
(Equation (4)) as compared with that predicted with the time-dependent model (Equation (2)). The
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Figure 5. (a) Change in the thickness of the proliferating rim in a growing tumour. (b) Complete oxygen
profile for 2000 x 2000 lattice.

thickness of the quiescent layer may be affected to a similar magnitude. However, because only the
proliferating cells are responsible for the change in size (volume and diameter) of tumour, the size
would remain the same irrespective of the use of time-independent or time-dependent equation.

6.3. Homogeneous versus heterogeneous growth

In the case of homogeneous/classical growth, clear symmetrical layers of proliferating, quiescent,
and necrotic cells were visible (Figure 6a). In the case of heterogeneous growth, the shape of tumour
was asymmetric, and the boundaries of the three layers were irregular (Figure 6b—f). This is corrobo-
rated by the fact that in heterogeneous tumour, mutated cancer cells contribute to different velocities
of growth of cells in different directions because of dissimilar proliferation and nutrient consumption
rates by the various phenotypes.

In our simulations, the tumour remains heterogeneous throughout its growth (Figures 6b—i and
7) in contrast to the classical model [7, 13], where the absence of mutated phenotypes in a homo-
geneous tumour causes it to grow at the same rate in all directions, making the tumour spherical
(Figure 6a).

6.4. Circularity

To measure the deviation of tumour contour from a perfect circle, we calculated its shape factor
by using the well-known circularity formula, circularity = (4wA)/P?, where A is the area of the
tumour and P is the perimeter of the tumour contour. A perfect circle has a circularity of 1, whereas
very irregular shapes have a circularity close to 0. The circularity for the full-grown tumour in our
simulations was measured to be in the range of 0.53 and 0.67. To verify the circularity of tumour
shapes so calculated, we plotted the signature of the tumour contours as is commonly performed in
digital image processing. Figure 8a shows the normalised variation of the contour of the full-grown
tumour (Figure 8b) from its centroid. The dashed line represents the radius of the perfect circle with
an area equal to that of the tumour.

6.5. Growth progression

During the growth, only proliferating cancer cells were visible until the tumour reached a diam-
eter of about 86 cells (Figure 6b). Thereafter, cells were seen to become quiescent, forming a
blue layer (Figure 6c¢), and the necrotic core was visible only after the diameter exceeded 254
cells (Figure 6e). The thickness of the proliferating rim increases initially and then gradually thins
down as growth progresses. We observed that when the tumour diameter reached above 1760 cells
(Figure 6f) (approximately 18 mm) on average, intercellular adhesion did not support further growth
of the avascular tumour. This phenomenon is similar to the findings in [26,27] where avascular
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Figure 6. (a) Homogeneous/classical tumour growth gives rise to spherical shape. (b—f) Heterogeneous
tumour growth: (b) only proliferating cells are visible in the initial growth periods, (c) quiescent layer begins
to form, (d) the size of proliferating rim starts to decrease, (e) formation of necrotic core, (f) maximum
size of tumour with its boundaries intact, (g) boundary begins to rupture, (h) progression of rupture, and (i)
diminished number of proliferating cells at the tumour boundary. (This figure should be viewed in colour.)
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Figure 8. (a) Plot of the signature of the tumour contour shown in (b). The angles are measured from the
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Figure 9. (a) Tumour growth follows the Gompertz curve. (b) Cell doubling time increases uniformly for a
growing tumour.

growth is found to be thwarted between diameters of 1 and 2 mm for generic cancer. Although the
size of tumour that was permissible for growth was about one order of magnitude bigger in our case,
we attribute this to the higher diffusivity of oxygen in soft tissues, in this case, the brain tissue. On
further growth simulation, the proliferating rim started to rupture (Figure 6g). The rupture was seen
to creep into the quiescent layer (Figure 6h) and, on progression, severely diminished the size of the
proliferating rim, creating a disjointed boundary (Figure 6i). This is explained by the fact that the
intercellular adhesion between tumour cells does not permit the proliferating cells to grow further at
this stage. It is also worth noting here that for further progression, other than initiating angiogenesis,
tumour cells begin to lose intercellular adhesion, subsequently leading it to the secondary growth
stage.

Our model predicts that intercellular adhesion plays an important role in thwarting further
growth of an avascular tumour after reaching its diffusion-limited size as experimentally established
in [3]. The growth curve (Figure 9a) is a Gompertzian curve with three distinct phases: an initial
exponential growth, followed by a linear growth, and finally the beginning of a plateau as seen in
experiments by Freyer [38]. In their earlier work [39], the growth in spheroid culture was found to be
linear for sizes between 200 and 1600 pm in diameter compared with between 440 pm and about
1500 pwm on average in our steady-state model. The maximum number of cells in a completely
grown avascular tumour was about 271466 cells, whereas the minimum was about 218 948 cells
with a standard deviation of 17 745 cells, which accounts for approximately 6.9% fluctuation from
the mean (Table II) and shows that the simulations were modestly consistent. The cell doubling time
for the growing tumour increases at a uniform rate (Figure 9b) similar to what is seen for a growth
of tumour with necrosis in [38].

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2013; 29:542-559
DOI: 10.1002/cnm



556 S. M. B. SHRESTHA ET AL.

Table II. Average number of cells in the tumour volume in 24 growth simulations.

Maximum Minimum  Mean  Standard deviation

Tumour volume (number of cells) 271466 218948 257791 17745

6.6. Quantitative verification

To quantitatively evaluate the appropriateness of the methods proposed in this paper, we need to
relate our results to quantitative results of experiments. These are very hard to find because usually
papers presenting data on tumour growth such as [30,37,38] do not report information necessary to
choose parameters for our model. Here, we compare the two basic parameters—volume doubling
time (7y) and cell loss factor (¢)—that define the growth of any tumour [40] with data from [41], the
results from which are also used most recently in [42]. To compute Ty and ¢, we have to determine
the cell cycle time (7;.) and the growth fraction (GF). Cell cycle time (7¢) is the period required
for a proliferating cell to progress from one mitotic division to the next. We use the cell cycle time
(T.) provided in [41]. GF is the ratio of the proliferating cell population to the total tumour cell
population. Both the proliferating cell population and the total tumour population are obtained from
our CA growth model. 7; and GF are then used to calculate the potential doubling time 7. The
expected doubling time in the absence of cell loss is termed the potential doubling time and is given
by Equation (6) [41].

Toor = Te/GF (6)

The volume doubling time (7;), which is the time interval required for the whole cell population
to double in number, is computed as

Ta = At log2/log (N; — Ny) @)

where Ny is the initial number of cells in the tumour volume and N; is the number of cells after
time At. The volume doubling time (7y) will be equal to the cell cycle time (7;.) when all cells in
the tumour volume are proliferating.

We then compute the cell loss factor (¢). The cell loss factor represents the rate of cell loss as a
fraction of the rate at which cells are added to the total population by mitosis and is computed using
Equation (8) [41].

¢ =1—(Thot/ Ta) (8)

T,o and Ty in Equation (8) are obtained from Equations (6) and (7), respectively.

Here, we compare the results from our CA model with the findings on 4-, 7-, and 13-day experi-
mental tumour Ehrlich ascites carcinomas [41, and references therein]. Because the cell cycle time
(T,) is constant in our CA model, we also choose an experimental data set pertaining to a con-
stant 7,. The postsynthesis (premitotic) gap phase G, = 6 h is chosen to be equivalent to 7, in
the experiment as synthesis is not considered in our model. For consistency, we use and present all
measurements of time in units of 7.

6.6.1. Four-day Ehrlich ascites. To compare the 4-day Ehrlich ascites with our growth model, we
first choose the tumour at a growth stage in our model that has the same value for cell loss factor
() as that for the 4-day Ehrlich ascites in the experiment (Table III). Because ¢ = 0 in this case,
no cells are lost during the growth process. Therefore, the growth factor is 1. The experimentally
observed Ty in this case is 3.4 T.. The value of Ty obtained from our CA model that is calculated
using Equation (7) is 3.1 Tt.

6.6.2. Seven-day Ehrlich ascites. To compare the 7-day Ehrlich ascites, we choose the size of
tumour from our CA model that has the cell loss factor (¢) closest to that observed in the experiment.
The closest match to the experimental ¢ = 42.0% is 45.8% in our model (Table III). To proceed to
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Table III. Parametric comparison between experiment and CA model.

Cell loss factor Volume doubling time
¢ (%) T4 (in units of T¢)
Tumour Cell cycle time 7; (h) Experiment CA model Experiment CA model
Ehrlich ascites
4-day tumour 6.0 0.0 0.0 34 3.1
7-day tumour 6.0 42.0 45.8 6.4 11.3
13-day tumour 6.0 89.0 81.3 56.0 43.1

CA, cellular automata.

find T4, we first calculate the growth fraction, GF = P /(P + Q), where P and Q are the number
of proliferating and quiescent cells, respectively, and are obtained from our CA model. GF is used
to calculate the potential doubling time (7},) using Equation (6). The volume doubling time (7g) is
then obtained for our CA model by using Equation (7). The value of Ty thus obtained for our CA
model is higher than that for the experiment. However, the cell loss factor (¢) for our CA model was
also higher than that for the experiment. A higher cell loss factor implies that a higher fraction of
cells is lost from the tumour volume, and therefore, the volume doubling time also becomes higher.
However, the large difference between the volume doubling times could not be explained.

6.6.3. Thirteen-day Ehrlich ascites. We proceed to compare the 13-day Ehrlich ascite measure-
ments with those of our CA model in a method similar to that followed for 7-day Ehrlich ascites.
In this case, the closest match to the experimental ¢ = 89.0% is 81.3% in our model. The volume
doubling time (7y) calculated for our model is smaller than that for the experiment. Because the cell
loss factor (¢) for our model is also smaller than that for the experiment, a smaller fraction of cells
is lost from the tumour volume in the CA model compared with that in the experiment. Therefore,
the volume doubling time is smaller for the CA model.

Other sources of error may be the difficulties associated with the measurements of viable cells
in the experimental tumours. In [41], it is assumed that the thymidine-labelling index indicates the
proportion of cells although the measurement is affected by the finite (short) availability time of tri-
tiated thymidine. It is also assumed that thymidine reaches all cells after injection. The occurrence
of ‘false negatives’ will lead to an overestimate of potential doubling time and an underestimate
of cell loss. The results, however, follow the general observation that an increase in tumour size is
accompanied by greater cell loss, a lower growth fraction, and a longer doubling time [40].

7. CONCLUSIONS

We conclude that our CA model incorporating heterogeneous cell population is able to capture the
tumour growth dynamics at the cellular level, which is in good agreement with existing experimen-
tal data. The choice of time-independent (steady-state) solution to the distribution of oxygen in the
tumour volume allows faster implementation of the model without losing the characteristics of a
time-dependent solution. Other nutrients such as glucose can be easily introduced into the model
by including its diffusivity. Further, the model can also be used to study the effect of treatment by
incorporating the change of state of cells upon exposure to a threshold concentration of radiation.

We are currently in the process of extending the model to three dimensions and also studying the
growth dynamics by including other factors such as the effect of surrounding normal tissue. An ear-
lier work by our group shows that the speed and efficiency of computation of brain deformations is
significantly increased through implementation on a graphics processing unit (GPU) [43]. However,
implementation of our 3D tumour model in GPU presents challenges due to the insufficient internal
memory of current GPUs that are not capable of holding the complete data during the simulation of
the 3D growth model.

Another challenge lies in verifying the model with a wide range of clinical data. Our clinical
collaborators suggest that clinicians currently cannot provide data that could be directly applicable
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for direct, quantitative verification of our methods as the resolution of imaging equipment used for
diagnostics is too crude. It may be added here that data from clinical trials on glioma growth exist.
However, none of it has been released publicly, as far as we know, and often, this type of very
valuable data is the property of pharmaceutical companies funding the trial.

The best way to verify our method would be to inject tumour cells stereotactically into mice cau-
date nuclei, which is a standard method for tumour growth and subsequent therapeutic trials. The
growth of these lesions can be monitored by 7-T MRI and provides the purest data to validate our
methods. Also, oxygen and nutrients could be directly measured with other imaging methods. We
are planning, with our clinical collaborators, to embark on such an experiment.
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