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SUMMARY

Dynamic relaxation is an explicit method that can be used for computing the steady-state solution for a
discretized continuum mechanics problem. The convergence speed of the method depends on the accurate
estimation of the parameters involved, which is especially difficult for nonlinear problems. In this paper,
we propose a completely adaptive dynamic relaxation method in which the parameters are updated during
the iteration process, converging to their optimal values. We use the proposed method for computing
intra-operative organ deformations using non-linear finite element models involving large deformations,
non-linear materials and contacts. The simulation results prove the accuracy and the computational
efficiency of the method. The proposed method is also very well suited for GPU implementation. Copyright
� 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Dynamic relaxation (DR) is an explicit iterative method for obtaining the steady-state solution. It
can be used for finding the deformed state for a discretized continuum mechanics problem. The
method relies on the introduction of an artificial mass-dependent damping term in the equation
of motion, which attenuates the oscillations in the transient response, increasing the convergence
toward the steady-state solution.

The DR method is especially attractive for highly non-linear problems (including both geometric
and material non-linearities) solved using the finite element method. Because of its explicit nature
there is no need for solving large systems of equations. All quantities can be treated as vectors,
reducing the implementation complexity and the memory requirements. Although the number of
iterations to obtain convergence may be quite large, the computation cost for each iteration is very
low, making it a very efficient solution method for non-linear problems.

A detailed overview of the DR method, including its history and a proposal for an adaptive
version can be found in [1]. The DR method has been used successfully for solving a diversity
of problems, ranging from form-finding [2], wrinkling [3, 4] and large deflection analysis [5] to
atomic structures simulation [6] and character recognition [7].
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In one of our previous papers [8] we proposed to use the DR method, combined with the
total Lagrangian formulation of the finite element method, for computing intra-operative organ
deformations. As shown in that paper, the DR method includes a number of iteration parameters
that must be estimated. These parameters are especially hard to estimate for a non-linear problem,
as their optimal values (which ensure the fastest convergence rate) change during the iteration
process. In our previous paper, we proposed to perform a separate simulation to estimate the value
of one of the parameters (the minimum eigenvalue A0). When the loading is not known in advance
(as it is the case of the proposed application—intra-operative organ deformations), the estimation
is done using an estimated value of the load, which might not lead to the optimum value of the
iteration parameter.

In this paper, we propose a simple and efficient method of estimating the value of the minimum
eigenvalue during the iteration process. As the iterations progress, the estimated minimum eigen-
value converges fast to its optimal value. This leads to a very efficient DR procedure, whereas
eliminating the need for separate simulations for parameter estimation. The proposed estimation
procedure involves only vectors, preserving the computational advantages of an explicit method.
These features make the proposed DR a perfect candidate for parallel implementation on a graphics
processing unit (GPU), which offers a very high computation power at a low cost.

We revisit the computational examples presented in [8] and apply the proposed adaptive method
to compute brain shift estimations using non-linear biomechanical models. The simulations prove
the high computational efficiency of the adaptive method. A GPU implementation of the method
leads to more than an order of magnitude improvement in the computation speed compared with
the equivalent CPU implementation.

In the following section, we present the basic DR procedure and identify the parameters involved.
We present the adaptive procedure for estimating these parameters and discuss the use of a
termination criteria based on the convergence properties of the proposed DR method. In Section 3,
we present computational examples and Section 4 contains discussion and conclusions.

2. METHODS

2.1. Dynamic relaxation solution algorithm

The general equation of motion for a non-linear system, obtained after the finite element discretiza-
tion of the momentum conservation equation, can be written as [9]

M·q̈+P(q)= f (1)

where M is the mass matrix, q is the displacement vector, P is the vector of internal nodal forces
and f is the vector of externally applied forces (volumetric forces, surface forces, nodal forces
as well as forces derived from contacts). The superimposed dot represents time derivative. In
general, the relationship between nodal forces and displacements is strongly non-linear because of
a combination of different factors: large deformations, material law and contacts.

The deformed state solution is obtained when the acceleration is zero, and therefore it is defined
by the equation:

P(q)= f (2)

The basic DR algorithm is presented in [1]. The main ideas are the inclusion of a mass propor-
tional damping in Equation (1) that will increase the convergence speed toward the deformed state
and the solving of the obtained damped equation using the central difference method (explicit
integration).

After the inclusion of a mass proportional damping, Equation (1) becomes

M·q̈+c ·M·q̇+P(q)= f (3)

where c is the damping coefficient.
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By applying the central difference integration to the damped equation of motion (3), the equation
that describes the iterations in terms of displacements becomes [8]

qn+1 = qn +�(qn −qn−1)+�M−1(f−P(qn)) (4)

� = 2h2/(2+ch), �= (2−ch)/(2+ch) (5)

where h is a fixed time increment and n indicates the nth time increment.
The iterative method defined by Equation (4) is explicit as long as the mass matrix is diagonal. As

the mass matrix does not influence the deformed state solution, given by Equation (2), a specially
selected lumped mass matrix can be used that maximizes the convergence of the method.

In [1], the convergence of the DR algorithm is studied for linear structural mechanics equations,
when the nodal forces can be written as

P(q)=K ·q (6)

with K being the stiffness matrix.
We extended this study to the non-linear case in [8], by using the linearization of the nodal

forces obtained by expanding them in a Taylor series and keeping the first two terms

P(qn)=P(qk)+Kk ·(qn −qk) (7)

where qk is a point close to qn and Kk is the tangent stiffness matrix evaluated at point qk .
By replacing Equation (7) in Equation (4), we obtained the equation that advances to a new

iteration for a non-linear problem as:

qn+1 =qn +�(qn −qn−1)+�b−�Aqn (8)

with

b=M−1(f−P(qk)+Kkqk), A=M−1Kk (9)

Equation (8) has the same form as in the linear case, however the point qk is not fixed during the
iteration process (as it must be close to qn in order for the Taylor series expansion to be accurate)
and therefore the tangent stiffness matrix (and matrix A) changes.

The error after the nth iteration is defined as:

en =qn −q∗ (10)

where q∗ is the solution. Substituting Equation (10) into Equation (8) gives the error equation
(valid only close to the solution)

en+1 =en −�Aen +�(en −en−1) (11)

and by assuming that

en+1 =k·en (12)

the following relation is obtained for computing the eigenvalues � of matrix k:

�2 −(1+�−�A)�+�=0 (13)

where A denotes any eigenvalue of matrix A.
The fastest convergence is obtained for the smallest possible spectral radius �=|k|. The optimum

convergence condition is obtained when:

�∗ = |k∗|=�1/2 ≈
∣∣∣∣∣1−2

√
A0

Am

∣∣∣∣∣ (14)

h ≈ 2/
√

Am =2/�max (15)

c ≈ 2
√

A0 =2�0 (16)

where A0 and Am are the minimum and maximum eigenvalues of matrix A and therefore �0 and
�max are the lowest and highest circular frequencies of the un-damped equation of motion [1].
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Because matrix A changes in the non-linear case, the optimum DR parameters for the beginning
of the deformation are usually different from the optimum parameters needed close to the steady-
state solution. An algorithm for estimating the maximum eigenvalue Am is presented in [8]. The
algorithm uses mass scaling to align the maximum eigenvalues of all the elements in the mesh.
This leads to a mass matrix that improves the convergence rate by reducing the condition number
of matrix A, leading to a decrease in the spectral radius � (see Equation (14)). It also ensures
the convergence of the method, by guaranteeing that the estimated maximum eigenvalue Am is an
over-estimation of the actual maximum eigenvalue during the simulation.

An algorithm for estimating the minimum eigenvalue A0 is presented next.

2.2. Estimation of the minimum eigenvalue A0

Estimating the minimum eigenvalue is a difficult problem, especially in the case of non-linear
problems, where an adaptive procedure should be used to obtain the optimum convergence param-
eters. An overview of the procedures proposed by different authors in the context of DR (including
an adaptive one) is presented in [1].

The adaptive method proposed in [1] is based on Rayleigh’s quotient and the use of a local
diagonal stiffness matrix. The elements of this matrix are computed using finite differences, which
can be very difficult to do for degrees of freedom which have small displacement variation.

In our previous paper [8], we proposed to estimate the minimum eigenvalue using the proce-
dure presented in [10], by doing an additional simulation using an estimated loading (as for our
application the loading was not known in advance). Because the loading was only estimated, the
computed minimum eigenvalue could be different from the optimum one.

In this section, we propose a new adaptive method for computing the minimum eigenvalue,
which is also based on Rayleigh’s quotient, but does not have the shortcomings of the method
proposed in [1].

We consider a change of variable

zn =qn −qk (17)

where qk is the point used for linearization of the nodal forces in Equation (7). The linearized
nodal forces can therefore be expressed as

P(qn)=P(qk)+Kk ·zn (18)

and the linearized equation of motion will become, by replacing Equations (17) and (18) in
Equation (1):

M· z̈+Kk ·z= f−P(qk) (19)

We can now rely on Equation (19) to estimate A0 using Rayleigh’s quotient and the current
value of the displacements:

A0�
(zn)TKkzn

(zn)TMzn (20)

We consider the right-hand side of Equation (20) as an estimate of the minimum eigenvalue.
Using Equations (17) and (18), this estimate becomes

A0 ≈ (qn −qk)T(P(qn)−P(qk))

(qn −qk)TM(qn −qk)
(21)

where qk is a fix point that must be close to qn . We will choose the solution from a previous
iteration as qk , and this point will be updated after a number of steps to keep it close to the current
solution qn . No additional information (such as estimates of the stiffness matrix) is required and
only vector operations are performed (as M is a diagonal lumped mass matrix).

During the iterative DR procedure the high frequencies are damped out and the system will
eventually oscillate on its lowest frequency, therefore Equation (21) will converge toward the
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minimum eigenvalue. This estimation process, combined with our parameter selection process,
leads to an increased convergence rate, because it always offers an over-estimation of the minimum
eigenvalue. The higher the over-estimation of the minimum eigenvalue, the higher the reduction of
the high-frequency vibrations (see [8]), and therefore Equation (21) will convergence faster toward
the real minimum eigenvalue.

2.3. Termination criteria

In [8], we proposed a new termination criterion that gives information about the absolute error in
the solution, based on the convergence properties of the DR solution method. We can obtain an
approximation of the absolute error in the solution as:

‖qn+1 −q∗‖∞� �

1−�
‖qn+1 −qn‖∞ (22)

Therefore, the convergence criteria can be defined as:

�

1−�
‖qn+1 −qn‖∞�ε (23)

where ε is the imposed absolute accuracy. This convergence criterion gives an approximation of
the absolute error based on the displacement variation norm from the current iteration.

Because our parameter estimation procedures over-estimate the maximum eigenvalue Am and
under-estimate the minimum eigenvalue A0, the value of the computed spectral radius �c we can
use in Equation (23) is lower than the real value of the spectral radius (see Equation (14)), and
this can lead to an early termination of the iteration process. Therefore, we use in Equation (23)
a corrected value of the computed spectral radius

�co =�c +�∗(1−�c) (24)

where � is a correction parameter between 0 and 1, defining the maximum under-estimation error
for the spectral radius �. In our simulations, we use �=0.2.

2.4. The complete algorithm

Considering the previous discussion, a basic algorithm for computing the steady-state solution
using the adaptive DR method can be written as:

(a) Initialization:

• q0 =0; q1 =0.
• Choose Am and scale element densities using the procedure presented in [8]. Assemble

the mass matrix.
• Choose an initial value for A0 and compute the iteration parameters based on Equations

(5), (15) and (16). This initial value must be very low, to lead to a low value of the damping
coefficient (see Equation (16)) and therefore to allow the deformation to propagate inside
the body during the load application stage.

(b) Load application stage:
For each iteration step:

• Compute the nodal forces corresponding to the current displacements (by assembling the
elements’ nodal forces).

• Compute next displacement vector using Equation (4).
• Check the maximum eigenvalue of each element and reform the mass matrix if needed.
• Apply the next load step and enforce constrains (such as contacts). The loads are applied

using a smooth loading curve.
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At the end of the load stage: save qk and P(qk)
(c) Relaxation stage:

Increase the value for A0 and re-compute the iteration parameters. This will lead to a strong
attenuation of high-frequency oscillations in the solution.

For each iteration step:

• Compute the nodal forces corresponding to the current displacements.
• Compute next displacement vector using Equation (4).
• Enforce constrains (contacts).
• Check convergence criteria (using Equations (23) and (24)) and finish the analysis if met.
• Estimate A0 using Equation (21).
• Update qk =qn and P(qk)=P(qn) if a configured number of steps has been executed since

the last update.
• Check the maximum eigenvalue of each element and reform the mass matrix if needed.
• Re-compute iteration parameters based on Equations (5), (15) and (16).

3. SIMULATION RESULTS

In this section, we will revisit the computation examples presented in [8] to assess the convergence
properties and the efficiency of the proposed method for complex biomechanical models.

The two examples presented here are from the field of image-guided neurosurgery. In this context,
it is very important to be able to predict the effect of certain surgical procedures on the position
of pathologies and critical healthy areas in the brain. The most typical example is the prediction
of a displacement field within the brain after opening the skull (so-called ‘brain shift’ estimation).
A neurosurgeon is interested only in the final, deformed position of the brain. Therefore, there
is a need for an algorithm that would allow a very fast convergence to the deformed state. The
deformation field computed using a biomechanical model of the brain, having the movement of the
exposed brain surface as the prescribed load, can be used to update high-accuracy pre-operative
anatomy extracted from 3D images (usually MRI) to the intra-operative state.

The computation must be done intra-operatively; therefore, it is subject to stringent time
constraints, which practically means that the results should be available to an operating surgeon
in less than 1 min [11–14]. The actual deformation computation should take only a fraction of
this time, as there are other activities that need to be done beforehand (such as the acquisition
of the deformed brain surface in the area of craniotomy and the registration of this surface with
its pre-operative position, leading to the extraction of displacements that are used for driving the
deformation of the model) [14].

The biomechanical models used for such a simulation are complex, including different element
types, non-linear almost incompressible materials, large deformations and contacts [15–18]. There-
fore, DR seems the perfect candidate for finding a static solution for such a problem.

3.1. Deformation of an ellipsoid

For an ellipsoid having approximately the size of the brain, we fixed some of the nodes and
displaced a few other nodes to simulate deformation similar to what happens in the case of a
brain shift. The mesh was created using hexahedral elements and has 2200 elements and 2535
nodes. We used an almost incompressible, non-linear (Neo–Hookean) material model and a large
displacement value (2 cm). In our implementation, the displacement was applied over 500 iteration
steps and a large number of steps (10 000) were executed afterwards to obtain the deformed state.

Similar to the procedure followed in [8], we chose h =0.001 (corresponding to Am =4000000).
The value of the lower eigenvalue obtained in [8], based on an additional simulation, was A0 ≈110,
corresponding to the optimal value for the spectral radius �∗ =0.9895 (from Equation (14)).

The variation of the spectral radius computed based on the adaptive estimation of the minimum
eigenvalue, as presented in this paper, is shown in Figure 1. During the load application stage, the
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Figure 1. The variation of the spectral radius computed based on the adaptive estimation of the minimum
eigenvalue for the ellipsoid deformation experiment.

spectral radius is �=0.999, corresponding to a low value for the damping coefficient. During the
relaxation stage of the simulation, the computed value of the spectral radius converges steadily
toward the optimal value. The computed value is always smaller than the optimal value, demon-
strating that the estimated value for the minimum eigenvalue A0 is higher than the actual value
(from Equation (14)), which is consistent with Equation (20). The update of the linearization
parameter qk and the corresponding nodal force vector (needed for the estimation of the lower
eigenvalue in Equation (21)) is done every 200 iteration steps, being marked in Figure 1 by small
jumps in the graph.

The distribution of the error (absolute difference in nodal position between the simulation results
and the deformed state) after 1000 iteration steps is presented in Figure 2. The maximum error
magnitude is around 0.06 mm. The error estimation based on Equation (23) is compared with the
real error in Figure 3. It is clear that the termination criteria does not offer a good estimation of the
error at the beginning of the relaxation stage (after 500 iteration steps), as there is a big difference
between the estimated value of the spectral radius and its true value. As the iteration number
increases, the error estimation is getting closer to the real error value (Figure 3(b)). Therefore, the
termination criteria should be used only after the estimated value of the spectral radius reaches
a steady value (for example after 1100 iterations for this case, based on Figure 1). This can be
checked during the iteration process.

We present a comparison of the convergence properties of our adaptive DR procedure with the
convergence properties of a DR procedure with fixed parameters in Figure 4. If the spectral radius
is chosen too high (because of an under-estimation of the minimum eigenvalue in Equation (14)),
the system is under-damped (Equation (16)), and therefore the low-frequency oscillation modes are
not eliminated fast enough. If the spectral radius is chosen too low, the system is over-damped, and
therefore it moves very slowly toward the steady-state solution. The spectral radius chosen using
our adaptive procedure, which converges toward the optimum value, gives the fastest convergence
toward the steady-state solution, therefore ensuring a shorter computation time.

3.2. Simulation of a brain shift

A more complex simulation is presented here to demonstrate the computational efficiency of the
proposed algorithm for highly non-linear models. We use the same model as in [8], but we present
it here again for completeness. A human brain consisting of healthy brain tissue, a tumor and
ventricles is enclosed inside the skull. The different parts of the brain are modeled using non-linear
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Figure 2. Distribution of error after 1000 iteration steps for the ellipsoid deformation experiment, presented
in color code. All dimensions are in meters.

Figure 3. Comparison of the real error with the error estimation based on the displacement
variation norm for the ellipsoid deformation experiment (a) Over the relaxation period and

(b) Detail for the last 500 iterations.

materials (Neo–Hookean) with different properties (Table I). The material model is consistent with
our previous work on brain material properties [19–21].

The brain is meshed using mainly hexahedral elements but also includes some improved tetra-
hedral elements [22]. The mesh has 12 182 elements and 13 209 nodes (Figure 5). The skull
is meshed using 3960 triangular elements. We assume that the initial geometry is known from
high-quality pre-operative MRI images and we simulate the brain shift by applying displacements
on the area of the brain visible during craniotomy, where the displacements can be measured
intra-operatively (using a laser range scanner [23] or a stereo vision system [24]). We extracted
the required displacements from available intra-operative MRI images. A very similar model has
been used in previous papers for brain shift estimation [14, 25, 26].

The skull is assumed rigid and the interaction between the brain and the skull as a frictionless
finite sliding contact. Because DR has the property of attenuating the high-frequency vibrations in
the solution, we can implement this contact as a computationally efficient kinematic constraint for
the brain nodes (any brain node that penetrates the skull surface is brought back on the surface).
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Figure 4. Convergence comparison between our adaptive DR method and a DR method with fixed
parameters. The adaptive parameter estimation ensures fast convergence toward the steady-state solution.

Table I. Material properties for different parts of the brain.

Brain part Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio

Brain 1000 2500 0.49
Tumor 1000 7500 0.49
Ventricle 1000 100 0.1

Figure 5. The mesh used for the brain shift simulation (only part of the mesh is shown).

All external brain nodes except the displaced ones are included in the contact definition. A detailed
description of the contact algorithm used is presented in [17].

Similar to the ellipsoid deformation simulation, the deformed state was obtained by executing
a large number of steps (10 000). Because of the strong non-linearity induced by the contact
algorithm, the load (prescribed displacements) was applied over 1000 iteration steps.

The computed value of the spectral radius, based on the proposed minimum eigenvalue estimation
method, is presented in Figure 6. Because the movement of the brain surface nodes on the triangular
mesh defining the skull is not smooth (a node can get trapped in a corner between triangles and
then suddenly jump to a new position), the spectral radius estimation is not smooth over a large
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Figure 6. The variation of the spectral radius computed based on the adaptive estimation of the minimum
eigenvalue for the brain shift experiment.

number of relaxation iterations. Therefore, we implemented a very simple updating algorithm:
we check the computed spectral radius value against the value from the previous iteration; if the
difference is small (less than 10E−4) for a number of successive iterations (we configured this
number to 20), then we use this value in our computations, otherwise the value of the used spectral
radius is not changed. The obtained spectral radius value is then used in Equations (14)–(16) to
compute the next iteration parameters. The used spectral radius value is presented in Figure 6.

Similar to the previous experiment, the termination criteria can be trusted only after the computed
value for the spectral radius starts to stabilize (around 2300 iterations). Nevertheless, even after the
spectral radius stabilizes, there are a number of iterations for which the estimated error is much
smaller than the real error (Figure 7(b)), which can lead to an early termination of the computations.
We studied in more detail what happens after 2400 iterations. The real error value is 2.08E−5m,
whereas the estimated error value is 7.8E−6m. A distribution of the real error for all degrees of
freedom (DOFs) in the model is presented in Figure 8(b). It can be seen that the real error value
is determined by only one DOF, whereas the vast majority of DOFs have an error smaller than the
estimated value. This behavior is also an artefact of the contact algorithm, the node for which the
maximum error is obtained being one of the nodes from the brain surface, as seen in Figure 8(a).
The real error, computed using the infinity norm, is influenced by the outliers in the solution. The
estimated error, based on Equation (22), is not influenced by these outliers, and it represents better
the overall accuracy of the solution.

The proposed algorithm was implemented in C by modifying the Total Lagrangian explicit
dynamics algorithm we presented in [27]. All simulations were done on a standard 3 GHz Intel�

CoreTM Duo CPU system using Windows XP operating system. Our implementation can perform
2000 iterations in 35 s for the brain shift simulation, using a single CPU.

We also implemented the algorithm on GPU. We transferred all the computationally inten-
sive parts of the algorithm (element force computation, displacement vector computation, contact
handling, parallel reduction—including infinity norm computation and scalar product of vectors)
to the GPU, to take advantage of its massive parallelism. We implemented the GPU code using
NVIDIA’s Compute Unified Device Architecture (CUDA) [28] and the code was run on an NVIDIA
Tesla C870 computing board, which has 16 multiprocessors with 8 scalar processor cores each
and single-precision floating point operations. A detailed description of the implementation can
be found in [29]. The GPU implementation performs 2000 iterations of the brain shift simula-
tion in 1.8 s, offering real-time computation capabilities. The use of single-precision floating-point
numbers on the GPU does not have an impact on the convergence and accuracy of our solution
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Figure 7. Comparison of the real error with the error estimation based on the displacement variation norm
for the brain shift experiment (a) Over the relaxation period and (b) Detail for the last 1000 iterations.

Figure 8. Distribution of error after 2400 iteration steps for the brain shift experiment, presented (a) in
color code and (b) as a histogram. All dimensions are in meters.

method. This is a consequence of using the Total Lagrangian formulation, which does not exhibit
accumulation of errors during the time-stepping procedure.

4. DISCUSSION AND CONCLUSIONS

In this paper, we propose a fully adaptive Dynamic Relaxation procedure in the context of the Total
Lagrangian formulation for finding the deformed state of a non-linear finite element problem. The
proposed method offers fast convergence, computational efficiency and the possibility to control the
accuracy of the results. These characteristics make it an ideal method for solving image registration
problems using bio-mechanical models.

In our previous paper [8], we estimated the value of the lower eigenvalue A0 during the pre-
processing stage, by performing a supplementary simulation. In this paper, we propose a new
adaptive procedure for estimating this parameter, eliminating the need for any supplementary
simulation. The two methods can be also combined to improve the convergence of the algorithm.
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We adapt the termination criterion proposed in [8] to our new parameter estimation procedure.
The termination criteria offers an indication about the absolute accuracy of the results based on
the convergence properties of the method.

We present simulation results that confirm the convergence and the computational efficiency of
our adaptive method for highly non-linear models. A GPU implementation of the algorithm can
perform complex brain shift simulations in less than 2 s.
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