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SUMMARY

In this review paper we discuss Intelligent Systems for Medicine Laboratory’s contributions to mathe-
matical and numerical modelling of brain deformation behaviour for neurosurgical simulation and brain
image registration. These processes can be reasonably described in purely mechanical terms, such as
displacements, strains and stresses and therefore can be analysed using established methods of continuum
mechanics. We advocate the use of fully non-linear theory of continuum mechanics. We discuss in some
detail modelling geometry, boundary conditions, loading and material properties. We consider numerical
problems such as the use of hexahedral and mixed hexahedral–tetrahedral meshes as well as meshless
spatial discretization schemes. We advocate the use of total Lagrangian formulation of both finite element
and meshless methods together with explicit time-stepping procedures. We support our recommendations
and conclusions with two examples: computation of the reaction force acting on a biopsy needle, and
computation of the brain shift for image registration. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mathematical modelling and computer simulation have proved tremendously successful in engi-
neering. Computational mechanics has enabled technological developments in virtually every area
of our lives. One of the greatest challenges for mechanists is to extend the success of computational
mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences,
and medicine [1]. By extending the surgeons’ ability to plan and carry out surgical interventions
more accurately and with less trauma, computer-integrated surgery (CIS) systems could help to
improve clinical outcomes and the efficiency of health-care delivery. CIS systems could have a
similar impact on surgery to that long since realised in computer-integrated manufacturing (CIM).

In computational sciences, the most critical step in the solution of the problem is the selection
of the physical and mathematical model of the phenomenon to be investigated. Model selection
is most often a heuristic process, based on the analyst’s judgment and experience. Often, model
selection is a subjective endeavour; different modellers may choose different models to describe
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the same reality. Nevertheless, the selection of the model is the single most important step in
obtaining valid computer simulations of an investigated reality [1].

In this article we present how various aspects of computer-integrated neurosurgery can benefit
from the application of methods of computational mechanics. We discuss physical and mathematical
models of the brain deformation behaviour as well as numerical schemes used to solve these
models developed in the Intelligent Systems for Medicine Laboratory at the University of Western
Australia. We chose to focus on the following two application areas: neurosurgical simulation and
neuroimage registration.

1.1. Neurosurgical simulation for operation planning, surgeon training and skill assessment

The goal of surgical simulation research is to model and simulate deformable materials for applica-
tions requiring real-time interaction. Medical applications for this include simulation-based training,
skills assessment and operation planning.

Surgical simulation systems are required to provide visual and haptic feedback to a surgeon or
trainee. Various haptic interfaces for medical simulation are especially useful for training surgeons
for minimally invasive procedures (laparoscopy/interventional radiology) and remote surgery using
tele-operators. These systems must compute the deformation field within a soft organ and the
interaction force between a surgical tool and the tissue to present visual and haptic feedback to
the surgeon. Haptic feedback must be provided at frequencies of at least 500Hz [2]. From a solid-
mechanical perspective, the problem involves large deformations, non-linear material properties
and non-linear boundary conditions. Moreover, it requires extremely efficient solution algorithms
to satisfy stringent requirements on the frequency of haptic feedback. Surgical simulation is a very
challenging problem of solid mechanics.

When a simulator is intended to be used for surgeon training, a generic model developed from
average organ geometry and material properties can be used in computations. However, when the
intended application is for operation planning the computational model must be patient specific.
This requirement adds to the difficulty of the problem—the question of how to rapidly generate
patient-specific computational models still awaits a satisfactory answer.

1.2. Neuroimage registration (computational radiology)

Examples of new therapeutic technologies that are entering the medical practice now and will
be employed in the future include gene therapy, stimulators, focused radiation, lesion genera-
tion, nanotechnological devices, drug polymers, robotic surgery and robotic prosthetics [3]. One
common element of all these novel therapeutic devices is that they have extremely localised areas
of therapeutic effect. As a result, they have to be applied precisely in relation to the patient’s
current (i.e. intra-operative) anatomy, directly over the specific location of anatomic or functional
abnormality [3]. Nakaji and Speltzer [4] list the ‘accurate localization of the target’ as the first
principle in modern neurosurgical approaches.

As only pre-operative anatomy of the patient is known precisely from medical images (usually
Magnetic Resonance Images (MRI)), it is now recognised that the ability to predict soft organ
deformation (and therefore intra-operative anatomy) during the operation is the main problem
in performing reliable surgery on soft organs. We are particularly interested in problems arising
in image-guided neurosurgery, see Figure 1. In this context it is very important to be able to
predict the effect of procedures on the position of pathologies and critical healthy areas in the
brain. If displacements within the brain can be computed during the operation, they can be used
to warp pre-operative high-quality MR images so that they represent the current, intra-operative
configuration of the brain.

The neuroimage registration problem involves large deformations, non-linear material properties
and non-linear boundary conditions as well as the difficult issue of generating patient-specific
computational models. However, it is easier than the previously discussed surgical simulation
problem in two important ways: we are interested in accurate computations of the displacement
field only, accuracy of stress computations is not required; and the computations must be conducted
intra-operatively, which practically means that the results should be available to an operating
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Figure 1. Comparison of the brain surface determined from images acquired pre-operatively with the
one determined intra-operatively from the images acquired after craniotomy. Inferior (i.e. ‘bottom’)
view: (a) pre-operative surface is semitransparent. Notice lateral deformation of left parietal lobe
surface (shift to the right) and (b) intra-operative surface is semitransparent. Deformation of the
brain surface due to craniotomy is clearly visible both near the craniotomy and on the opposite side.
Intra-operative displacements of over 20mm were reported in the medical literature [5]. Surfaces were
determined from the images provided by Department of Surgery, Brigham and Women’s Hospital

(Harvard Medical School, Boston, Massachusetts, U.S.A.).

surgeon in less than 40 s [6–9]. This still forms a stringent requirement for computational efficiency
of methods used, but is clearly much easier to satisfy than a 500Hz haptic feedback frequency
requirement for neurosurgical simulation.

Following the Introduction (Section 1), in Section 2 we describe difficulties in modelling geom-
etry, boundary conditions, loading and material properties of the brain. In Section 3 we discuss
numerical algorithms devised to efficiently solve brain deformation behaviour models. In Section 4
we consider example applications in the areas of surgical simulation and computational radiology.
We conclude with some reflections about the state of the field.

2. BRAIN DEFORMATION BEHAVIOUR—MODELLING ISSUES

2.1. Geometry

Detailed geometric information is needed to define the domain in which the deformation field needs
to be computed. Such information is provided by electronic brain atlases [10–13]. In applications
that do not require patient-specific data (such as neurosurgical simulators for education and training)
the geometric information provided by these atlases is sufficient. However, other applications such
as neurosurgical simulators for operation planning and image registration systems require patient-
specific data. Such data are available from radiological images (for an example see Figure 2);
however, they are significantly inferior in quality to the data available from anatomical atlases.
The brain model should contain the brain parenchyma, ventricles and tumour (if present), which
needs to be identified in radiological images (in practice MRI).

The accuracy of neurosurgery is not better than 1mm [3]. Voxel size in high-quality pre-operative
MR images is usually of similar magnitude. Therefore, we can conclude that patient-specific
models of the brain geometry can be constructed with approximately 1mm accuracy, and that
higher accuracy is probably not required.

A necessary step in the development of the numerical model of the brain is the creation of a
computational grid, which in most practical cases is a finite element mesh or a cloud of points
required by a meshless method. Because of the stringent computation time requirements, the mesh
must be constructed using low-order elements that are not computationally intensive. The linear
under-integrated hexahedron is the preferred choice.
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Figure 2. 3D magnetic resonance image presented as a tri-planar cross section. A single slice
with clearly visible tumour is shown in Section 4.2, Figure 17(a). Public domain software Slicer
(www.slicer.org), developed by our collaborators from Surgical Planning Laboratory, Harvard Medical

School, was used to generate the image.

Figure 3. Patient-specific hexahedron-dominant brain mesh [9]. (a) Entire left brain hemisphere and (b)
lateral ventricles and tumour. The element characteristic length varied between 0.6 and 6mm. For 85%

of the elements, the characteristic length was between 2 and 4.5mm.

Many algorithms are now available for fast and accurate automatic mesh generation using
tetrahedral elements, but not for automatic hexahedral mesh generation [14–16]. Template-based
meshing algorithms can be used for meshing different organs using hexahedrons [17–19], but
these types of algorithms only work for healthy organs. In the case of severe pathologies (such as
a brain tumour), such algorithms cannot be used, as the shape, size and position of the pathology
is unpredictable. This is one reason why many authors proposed the use of tetrahedral meshes for
their models [6, 7, 20, 21]. In order to automate the simulation process, mixed meshes having both
hexahedral and linear tetrahedral elements are the most convenient, see Figure 3.

An alternative to using the finite element method is to use one of the available meshless methods.
The problem of computational grid generation disappears as one needs only to drop a cloud of
points into the volume defined by a 3D medical image [22–27], see Figure 4.
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Figure 4. A 2D slice of the brain discretised by: (a) quadrilateral finite elements and (b) nodes of
the modified element-free Galerkin method. Development of a good-quality finite element mesh is time

consuming. Generation of the meshless grid is almost instantaneous.

Figure 5. Structure of the brain–skull interface, adapted from [28].

2.2. Boundary conditions

The formulation of appropriate boundary conditions for computation of brain deformation consti-
tutes a significant problem because of complexity of the brain–skull interface, see Figure 5.

A number of researchers fix the brain surface to the skull [29, 30]. We do not recommend this
approach. Our experience [9, 31–34] and the study by Hu et al. [35] suggest that a gap between
the brain and the skull which allows for motion of the brain within the cranial cavity is a simple
and effective model of the brain–skull interface. Introducing such a gap is consistent with the
observation that the brain surface located opposite to craniotomy translates laterally by 2–3mm
(Figure 1). The brain–skull gap thickness needs to be determined from the pre-operative MRIs for
each patient considered.
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Figure 6. Model loading through prescribed nodal displacements at the exposed brain surface.

As the skull is orders of magnitude stiffer than the brain tissue its rigidity can be assumed. The
spine–spinal cord interactions and constraining effects of the spinal cord on the brain rigid body
motion can be simulated by constraining the spinal end of the model.

2.3. Loading

We advocate loading the models through imposed displacements on the model surface [9, 33, 36],
see Figure 6. In the case of neurosurgical simulation, this loading will be imposed by known motion
of a surgical tool. In the case of intra-operative image registration, the current (intra-operative)
position of the exposed part of the brain surface can be measured using a variety of techniques [37].
This information can then be used to define model loading.

As suggested in papers [36, 38–40] for problems where loading is prescribed as forced motion
of boundaries, the unknown deformation field within the domain depends very weakly on the
mechanical properties of the continuum. This feature is of great importance in biomechanical
modelling where there are always uncertainties in patient-specific properties of tissues.

2.4. Mechanical properties of brain tissue

Figure 7, adapted from Reference [42], presents a stress–strain relationships for swine brain tissue in
compression and extension. The experiments were conducted on cylindrical samples approximately
30mm in diameter and 13mm in height.

Experimental results show that the mechanical response of brain tissue to external loading is very
complex. The stress–strain relationship is clearly non-linear with no portion in the plots suitable
for estimating a meaningful Young’s modulus. It is also obvious that the stiffness of the brain
in compression is much higher than in extension. The non-linear relationship between stress and
strain rate is also apparent. Stresses at moderately high strain rate (0.64s−1) are about ten times
higher than at the low strain rate of 0.64s−1×10−5 s−1. These results are in general agreement
with measurements conducted by groups from the University of Sydney [43, 44], University of
Pennsylvania [45, 46] and Eindhoven University of Technology [47].

To account for such complicated mechanical behaviour we proposed the Ogden-based hyper-
viscoelastic constitutive model of the following form [42, 48]:
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where W is the strain energy, �1, �2, �3 are principal extensions, � is a material coefficient without
physical meaning. We identified the value of � to be −4.7, see Table I. t and � denote time.
Equation (2) describes viscous response of the tissue. �0 is the instantaneous shear modulus in the
undeformed state. �k are characteristic relaxation times.
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Figure 7. Experimental (solid line) versus theoretical (dashed line, Equations (1) and (2) and Table I)
results for uniaxial compression [41] and extension [42] of brain tissue for various loading velocities. For
this simple experimental configuration, Lagrange stress (vertical axis) is the vertical force divided by the
undeformed cross-sectional area, and extension (horizontal axis) is the current height divided by the initial
height, i.e. extension less than one indicates compression. Negative values of stress indicate compression:
(a) loading velocity v=5.0×102mm/min; corresponding to the strain rate approx. 0.64s−1; (b) loading
velocity v=5.0mm/min; corresponding to the strain rate approx. 0.64s−1×10−2 s−1; (c) loading velocity
v=5.0×10−3mm/min; corresponding to the strain rate approx. 0.64s−1×10−5 s−1 (compression only).

Table I. List of material constants for the constitutive model of brain tissue,
Equations (1) and (2), n=2 [42].

Instantaneous response k=1 k=2

�0=842Pa Characteristic time t1=0.5s Characteristic time t2=50s
a=−4.7 g1=0.450 g2=0.365
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The material constants (identified from experiment) are given in Table I. One-dimensional
response, as predicted by Equations (1) and (2), is shown in Figure 7.

One advantage of the proposed model is that the implementation of the constitutive equation
presented here is already available in commercial finite element software [49–51] and can be used
immediately for large-scale computations.

It is important to examine the simplifying assumptions behind the model described by Equations
(1) and (2), and Table I: incompressibility and isotropy.

1. Incompressibility. Very soft tissues are most often assumed to be incompressible, see e.g.
[52–58]. In experiments on brain tissue at moderate strain rates we have not detected a
departure from this assumption [59].

2. Isotropy (i.e. mechanical properties are assumed to be the same in all directions). Very
soft tissues do not normally bear mechanical loads and do not exhibit directional structure
(provided that a large enough sample is considered: for the brain we used samples of 30mm
diameter and 13mm height). Therefore, they may be assumed to be initially isotropic, see
e.g. [42, 44, 52, 58, 60–64].

Prange and Margulies [46] reported anisotropic properties of brain tissue; however, their sample
sizes were 1mm wide. At such a small scale, the fibrous nature of most tissues will cause detectable
difference in directional properties. Experiments discussed here were aimed at identifying ‘average’
properties at the length scales relevant to surgical procedures. At such scales, brain tissue can be
safely assumed to exhibit no directional variation of mechanical properties.

Average properties, such as those described above, are not sufficient for patient-specific compu-
tations of stresses and reaction forces because of the very large variability inherent to biological
materials. This is clearly demonstrated in the biomechanics literature, see e.g. [42, 43, 46, 48].
Unfortunately, despite recent progress in elastography using ultrasound [65] and MR [66, 67],
reliable methods of measuring patient-specific properties of the brain are not yet available.

3. SOLUTION ALGORITHMS

When designing a finite element solution method there are many aspects that must be considered,
such as the formulation used (total or updated Lagrangian), type of elements used for constructing
the mesh or density and placement of nodes and integration points in meshless methods, as well
as time-integration scheme. We will discuss these aspects in this section.

3.1. Integration of the equations of continuum mechanics

The algorithms implemented in the great majority of commercial finite element programs use the
updated Lagrangian formulation, where all variables are referred to the current (i.e. from the end of
the previous time step) configuration of the system (ABAQUS [49], LS-DYNA [50], Ansys [68],
ADINA [69], etc.). The advantage of this approach is the simplicity of incremental strain description
and low internal memory requirements. The disadvantage is that all derivatives with respect to
spatial coordinates must be recomputed in each time step, because the reference configuration is
changing.

The internal memory cost is no longer a prohibitive factor so that in developing our finite
element algorithms we used the total Lagrangian formulation, where all variables are referred to
the original configuration of the system. The decisive advantage of this formulation is that all
derivatives with respect to spatial coordinates are calculated relative to the original configuration
and therefore can be pre-computed—this is particularly important for time-critical applications
such as surgical simulation and intra-operative image registration.

Because biological tissue behaviour can be described in general using hyper-elastic or hyper-
viscoelastic models, such as that given in Equations (1) and (2), the use of the total Lagrangian
formulation also leads to a simplification of material law implementation as these material models
can be easily described using the deformation gradient.
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The integration of equilibrium equations in the time domain can be done using either implicit
or explicit methods [70–72]. The most commonly used implicit integration methods, such as
Newmark’s constant acceleration method, are unconditionally stable. This implies that their time
step is limited only by the accuracy considerations. However, the implicit methods require solution
of a set of non-linear algebraic equations at each time step. Furthermore, iterations need to be
performed for each time step of implicit integration to control the error and prevent divergence.
Therefore, the number of numerical operations per each time step can be three orders of magnitude
larger than for explicit integration [70].

On the other hand, in explicit methods, such as the central difference method, treatment of
non-linearities is very straightforward and no iterations are required. By using a lumped (diagonal)
mass matrix [70], the equations of motion can be decoupled and no system of equations must be
solved. Computations are done at the element or support domain level eliminating the need for
assembling the stiffness matrix of the entire model. Thus, the computational cost of each time step
and internal memory requirements is substantially smaller for explicit than for implicit integration.
There is no need for iterations anywhere in the algorithm. These features make explicit integration
suitable for real-time applications.

However, the explicit methods are only conditionally stable. Normally, a severe restriction on
the time-step size has to be included in order to receive satisfactory simulation results. Stiffness
of soft tissues is very low [42, 48, 62, 73], e.g. stiffness of the brain is about eight orders of
magnitude lower than that of common engineering materials such as steel. Since the maximum
time step allowed for stability is (roughly speaking) inversely proportional to the square root of
Young’s modulus divided by the mass density [50], it is possible to conduct simulations of brain
deformation with much longer time steps than in typical dynamic simulations in engineering.
This was confirmed in our previous simulations of brain shift using the commercial finite element
solver LS-DYNA [9, 32]. Therefore, when developing the suite of finite element algorithms for the
computation of brain tissue deformation, we combined total Lagrange formulation with explicit
time integration.

A detailed description of the total Lagrange explicit dynamics (TLED) algorithm is presented
in [74]. The main benefits of the TLED algorithm are:

• allows pre-computing of many variables involved (e.g. derivatives with respect to spatial
coordinates and hourglass control parameters);

• no accumulation of errors—increase stability for quasi-static solutions;
• easy implementation of the material law for hyper-elastic materials using the deformation
gradient;

• straightforward treatment of non-linearities;
• no iterations required for a time step;
• no system of equations needs to be solved;
• low computational cost for each time step.

3.2. Computational grid: elements used in the finite element mesh

3.2.1. 8-noded under-integrated hexahedron with hourglass control. The under-integrated hexahe-
dral elements require the use of an hourglass control algorithm in order to eliminate the instabilities,
known as zero energy modes, which arise from the single-point integration [75]. One of the most
popular and powerful hourglass control algorithms, which is currently available in many commer-
cial software finite element packages, is the one proposed in [75]. This method is applicable for
hexahedral and quadrilateral elements with arbitrary geometry undergoing large deformations.

Starting from the algorithm proposed by Flanagan and Belytschko we showed that the total
Lagrangian formulation is advantageous from the point of view of efficient hourglass control
implementation, as many quantities involved can be pre-computed. We have shown in [76] that
the hourglass control forces for each element can be computed (in matrix form) as

t
0F

Hg=k0c0c
Tt
0u (3)
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where k is a constant which depends on the element geometry and material properties, c is the
matrix of hourglass shape vectors and u is the matrix of current displacements. The notation
from [71] is used, where the left superscript represents the current time and the left subscript
represents the time of the reference configuration, which is 0 for total Lagrangian formulation. In
Equation (3) all quantities except u are constant and can be pre-computed, making the hourglass
control mechanism very efficient from the computational point of view.

3.2.2. Non-locking tetrahedral elements. As fast generation of good-quality hexahedral meshes
for objects with complicated geometry is not yet possible, we must be prepared to have a
substantial number of tetrahedral elements in the mesh. For example, using software IA-FE
Mesh (http://www.ccad.uiowa.edu/mimx/IA-FEMesh/), recently developed by researchers from
The University of Iowa [77], one can generate a purely hexahedral mesh of the brain. However, this
mesh contains a substantial number of highly distorted elements that are very difficult to correct
and in practice must be replaced by tetrahedra (or a meshless grid).

In modelling of incompressible continua, artificial stiffening (often referred to as volumetric
locking) affects many standard elements including the linear tetrahedral element, see e.g. [78].
This phenomenon occurs also for nearly incompressible materials and therefore introducing slight
compressibility does not solve the problem.

A number of improved linear tetrahedral elements with anti-locking features have been proposed
by different authors [79–82]. The average nodal pressure (ANP) tetrahedral element proposed
in [79] is computationally inexpensive and provides much better results for nearly incompressible
materials compared with the standard tetrahedral element. Nevertheless, one shortcoming of the
ANP element and its implementation in a finite element code is the handling of interfaces between
different materials. We extended the formulation of the ANP element so that all elements in a
mesh are treated in the same way, requiring no special handling of the interface elements [83].

In our implementation the ANP element only modifies the deviatoric component of the strain
energy of the standard tetrahedral element, which in turn depends only on the volumetric part of
the deformation gradient. Therefore, we can obtain the desired behaviour of the ANP element by
modifying the volumetric part of the deformation gradient of the standard tetrahedral element (the
element Jacobian).

Because the element Jacobian is equal to the determinant of the element deformation gradient, we
define a modified deformation gradient that has the same isochoric part as the normal deformation
gradient, but the volumetric part is modified so that its determinant (and therefore the volumetric
deformation) is equal to the element Jacobian required by the ANP element:

X̄(e) =( J̄ (e))1/3(J (e))−1/3X, J (e) =det(X) (4)

The computation of the nodal forces (or stiffness matrix) can now be done in the usual manner,
but using the modified deformation gradient instead of the normal deformation gradient for defining
the strains. This way any existing material law implementation can be used.

3.3. Meshless computational grid

The use of meshless methods is motivated by simple, automatic computational grid generation for
patient-specific simulations. We use a modified element-free Galerkin method [24] that is meshless
in the sense that deformation is calculated at nodes that are not part of an element mesh. Node place-
ment is almost arbitrary. Volumetric integration is performed over a regular background grid that
does not conform to the simulation geometry. Geometrically, non-linear total Lagrangian formula-
tion is used together with explicit time integration via the central difference method, which makes
our meshless algorithm in many respects similar to the TLED algorithm discussed in Section 3.1.

Support domain and moving least-squares theory deal with the relationship between integration
points and nodes. The theory was initially developed by Lancaster and Salkauskas [84] and used
for meshless methods in the diffuse element method and element-free Galerkin in [25, 85].

For shape functions, we use moving least squares in our algorithm for simplicity and robustness.
Figure 8 depicts the spherical support domain of the node x∗. The n blackened nodes belong to the
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Figure 8. Node x∗ with its neighbourhood D.

support domain of node x∗. After calculating the moving least-squares shape functions of a given
integration point in the pre-processing stage, we only use the 3n first partial spatial derivatives in
the remainder of our simulation.

The computational efficiency of this meshless algorithm is dependent mostly on the number of
integration points where stresses need to be evaluated. For the same number of nodes our algorithm
requires approximately twice as many integration points as a finite element mesh composed of
under-integrated hexahedra. However, the algorithm requires only between half and one third as
many integration points as a tetrahedral-dominant mesh. Therefore, our algorithm is significantly
faster than the TLED-based finite element method using tetrahedral finite elements.

Typical problems that arise from using our meshless method include poor approximations of
free boundaries and instability from either disjoint support domains or singular shape functions.
These problems are common for other meshless methods known from the literature as well.

3.4. Modelling of interaction between the brain and the skull: contact algorithm

Many simulations require the treatment of interactions between different parts of the model. In
order to handle the brain–skull interaction we developed a very efficient algorithm that treats this
interaction as a finite sliding, frictionless contact between a deformable object (the brain) and a
rigid surface (the skull) [86]. Unlike contacts in commercial finite element solvers (e.g. ABAQUS,
LS-DYNA), our contact algorithm has no configuration parameters (as it only imposes kinematic
restrictions on the movement of the brain surface nodes) and is very fast, with the speed almost
independent of the mesh density for the skull surface.

The main parts of the contact algorithm are: detection of nodes on the brain surface (also called
the slave surface), which has penetrated the skull surface (master surface) and the displacement of
each slave node that has penetrated the master surface to the closest point on the master surface.

The surfaces of the anatomical structures of segmented brain images are typically discretised
using triangles; therefore, we consider the skull surface as a triangular mesh. We will call each
triangle surface as ‘face’, the vertices—‘nodes’ and the triangle sides—‘edges’.

We base our penetration detection algorithm on the closest master node (nearest neighbour)
approach [50]. The basic algorithm is as follows: For each slave node P:

• Find the closest master node C (global search).
• Check the faces and edges surrounding C for penetration (local search).

To improve the computation speed, following [50], we implemented the global search phase using
bucket sort. A good description of this searching algorithm is given in [87]. In our implementation
the size of the buckets used for the global search is different in the three directions, being given in
each direction by half of the maximum size of the projections of all master edges on that direction.
This ensures that the number of nodes in each bucket is minimal while there are no cases in which
a closest node cannot be found.

The next step (local search) aims at finding for each slave node P , the closest node R (on the
master surface) on the faces or edges surrounding node C . Once the closest point on the master
surface is identified, the penetration is detected by checking the sign of the scalar product RP ·n,
with n the inside normal to the master surface in R. For an edge or a node the normal is defined
as the sum of the normal vectors of adjacent faces.
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In most of the cases, the basic tests presented above are sufficient for identifying the closest point
on the master surface. Nevertheless, there are also special cases that must be considered, when
the closest point on the master surface is not on the faces and edges adjacent to C . In commercial
software, this problem is solved by searching for the closest face or edge on the master surface
instead of searching for the closest master node [50]. This search is time consuming even if bucket
sort is used. Therefore, our proposal for handling these special cases is to conduct an analysis of
the master surface and identify for each node C all the faces and edges that can be penetrated by a
slave node P in the case C is the closest master node to P . A detailed description of this analysis
is presented in [86]. The identified faces and edges are kept in a list for each master node C and
are checked in addition to the faces and edges that contain C when the local search is performed.
Because the master surface is rigid this analysis can be done pre-operatively, greatly reducing the
contact computation time during the intra-operative simulation.

3.5. Verification of the developed algorithms

The accuracy and reliability of new algorithms are best assessed against existing, verified numerical
procedures implemented in commercial finite element packages. Validation by modelling of an
actual surgery may be compromised by many unknowns (e.g. patient-specific geometry, boundary
conditions and material properties) involved in such a simulation. Here, we present comparison of
the results obtained with finite element algorithms presented in this section and results obtained
with ABAQUS [49] for brain indentation.

The main focus of the brain indentation simulation was to verify the developed algorithms in
terms of their accuracy in predicting reaction forces. The mesh we used had 2428 nodes and
2059 elements (2023 under-integrated hexahedron and 36 improved tetrahedral elements in the
indentation area—see Figure 9).

The indentation was simulated by displacing four nodes in the direction normal to the brain
surface by 20mm using a smooth loading curve. An almost incompressible neo-Hookean material
was used for the brain tissue (mass density of 1000kg/m3, Young’s modulus in un-deformed
state equal to 3000 Pa and Poisson’s ratio 0.49) and a compressible neo-Hookean material for the
ventricle (mass density of 1000kg/m3, Young’s modulus in un-deformed state equal to 100 Pa and
Poisson’s ratio 0.1). The same constraints as in [88] were used and brain symmetry was assumed.

In ABAQUS we used fully integrated mixed formulation elements for the mesh, which are the
‘gold standard’ elements in case of almost incompressible materials simulations [49]. We used the
implicit solver with the default configuration.

Computations were performed on a standard 3GHz Intel R© CoreTM Duo CPU system using
Windows XP operating system. The simulation consisted of 2000 time steps and took less than 2 s
using our TLED method, allowing for a force feedback frequency of about 1000Hz. The ABAQUS
implicit simulation performed 100 time steps in about 3min. There is very good agreement between
the results obtained using our software and the results from the ABAQUS simulation, in cases of

Figure 9. Simulation of brain indentation—the mixed mesh is deformed by displacing
four nodes. Dimensions are in mm.
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Figure 10. Computed displacements (a) and reaction forces (b) using ABAQUS
implicit solver and our algorithms.

Figure 11. Extension, compression and shear of a cylinder.

both displacements and reaction forces (Figure 10)—the displaced profiles overlap almost exactly
and the maximum relative error in reaction forces is 2.5%.

Verification of the meshless algorithm was conducted using compression, extension and shear
of a cylinder, and indentation of an ellipsoid [23, 89]. The computed reaction forces differ by less
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Figure 12. Reaction force for compression of a cylinder as computed using ABAQUS fully integrated,
mixed formulation hexahedrons and our meshless method.

than 1%, and the displacements by less than 0.15mm from those computed with fully integrated
mixed formulation ABAQUS elements, see Figures 11 and 12.

4. APPLICATION EXAMPLES

4.1. Modelling the brain for neurosurgical simulation—computer simulation of needle insertion

Previous models for predicting forces acting on a needle during insertion into very soft organs (such
as the brain) relied on oversimplifying assumptions of infinitesimal deformations, linear elastic
constitutive models and specific experimentally derived functions for determining needle—tissue
interactions [2, 90, 91]. In [92] we proposed a more general approach in which the needle forces
are determined directly from the equations of continuum mechanics using fully non-linear finite
element procedures that account for large deformations (geometric non-linearity) and non-linear
stress–strain relationship (material non-linearity) of soft tissues. We applied these procedures to
model needle insertion into a swine brain using the constitutive properties determined from the
experiments on tissue samples obtained from the same brain (i.e. the subject-specific constitutive
properties were used). We focused on the insertion phase preceding puncture of the brain meninges
and obtained an accurate prediction of the needle force. This demonstrates the utility of non-linear
finite element procedures in patient-specific modelling of needle insertion into soft organs such
as, e.g. brain. The experiment designed to validate our computations is shown in Figure 13.

The brain mesh consisting of 19 337 hexahedra (Figure 14) was constructed from the MRIs of
a swine. The details of mesh construction are given in [92].

In order to accurately model the needle–brain interactions, the element size when discretizing
the brain should be close to the needle tip diameter. As this diameter was 0.55mm, over a million
elements would be required to discretise the entire swine brain. This would result in an extremely
long computation time. Therefore, only a graft of dimensions of 6×6×12mm in the direct
neighbourhood of the needle insertion point was discretised using elements of size of 0.5–1mm.
Elements of size of up to 3.5mm were used for the remaining part of the brain (Figure 14).

Pia mater is a membrane surrounding the brain. It was discretised using 4401 shell elements
rigidly attached (through node sharing) to the hexahedral elements forming the outer layer of the
brain. Belytschko–Tsay shell elements [93] with one integration point across the thickness were
used, i.e. these elements had no bending stiffness.
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Figure 13. Needle insertion into swine brain: experimental set-up.

Figure 14. (a) General view of the swine brain mesh developed in this study and (b) refined
mesh graft in the needle insertion area.

The brain model was loaded through the prescribed motion of four nodes located in the area that
was in contact with the needle during the actual insertion (Figure 15). The sum of forces at these
nodes was a close approximation of the reaction force between the brain and the needle. A constant
velocity of 5mms−1 was used when prescribing the nodal motion. The motion was applied for
2.0 s, which corresponds to needle insertion depth (i.e. the needle displacement measured from
the start of contact between the needle and pia mater) of 10mm. This depth was selected as
the experiments on needle insertion indicated that the needle punctures the pia mater when the
insertion depth reaches 7–10mm. Our finite element model summarised in Figure 14 predicted
accurately the force–displacement relationship obtained experimentally when inserting the needle
into the swine brain (Figure 15).

For needle displacement of up to 7mm, the predicted force–displacement relationship was close
to the average relationship obtained from all the needle insertions conducted in this study (i.e.
18 insertions into three brains) (Figure 15). This indicates consistency in our experimental and
modelling results.

Although the pia mater puncture was not modelled in this study, our biomechanical model of
needle insertion makes it possible to predict the strain field in pia mater and brain at the instant
the pia mater punctures. Such prediction can be done in the following way. From the experimental
needle force–displacement curves, one can determine the needle displacement at which the puncture
occurred. Then the strain corresponding to this displacement can be predicted using the model. In
this study, the pia puncture occurred at the needle displacement of 7–10mm (measured from the
start of contact between the needle and pia mater surface). The model summarised in Figure 14
predicted that in the needle insertion area, the pia mater Almansi effective strain was 65% at the
displacement of 7mm, and 90% at the displacement of 10mm. The Almansi maximum principal
strain was 60 and 80% at the displacement of 7 and 10mm, respectively.
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Figure 15. Needle insertion into the swine brain. Experimental corridor (average +/− standard deviation
S.D.) of force–displacement relationship (18 insertions) and the relationship predicted using the finite
element model. The experimental curves were cut at the instant pia mater punctured, i.e. only the results

prior to the puncture are shown.

Figure 16. Modelling of needle insertion into the swine brain. The model cross section
at the needle displacement is 10mm.

Thus, our model predicted very large local strains and deformations in the needle insertion
area, which is visualised in Figure 16. Geometric non-linearity of the analysed problem is evident
from this figure. Therefore, it is very unlikely that any model in which infinitesimal deformations
are assumed (as in the case of linear elasticity) would produce reliable results when applied to
simulation of needle insertion into brain.

We obtained very similar results using our meshless total Lagrangian algorithm [24].

4.2. Modelling the brain for image registration—computer simulation of the brain shift

A particularly exciting application of non-rigid image registration is in intra-operative image-
guided procedures, where high-resolution pre-operative scans are warped onto sparse intra-operative
ones [8, 94]. We are particularly interested in registering high-resolution pre-operative MRI with
lower-quality intra-operative imaging modalities, such as multi-planar MRI and intra-operative
ultrasound. To achieve accurate matching of these modalities, accurate and fast algorithms to
compute tissue deformations are fundamental.
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Figure 17. (a) Pre- and (b) intra-operative MRIs of the head. The tumour segmentation is indicated by
white lines in the anterior brain part. 3D view of the pre-operative MR volume is shown in Figure 2.

Table II. Observed and computed centres of gravity displacements for ventricles and tumour. x , y and z
directions are as in Figure 3.

Ventricles Tumor

Material model �X �Y �Z �X �Y �Z

Center of gravity displacements (mm)
MRI determined 3.4 0.2 1.7 5.5 −0.2 1.7
Hyper-viscoelastic material 2.6 −0.1 2.1 5.2 −0.4 2.7
Hyper-elastic material 2.6 −0.1 2.1 5.2 −0.4 2.7
Linear elastic material 2.6 −0.1 2.1 5.0 −0.5 2.7

During the craniotomy, gravity acceleration acted in the xz plane and formed a 24.5◦ angle with the z axis.

Here, we present examples of computational results of brain shift, taken from [9, 33, 95]. For
this case the craniotomy-induced displacement of the tumour, as observed on intra-operative MR
images, was about 6mm, Figure 1. Patient-specific geometry was used. The pre- and intra-operative
positions of the tumour are shown in Figure 17. The finite element mesh is given in Figure 3. The
results are given in Table II and Figures 18 and 19.

The computed craniotomy-induced displacements of the tumour and ventricles’ centre of gravity
(COG) agreed well with the actual ones determined from the radiographic images (Table II). With
the exception of the tumour COG displacement along the inferior–superior axis, the differences
between the computed and observed displacements were below 0.8mm. An important (and not
unexpected) feature of the results summarised in Table II is that the displacements of the tumour
and ventricle COGs differ appreciably. This feature can be explained only by the fact that the
brain undergoes both local deformation and global rigid body motion (i.e. the whole brain moves),
which justifies the use of non-rigid registration. It is worth noting here that linear elasticity theory
(commonly used by the medical image analysis community) is not capable of describing the
deformation field that is a superposition of rigid body motion and local displacements.

Detailed comparison of cross sections of the actual tumour and ventricle surfaces acquired
intra-operatively with the ones predicted by the present brain model, indicates that although some
local miss-registration is visible, particularly in the inferior tumour part (Figures 18 and 19), the
result is remarkably good.

It is worth noting that as the model was loaded by the enforced motion of the exposed part
of the surface of the brain, the resulting displacement field is almost insensitive to mechanical
properties of brain tissue, see Table II. This is an important result that allows using biomechanical
models for intra-operative image registration without knowing precisely patient-specific properties
of the tissue [33].
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Figure 18. Comparison of contours of coronal sections of ventricles and tumour obtained from the
intra-operative images with the ones predicted using the brain model. Positions of section cuts are measured

from the most anterior point of the frontal cortex (posterior direction is positive).

Figure 19. Comparison of contours of axial sections of ventricles and tumour obtained from the
intra-operative images with the ones predicted using the brain model. Positions of section cuts are measured

from the most superior point of the parietal cortex (superior direction is positive).

State-of-the-art image analysis methods, such as those based on optical flow [96, 97],
mutual information-based similarity [98, 99], entropy-based alignment [100] and block matching
[101, 102]), work perfectly well when the differences between the images to be co-registered are
not too large. It can be expected that the non-linear biomechanics-based model supplemented by
appropriately chosen image analysis methods would provide a reliable method for brain image
registration in a clinical setting.

5. CONCLUSIONS

Computational mechanics has become a central enabling discipline that has led to greater under-
standing and advances in modern science and technology [1]. It is now in a position to make
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a similar impact in medicine. We have discussed modelling approaches of two applications of
clinical relevance: surgical simulation and neuroimage registration. These problems can be reason-
ably characterised with the use of purely mechanical terms such as displacements, internal forces,
etc. Therefore, they can be analysed using the methods of continuum mechanics. Moreover,
similar methods may find applications in modelling the development of structural diseases of the
brain [34, 89, 103, 104].

As the brain undergoes large displacements (∼10−20mm in the case of a brain shift) and its
mechanical response to external loading is strongly non-linear, we advocate the use of general,
non-linear finite element procedures for the numerical solution of the proposed models.

The brain’s complicated mechanical behaviour: non-linear stress–strain and stress–strain rate
relationships, and much lower stiffness in extension than in compression, require very careful
selection of the constitutive model for a given application. The selection of the constitutive model
for surgical simulation problems depends on the characteristic strain rate of the process to be
modelled and to a certain extent on computational efficiency considerations. Fortunately, as shown
in Section 4.2 and [33] the precise knowledge of patient-specific mechanical properties of brain
tissue is not required for intra-operative image registration.

A number of challenges must be met before CIS systems based on computational biomechan-
ical models can become as widely used as CIM systems are now. As we deal with individual
patients, methods to produce patient-specific computational grids quickly and reliably must be
improved. Substantial progress in automatic meshing methods is required, or alternatively meshless
methods may provide a solution. Computational efficiency is an important issue, as intra-operative
applications, requiring reliable results within approximately 40 s, are most appealing. Progress can
be made in non-linear algorithms by identifying parts that can be pre-computed, and parts that
do not have to be calculated at every time step. Use of the total Lagrangian formulation of the
finite element method [71, 105, 106], where all field variables are related to the original (known)
configuration of the system and therefore most spatial derivatives can be calculated before the
simulation commences, during the pre-processing stage offers such a possibility. Implementation
of algorithms in parallel on networks of processors, and harnessing the computational power of
graphics processing units provides a challenge for coming years.
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