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Stable time step estimates for mesh-free particle methods
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SUMMARY

Real-time computational biomechanics for medicine usually uses explicit time integration, because of its
efficiency and suitability for parallel implementation. Explicit time integration is only conditionally stable
and therefore requires an estimation of the maximum stable time step that can be used. In this paper we
develop a method of estimating the stable time step for mesh-free particle methods for a specific case of
mass lumping: the mass associated with an integration point is distributed equally to all nodes found in the
support domain of that integration point. Two estimates of the stable time step for each integration point
are developed: one that is very accurate but more costly to compute and one less accurate but easier to
implement. The results are also valid for the FEM and beyond computational biomechanics for medicine.
Copyright © 2012 John Wiley & Sons, Ltd.

Received 10 June 2011; Revised 9 January 2012; Accepted 11 January 2012

KEY WORDS: stability analysis; stable time step; mesh-free particle methods; maximum eigen-
value estimation

1. INTRODUCTION

In the past few years our research group developed a suite of finite element algorithms for com-
puting soft tissue deformation based on the total Lagrangian formulation and using explicit time
integration [ 1—4]. By using artificial mass proportional damping in the explicit integration schemes,
such algorithms can not only be used for time accurate simulations, but also for fast computation
of the steady state solution [5, 6]. Parallel implementations of these algorithms lead to real-time
performance for intra-operative brain shift computations using comprehensive finite element models
having more than 50,000 DOFs and including different element types, nonlinear materials, large
deformations and contacts [7].

While applying these algorithms for intraoperative image registration [8, 9], some important
weakness of the FEM became evident:

e To obtain good results and convergence of the simulation, a good quality mesh is needed. Such
mesh is very hard to build for complicated organ shapes (such as the brain), and automatic
generation is almost impossible for any element type except tetrahedrons.

e Even if a good quality mesh is used, the solution method may still fail in case of large
deformations, because of problems such as element inversion.

To circumvent these problems, we considered the use of mesh-free methods, such as the mesh-
free total Lagrangian explicit dynamics algorithm based on the element free Garlekin method [10].
Such methods do not require a good quality mesh to be generated, because the shape functions are
constructed based on a cloud of points, and they also perform much better in case of very large
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deformations. Therefore, we propose to use mesh-free methods combined with explicit solution
algorithms for more robust surgical simulations.

Explicit time integration can be used to perform dynamic simulations, leading to time accurate
solutions, or for quasi-static simulations, to obtain the steady state solution. Because it does not
require the solution of large systems of equations, explicit integration can be much more computa-
tionally efficient at finding the solution than other methods (implicit integration, static analysis).
It also leads to solution algorithms that can be easily implemented on parallel hardware such
as graphics processing units [7]. The main disadvantage of explicit integration is its conditional
stability — the time step used for time integration must be smaller than a critical time step for the
solution to converge [11].

In the case of the FEM there are well established formulae for estimating the critical time step
for each element type [11, 12]. These formulae are generally developed using the assumption of a
homogenous isotropic material.

For mesh-free particle methods, there are few available methods for estimating the critical time
step, and these methods are not generally valid. In [13] Belytschko et al. developed critical time
step bounds for one-dimensional and two-dimensional (2D) mesh-free methods. Nevertheless, these
bounds are valid in 2D only for uniformly distributed nodes, and they cannot be used for shape
functions that have the Kronecker delta property and for shape functions that are not strictly
positive, because they become indefinite (because of division by zero) [14]. Puso et al. presented
in [14] an estimation of the critical time step for nodal integration methods. This estimation also
uses the assumption of a homogenous material. Benson presented an algorithm that produces an
accurate estimate of the critical time step in the context of the FEM [15], which can be easily
adapted for mesh-free methods. The algorithm proposed by Benson uses an iterative method called
‘power iteration’ to estimate the maximum eigenvalue of the assembled system of equations.

The critical time step is directly related to the maximum frequency of free vibration, which is
determined by the mass and stiffness matrices of the system. Therefore, different lumping techniques
used for obtaining a diagonal mass matrix lead to different critical time steps for the system. In
this paper we consider that the mass associated with an integration point is distributed equally to
all nodes found in the support domain of that integration point. The lumping technique has no
influence on the results of a steady state analysis [6], because the mass matrix does not influence
the steady state solution (for elastic materials). The correctness of results can be influenced by the
mass lumping technique in case of dynamic analysis; therefore, the analyst must check whether our
specific lumping technique is appropriate for a given problem when such analysis is performed.

In the next section we develop a new method for estimating the critical time step for a mesh-free
particle method. In Section 3 we assess the performance of the new method and Section 4 contains
discussions and conclusions.

2. CRITICAL TIME STEP ESTIMATION

We consider a mesh-free particle method for which the displacement field is approximated by
ux = Y hx-u, ()
IeN(x)

where u! are the field variable values at node 7, N(x) is the set of nodes in the support domain of x
and /7 is the shape function for node /.
The matrix of shape function derivatives is defined as

Bjr(x) = Py (2)

The stable critical time step for central difference integration can be obtained from the maximum
frequency of free vibration as [16]

- 2
Atcm S — (3)
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Similar formulae are available for other explicit time integration methods [11].
The mass and stiffness matrices for the system are obtained by assembling the corresponding
matrices from each integration point

N

K=> K’ 4)
I=1
N

M=) M, ©)
I=1

where N is the number of integration points.
The maximum free vibration frequency of the assembled system can be estimated using the
eigenvalue inequality theorem [17]

min (Agin ) < Avin < Aien < max (Al ) ©)

Therefore, a conservative estimate of the critical time step for the central difference method is
given by

2 2 2 . 2 . 1
— ~ =min | —— | = min (Azz). (7
Wmax VA max \/mIaX(Xl{/[ax) ! AI{/[ax !

Al‘crit =

For a given integration point, the maximum eigenvalue can be estimated using the Rayleigh
quotient as [17]

u’K'u

I _
/\Max = Slip m (8)

Considering our specific mass lumping technique (mass associated to an integration point is
distributed equally to all nodes found in the support domain of that integration point), the above
relation can be rewritten as

NI uTKlu N!
Mpax = oS00 pra = 7 (KD, ©

where N7 is the number of nodes in the support domain of integration point I, m! is the mass
allocated to integration point / and Py« (KI ) is the maximum eigenvalue of the stiffness matrix for
integration point /.

The stiffness matrix for integration point / is defined as

Kk = Bjs X)CijrBix (x") - VI =B, Ciji By - V7, (10)

where V! is the volume allocated to integration point / [14]. For a homogenous isotropic material,
the maximum eigenvalue of the stiffness matrix is developed in [14] as

2 2 2
K < (3B [2 4 20 [B ) V7 < G20V B
where A and p are the Lame constant, || B || is the Frobenious norm
2
Bz = B,sB,1 (12)
and || B||, is the matrix spectral norm, defined as

IB|2 = prian (BisB ). (13)
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By substituting (11) in (9), and considering the definition of density, we get the bounds for the
maximum eigenvalues of the stiffness matrix as

NI
Mo < — P (ABY,BY, + 21 pyax(BY, BY))) (14)
I
2
M <2 o7 G+ 20 B = NTe' B, B, (15)

where p is the material density and c is the dilatational wave speed. These can be used directly in
Equation (7) for estimating the critical time step. Although Equation (14) offers a better estimate,
it involves the computation of the maximum eigenvalue of a 3 x 3 matrix (in 3D), and therefore
Equation (15) may be preferred in practice.

The bounds for the maximum eigenvalue of the stiffness matrix, as given by Equations (14)
and (15), are valid for one-dimensional, 2D and 3D cases. They are also valid for finite elements,
as long as the same mass lumping technique is used. For the uniform strain hexahedron and
quadrilateral these bounds give the same result as the ones presented in [12].

3. PERFORMANCE EVALUATION

To evaluate the performance of our algorithm for the critical time step estimation for different
numbers of nodes per integration point, we use the nodal distribution presented in Figure 1 for a
2D case and in Figure 4 for a 3D case. For each node we define an influence domain based on the
local node density. We use a dense grid of regularly distributed integration points to get different
nodes-integration points associations. For the chosen parameters, we have between 3 and 11 nodes
associated with an integration point in 2D. We compute the moving least squares (MLS) shape
functions and their derivatives (matrix B, see Equation (2)) at each integration point. Using the
B matrix we can compute the stiffness matrix (Equation (10)), find its maximum eigenvalue and
compute the real value of the critical time step for a given integration point. We can compare the
actual value of the critical time step with estimates computed using Equations (14) and (15). The
obtained results are presented in Figure 2 for a plane strain analysis and in Figure 3 for a plane
stress analysis.

The obtained results show that Equation (14) leads to a very good critical time step estimate,
which is less than 5% lower than the actual value, for the entire range considered for the material’s
Poisson’s ratio. The estimate of the critical time step given by Equation (15) can be as much as 30%
lower than the actual value, with a better prediction for higher values of the material’s Poisson’s
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Figure 1. The distribution of nodes (represented by circles) and integration points used for performance
evaluation. MLS shape functions are computed for each integration point.
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Figure 2. The ratio of critical time step estimates, as given by Equations 14 (a) and 15 (b), to the real
critical time step obtained based on the stiffness matrix is computed for all integration points. The maxi-
mum, minimum (dotted lines) and average values (solid line) of these ratios are plotted against material’s

Poisson’s ratio, for a plane strain analysis.
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Figure 3. The ratio of critical time step estimates, as given by Equations 14 (a) and 15 (b), to the real

critical time step obtained based on the stiffness matrix is computed for all integration points. The maxi-

mum, minimum (dotted lines) and average values (solid line) of these ratios are plotted against material’s
Poisson’s ratio, for a plane stress analysis.

ratio. Also the estimate given by Equation (15) is better for plane strain than for plane stress analyses,
especially at higher values of the material’s Poisson’s ratio.

We performed a similar evaluation for 3D shape functions using the nodes and integration points
distributed as in Figure 4, with a variable nodal influence domain leading to between 8 and 25 nodes
associated to an integration point. The obtained results are presented in Figure 5. The obtained
results for 3D are very similar with those obtained for a plane strain analysis in 2D.

4. DISCUSSION AND CONCLUSSIONS

In this paper we presented a method for estimating the critical time step for mesh-free particle
methods. The estimates are valid for a specific case of mass lumping: the mass associated with an
integration point is distributed equally to all nodes found in the support domain of that integration
point. The same estimation method can also be used for finite elements if the mass lumping is done
in the same way.

We presented two formulas that can be used for estimating the critical time step. These formulas
were obtained considering a homogenous isotropic material and are valid both in 2D and 3D. The
first formula (Equation (14)) leads to a very good estimate, for any value of the material’s Poisson’s
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Figure 4. The distribution of nodes (represented by circles) and integration points used for performance
evaluation in 3D. MLS shape functions are computed for each integration point.
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Figure 5. The ratio of critical time step estimates, as given by Equations 14 (a) and 15 (b), to the real

critical time step obtained based on the stiffness matrix is computed for all integration points. The maxi-

mum, minimum (dotted lines) and average values (solid line) of these ratios are plotted against material’s
Poisson’s ratio, for a 3D analysis.

ratio, but it requires the computation of the maximum eigenvalue of a 2 x 2 (2D) or 3 x 3 (3D)
matrix. The second formula (Equation (15)) is much simpler, but the accuracy of the estimates it
provides is lower, especially for materials with a low Poisson’s ratio. Nevertheless, this might be a
better option for a large deformation nonlinear solver implementation, because the critical time step
might decrease during the analysis (because of changes in nodal positions and material properties
because of the large deformations). The second formula would also be a good choice for almost
incompressible materials, such as brain tissue, which have a very large Poisson’s ratio.

As shown by the eigenvalue inequality theorem (6), the estimates presented in this paper, based
on the maximum eigenvalues at integration points, underestimate the critical time step. Although
beneficial for the convergence of the explicit integration scheme, such underestimate leads to more
time steps needed for analysis, and therefore more computational effort. The algorithm proposed
by Benson in [15] produces a more accurate estimate of the critical time step. Unfortunately, the
‘power iteration’” procedure used by Benson approaches the maximum eigenvalue from below and
therefore needs to be almost converged before using it to calculate the critical time step. Benson also
proposed to combine his accurate (but computationally intensive) algorithm with element-based
time step estimates to obtain a good estimate of the critical time step at a lower computational cost
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(the accurate algorithm is used every few time steps to improve the critical time step prediction). In a
mesh-free setting, the algorithm proposed by Benson can be combined with the formulae developed
in this paper. Nevertheless, the number of steps between updates of the critical time step using
Benson’s more accurate algorithm seems to be problem dependent, and for some problems the
update is needed at every time step [15]. The above shortcomings limit the usefulness of Benson’s
algorithm to specific problems. The formulae presented in this paper seem to offer a sufficiently
accurate critical time step prediction in most situations.

The developed formulas offer a way of estimating the critical time step for mesh-free methods,
which can then be used together with explicit time integration algorithms to solve computational
biomechanics problems in real time. Although developed in the context of linear elasticity, empirical
evidence from the use of similar formulae with the FEM suggests that these formulae are also useful
for simulations involving large deformations and nonlinear material models [11].
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