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Non-locking tetrahedral finite element for surgical simulation
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SUMMARY

To obtain a very fast solution for finite element models used in surgical simulations, low-order elements,
such as the linear tetrahedron or the linear under-integrated hexahedron, must be used. Automatic hexa-
hedral mesh generation for complex geometries remains a challenging problem, and therefore tetrahedral
or mixed meshes are often necessary. Unfortunately, the standard formulation of the linear tetrahedral
element exhibits volumetric locking in case of almost incompressible materials. In this paper, we extend
the average nodal pressure (ANP) tetrahedral element proposed by Bonet and Burton for a better handling
of multiple material interfaces. The new formulation can handle multiple materials in a uniform way with
better accuracy, while requiring only a small additional computation effort. We discuss some implementa-
tion issues and show how easy an existing Total Lagrangian Explicit Dynamics algorithm can be modified
in order to support the new element formulation. The performance evaluation of the new element shows
the clear improvement in reaction forces and displacements predictions compared with the ANP element
in case of models consisting of multiple materials. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element models needed in surgical simulation must be both fast and accurate. In order
to be fast, they must use low-order elements that are not computationally intensive, such as the
linear tetrahedron or the linear under-integrated hexahedron. In order to be accurate, the generated
mesh should approximate well the real geometry so that the boundary conditions can be imposed
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accurately. Many algorithms are now available for fast and accurate automatic mesh generation
using tetrahedral elements, but not for automatic hexahedral mesh generation [1-3]. Therefore,
in order to automate the simulation process, tetrahedral or mixed meshes are more convenient.
Unfortunately, the standard formulation of the tetrahedral element exhibits volumetric locking,
especially in case of soft tissues such as the brain, which are modeled as almost incompressible
materials [4-10].

A number of improved linear tetrahedral elements were proposed by different authors [11-14].
The average nodal pressure (ANP) tetrahedral element proposed by Bonet and Burton in [11] is
computationally inexpensive and provides much better results for nearly incompressible materials
than the standard tetrahedral element. Nevertheless, one problem with the ANP element and its
implementation in a finite element code is the handling of interfaces between different materials.
In this paper, we extend the formulation of the ANP element so that all elements in a mesh are
treated in a similar way, requiring no special handling of the interface elements.

When organs such as the brain are meshed using a mixed mesh, most of the tetrahedral elements
are situated at the interface between the different parts of the brain (ventricle, tumor, white matter,
gray matter), as these irregular sections are harder to mesh using only hexahedral elements.
Therefore, the correct handling of the interface between different materials is very important.

We will show how this element formulation can be easily programmed in an existing finite
element code [15] and present a deformation example that proves the increased performances of
this element over the standard linear tetrahedron and the ANP elements.

This paper is organized as follows: the new element formulation is presented in Section 2; the
integration in an existing finite element code is presented in Section 3; a computational example
demonstrates the efficiency of the improved element in Section 4; and the conclusions are presented
in Section 5.

2. IMPROVED ANP ELEMENT FORMULATION

2.1. Existing ANP formulation

We will start the development of the improved ANP (IANP) element by briefly presenting the
standard ANP formulation developed in [11]. The volume attached to a node a is computed by

adding the contributions from elements e=1, ..., m, surrounding the node a:
my V(e)
Vo= V@, v@O=__ (1)
e=1 4

The Jacobian over an element e is the ratio between the current and initial element volumes,
and also represents the volumetric part of the deformation gradient F as:

o v®©
4G

=det(F) 2)
The isochoric component of the deformation gradient is therefore given by:
F=J"'7F 3)
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The existence of a total elastic energy function is assumed, given as:
H(x):/ ‘P(F)dV:/ ‘i’(ﬁ)dv+/ UJ)dv (4)
v v v

where W is the strain energy density function with an isochoric component V¥ and a volumetric
component U. The volumetric component U can only be a function of the volumetric ratio J, with
the simplest and most commonly used form incorporating the bulk modulus x of the material:

UH=50 -1 5)
The element pressure is defined as:
dUu
p=—  =xU-1) (©)
d] J=J@©
The volumetric virtual work for the standard linear tetrahedron is expressed as:
m
IWyor= Y. p©@v©divov® (7
e=1

where Jv are the virtual velocities and m is the number of elements in the mesh.
The volumetric components of the element internal nodal forces can be derived from the
volumetric virtual work as:

() = pv O VN ®)

with N, the shape functions of the element.

The ANP formulation is obtained by assuming that the volume ratio J remains constant over
the volume attached to each node, therefore, reducing the number of incompressibility constraints.
The average nodal volumetric ratio is defined in terms of the current and initial nodal volumes,
given by (1), as:

Va
Jo=— 9
=y ©)
and the volumetric strain energy is approximated by summing the contribution of all the n nodes
in the mesh:

Mo =3 UV (10)

a=1
If only one material is considered, the ANP can be defined as:

v

=Wl =k(Ja—1) (1)

Da

By differentiating the volumetric strain energy given by (10) in the direction of the virtual
velocities, the volumetric internal virtual work is obtained as:

no mg | m
Wyol= > Y. — pav9divov® = > 7©v@div v® (12)
a=le=1 4 e=1
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Therefore, the average element pressure can be defined as:
—o_L& o
PO=1 Yk (13)
a=1

The difference between the ANP element and the standard linear tetrahedral element is the usage
of the average element pressure (13) instead of the element pressure (6) in the expression of the
volumetric internal virtual work (and therefore in the computation of the volumetric components
of the internal nodal forces).

In case of multiple material interfaces, the nodal pressure cannot be computed using (11), as it
is not clear what bulk modulus x should be used. For each material type i converging at node a,
a different nodal volume is defined as:

omi
=% Zv@) (14)

e=1
where mg) represents the number of elements of material type i sharing node a. A different nodal
pressure is then evaluated for each material as

pD =D —1) (15)

When the pressures are averaged over an element, only those corresponding to the same element
material are used.

2.2. IANP formulation
The different treatment of elements having different material types at the interface nodes leads to:

e implementation problems, as not all elements in the mesh are treated in the same manner;
e a weaker enforcement of the incompressibility constraints for the nodes belonging to material
interfaces (the elements of different material type are treated separately).

We now demonstrate how both these problems can be eliminated. We start with the definition of
the volumetric strain energy for one of the nodes a belonging to an interface between multiple
materials:

ka

Y ®) =3 UV (16)
i=1

where k, represents the number of different material types converging to node a.

Instead of considering different nodal pressure for the different material types, as given by (15),
we will make the assumption that the nodal pressure is constant over the nodal volume. This
assumption derives from the relation that exists between pressure and stress (p =—a;; /3) [16] and
from the fact that at the interface between two different materials the stress in the materials should
be the same.

Therefore, the nodal pressure for such a node is expressed as:

pa=kV IV —1)=... =k gk 1) (17)
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This can be transformed to:

1 1 ka kaq

_K(l)—vé) Va()——K(k)—( V(

Pa= o= *a)
V., Va

kq ] [ ] ka iz
Zi:l K(‘)(vé’) _Va(l)) B Zl 1K(z) 1 Zm ( e _ V(e))

ka i -
p Ve Zl L a Ve
Zka | mi, K(z)(v(e) V(e)) ZZlal p(e)v(e) Z;nul p(e)V(e)
1 = =
= a = @ = (18)
Z;":l Ve Y ve 4V,
The volumetric internal virtual work for node a is given by:
ke dU . ,
oWy =DIglovI=3" ——| VDI o]
iz dJ |y

1
= Z paVIDID[5v]= Z paV — 5 Dv{P[6v]
i=1 i=1 V

kq .
=3 pa DV [5v] (19)
i=1

By replacing (14) in (19), and considering, from [12], that
DJ@[v]=Jdivév® (20)

we obtain:
ml

mq 1
Vol = Z Pag Z Dv[3v]=3_ pay Dv'oV]
e=1

mq
=3 pa%v@m(e)[av] Z 2 Pa v©div ov© 1)
e=1 e= 1

Comparing (21) with (12), we observe that the volumetric internal virtual work for node a is
computed in the same manner, and therefore the element pressure will be defined by relation (13).
The only difference between the standard ANP element and the IANP element consists in the
computation of nodal pressure.

In case of a node surrounded by elements made of the same material, the nodal pressure given
by (18) can be reduced to:

Z;":ul p(e)V(e) B Z’e":al %K(U(e) _ V(e))
mq - a 1
Ze:l V(E) Zl:lzl Zv(e)
Vg —
Va

and the pressure for the standard ANP element is obtained. Therefore, the standard and the IANP
elements behave differently only for elements situated at an interface between different materials.

Pa =

=k Va =r(J,—1) (22)

Copyright © 2008 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2009; 25:827-836
DOI: 10.1002/cnm



832 G. R. JOLDES, A. WITTEK AND K. MILLER

3. IMPLEMENTATION CONSIDERATIONS

3.1. The modified deformation gradient

The only difference between the (standard or improved) ANP element and the linear tetrahedral
element consists in the way the pressure is computed. The internal forces derived from the isochoric
component of the strain energy are the same for all these elements. These forces depend only on
the isochoric part of the deformation gradient.

The volumetric components of the internal forces depend on the element pressure, as given
by (8), whereas the element pressure depends only on the volumetric part of the deformation
gradient (6).

We consider an existing implementation for a linear tetrahedral element, with the internal forces
computed based on the volumetric and isochoric components of the deformation gradient. In
order to obtain the internal forces corresponding to the ANP elements, the volumetric part of the
deformation gradient can be modified in such a way that the desired pressure (corresponding to
the ANP elements) is obtained. This pressure, given by (13), can therefore be replaced in (6) to
obtain the modified volumetric part for the deformation gradient:

—e) P

J +1 (23)
K

The modified deformation gradient:

—(e)

— (TP = T

has the same isochoric part as the deformation gradient of the element, but the volumetric part
is modified in such a way that the pressure computed from it will correspond to the ANP
element.

The computation of the internal nodal forces (or stiffness matrix) can now be done in the usual
manner, but using the modified deformation gradient instead of the normal deformation gradient
for defining the strains. In this way, the existing material law implementation can be used, as
demonstrated in the next section.

It is worth noting that if the standard ANP element is used, the modified volumetric part for
the deformation gradient becomes, after replacing in (23) the average element pressure from (13)
and the average nodal pressure from (11):

— 14
7=3 X A (25)
Therefore, the computation of pressure is no longer needed for such an implementation.

3.2. Integration in the Total Lagrangian Explicit Dynamic (TLED) algorithm

The TLED algorithm is a very efficient explicit algorithm based on the Total Lagrangian formulation
that can be used for surgical simulation. The basic algorithm is presented in [17]. The modified
algorithm that can use the IANP element presented in this paper is presented below. The additional
steps required are marked with a (+4).
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Pre-computation stage:

1. Load mesh and boundary conditions.

2. For each element, compute the determinant of the Jacobian det(J) and the spatial derivatives
of shape functions ch (notation from [18] is used, where the left superscript represents the
current time and the left subscript represents the time of the reference configuration —O0,
when Total Lagrangian formulation is used).

3. Compute the diagonal (constant) mass matrix “M.

4. (4+) Compute the initial volumes associated with each node V, using (1).

Initialization:

1. Initialize nodal displacement ‘u=0, —Ay=0, apply load for the first time step: forces or/and
prescribed displacements: 2! Ri(k) < R®(Ar) or/and A ul(k) «—d(Ar).

Time stepping:
Loop over elements:

1. Take element nodal displacements from the previous time step.
2. Compute deformation gradient 6X and its determinant J.
3. (+) Compute current element pressure using (6).

(+) Compute nodal pressure using (18).
Loop over elements:

1. (+) Compute the ANP using (13).

2. (+) Compute the modified deformation gradient using (23) and (24).

3. Compute the 2nd Piola—Kirchoff stress (vector) 6§ using the given material law (based on
the modified deformation gradient).

4. Compute the element nodal reaction forces using Gaussian quadrature.

Making a (time) step:

1. Obtain net nodal reaction forces at time ¢, 'T.
2. Explicitly compute displacements using central difference formula

Ar2'
t+Atu§k> — ﬁ (t R; _tTi(k)) +2tu§k> —I_Atul(k) (26)
k

1

where M} is a diagonal entry in kth row of the diagonalized mass matrix, R; is an external
nodal force, and At is the time step.
3. Apply load for next step: "+ R® « R®) (1 Ar) or/and +8u® — d(t+Ar).

The needed modifications are easy to implement and do not require major changes in the existing
algorithm. The performances of the modified algorithm are presented in the next section.

4. SIMULATION RESULTS

Because the only difference between the IANP element proposed in this paper and the standard
ANP element consists in the way interfaces between different materials are handled, we designed
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Table 1. Material properties.

Property Material 1 Material 2
Young’s modulus E (Pa) 3000 30000
Poisson ratio v 0.49 0.48
Density p (kg/m>) 1000 1000
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Figure 1. Deformation of a cylinder made out of section with different material properties: (a) the

un-deformed configuration and the nodal displacements are applied. The color bars show the difference

in positions of the surface nodes, in mm, between models using hexahedral elements and models using;
(b) locking tetrahedral elements; (c) ANP elements; and (d) JANP elements.

a simulation experiment that highlights these differences. We considered a cylinder with a diameter
of 0.1 m and a height of 0.2 m made out of alternating sections with two different material properties,
as shown in Table I. We used a neo-Hookean material model for both materials.

Half of the nodes on the upper face of the cylinder were displaced in order to create a complex
deformation field at the different material interfaces (Figure 1(a)).

Using the cylinder geometry, we created a hexahedral mesh (13 161 nodes and 12 000 elements)
and a tetrahedral mesh (11 153 nodes and 60 030 elements). The behavior of the following elements
was compared:

1. Fully integrated linear hexahedra, with selectively reduced integration of the volumetric term
(Hexa), which should offer a benchmark solution [19];
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Figure 2. Reaction forces on the displaced face: (a) in the y direction and (b) in the z direction.

2. Standard ANP;
3. TANP, as developed in this paper;
4. Linear standard tetrahedron (Tetra).

All the computations were done using the TLED algorithm. Based on the displacement differ-
ences presented in Figure 1, we note the fact that the usage of standard locking tetrahedral elements
can leads to errors of up to 3.8 mm in the deformation field. The use of ANP elements reduces
the maximum error to 2.3 mm, whereas the use of IANP elements leads to a maximum error of
1.5 mm (all errors are considered relative to the results of the model that uses Hexa elements).

The reaction forces computed on the displaced face are presented in Figure 2. The results
obtained using the IANP elements are the closest to the benchmark results given by the Hexa
elements. Therefore, the IANP elements offer the best performances both in terms of displacements
and reaction forces.

5. DISCUSSIONS AND CONCLUSIONS

An improvement of the ANP element is presented in this paper. This improved formulation handles
all the elements of the mesh in the same manner (regardless of the fact they may be at an interface
between materials), and therefore the use of different materials and the implementation in an
existing finite element code can be made without difficulties.

The performance of the proposed IANP element is evaluated using the TLED algorithm against
the standard tetrahedral element and the ANP element. The IANP element offered the best perfor-
mances both in terms of displacements and reaction forces.

In an explicit code, the critical time step value for the ANP element is double compared with
the critical time step for the standard locking tetrahedron in the one-dimensional case [20]. We
observed a similar behavior for the ANP and IANP elements in the three-dimensional simulations.
This means that we can use higher values for the time step in an explicit simulation using a mixed
mesh, as the tetrahedral elements are usually the ones that impose the value of the critical time
step. A higher critical time step leads to a reduction of the overall computation time.
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