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Real time computation of soft tissue deformation is important for the use of augmented reality devices
and for providing haptic feedback during operation or surgeon training. This requires algorithms that
are fast, accurate and can handle material nonlinearities and large deformations. A set of such algorithms
is presented in this paper, starting with the finite element formulation and the integration scheme used
and addressing common problems such as hourglass control and locking. The computation examples pre-
sented prove that by using these algorithms, real time computations become possible without sacrificing
the accuracy of the results. For a brain model having more than 7000 degrees of freedom, we computed
the reaction forces due to indentation with frequency of around 1000 Hz using a standard dual core PC.
Similarly, we conducted simulation of brain shift using a model with more than 50,000 degrees of free-
dom in less than one minute. The speed benefits of our models result from combining the Total Lagrang-
ian formulation with explicit time integration and low order finite elements.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Systems using augmented reality for image guided surgery are
important tools that can help surgeons improve the accuracy and
limit the adverse effects of surgery. The existing imaging technol-
ogy, such as MRI, provides good quality pre-operative images that
can be used in such systems. These images can be analysed and
registered on the real organs so that the surgeon can visualize
the targeted area while the procedure is progressing.

Another area where fast computational algorithms are required
is surgical simulation systems that provide visual and haptic feed-
back to the surgeon. Various haptic interfaces for medical simula-
tion are especially useful for training surgeons for minimally
invasive procedures (laparoscopy/interventional radiology) and re-
mote surgery using tele-operators. These systems must compute
the interaction force between the robotic tool and the tissue and
provide it to the surgeon at frequencies of at least 500 Hz (DiMaio
and Salcudean, 2005).

Biomechanical models are used for solving the haptic feedback
problems, but many of these models are simplified in order to
decrease the computational effort, e.g. they consider only infinites-
imal deformations and/or linear material laws. These simplifica-
tions have a great influence on the accuracy of the obtained
results in a finite element analysis, inducing significant errors
ll rights reserved.
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(Carey, 1974; Martin and Carey, 1973; Oden and Carey, 1983). Bio-
logical tissues behaviour can be described in general using hyper-
elastic or hyper-visco-elastic models (Fung, 1993). Therefore the
solution method must be able to handle large deformations and
nonlinear material models.

There are three ways the computation time can be reduced: by
improving the algorithms, by using faster hardware or by using
parallel computing. We will concentrate on the first method, as
the use of faster hardware is limited by the existing technology
and the use of parallel computing leads to more complex and more
expensive hardware and software systems.

The paper is organized as follows: the proposed algorithms are
presented in Section 2, computational examples that demonstrate
the efficiency and accuracy of these algorithms are shown in Sec-
tion 3 and the conclusions are presented in Section 4.
2. Finite element algorithms

When designing a finite element solution method there are
many aspects that must be considered, such as the formulation
used (Total or Updated Lagrangian), time integration scheme and
the type of elements used for constructing the mesh. We will dis-
cuss these aspects in this section.

2.1. Integration of the equations of continuum mechanics

Various spatial discretization schemes are possible while using
the finite element method (Belytschko, 1983). The algorithms
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implemented in the great majority of commercial finite element
programs use the Updated Lagrangian formulation, where all vari-
ables are referred to the current (i.e. from the end of the previous
time step) configuration of the system (Ansys (ANSYS), ABAQUS
(ABAQUS, 1998), ADINA (ADINA R&D), LS-DYNA (Hallquist, 2005),
etc.). The advantage of this approach is the simplicity of incremen-
tal strain description and low internal memory requirements. The
disadvantage is that all derivatives with respect to spatial coordi-
nates must be recomputed in each time step, because the reference
configuration is changing. The reason for the popularity of Updated
Lagrangian formulation seems to be historical – at the time of
development of commercial finite elements solvers in the 1980s,
computer memory was expensive. The internal memory cost is
no longer a prohibitive factor so in developing our finite element
algorithms we used the Total Lagrangian formulation, where all
variables are referred to the original configuration of the system.
We also use Second-Piola Kirchoff stress and Green strain. The
decisive advantage of this formulation is that all derivatives with
respect to spatial coordinates are calculated with respect to the
original configuration and therefore can be pre-computed. The
proposed stress and strain measures are appropriate for handling
geometric nonlinearities (finite deformations).

The use of Total Lagrangian explicit integration for simulating
physically realistic deformations was also proposed in (Zhuang
and Canny, 1999). A method for decreasing the computation time
when using non-linear elasticity was presented in (Picinbono
et al., 2003), but it only works for tetrahedral meshes and special
elastic material laws.

Because biological tissue behaviour can be described in general
using hyper-elastic or hyper-visco-elastic models (Fung, 1993), the
use of the Total Lagrangian formulation also leads to a simplifica-
tion of material law implementation as these material models
can be easily described using the deformation gradient. The stress
is evaluated at each integration point based on the strains and any
constitutive material model can be used, including time dependent
material laws.

The integration of equilibrium equations in the time domain
can be done using either implicit or explicit methods (Bathe,
1996; Belytschko, 1976; Crisfield, 1998). The most commonly
used implicit integration methods, such as Newmark’s constant
acceleration method, are unconditionally stable. This implies that
their time step is limited only by the accuracy considerations.
However, the implicit methods require solution of set of non-lin-
ear algebraic equations at each time step. Furthermore, iterations
need to be performed for each time step of implicit integration to
control the error and prevent divergence. Therefore, the number
of numerical operations per each time step can be three orders
of magnitude larger than for explicit integration (Belytschko,
1976).

On the other hand, in explicit methods, such as the central dif-
ference method, treatment of nonlinearities is very straightforward
and no iterations are required. By using a lumped (diagonal) mass
matrix, the equations of motion can be decoupled and no system of
equations must be solved. Computations are done at the element
level eliminating the need for assembling the stiffness matrix of
the entire model. Thus, computational cost of each time step and
internal memory requirements are substantially smaller for expli-
cit than for implicit integration. There is no need for iterations any-
where in the algorithm. These features make explicit integration
suitable for real time applications.

However, the explicit methods are only conditionally stable.
Normally a severe restriction on the time step size has to be in-
cluded in order to receive satisfactory simulation results. Stiffness
of soft tissue is very low (Miller, 2002; Miller and Chinzei, 1997,
2002; Miller et al., 2000): e.g. stiffness of brain is about eight or-
ders of magnitude lower than that of common engineering mate-
rials such as steel. Since the maximum time step allowed for sta-
bility is (roughly speaking) inversely proportional to the square
root of Young’s modulus divided by the mass density (Hallquist,
2005), it is possible to conduct simulations of brain deformation
with much longer time steps than in typical dynamic simulations
in engineering, which was confirmed in our previous simulation of
brain shift using the commercial finite element solver LS-DYNA
(Wittek et al., 2005, 2007). Therefore, when developing the suite
of finite element algorithms for computation of soft tissue defor-
mation, we combined Total Lagrange formulation with explicit
time integration.

A detailed description of the Total Lagrange Explicit Dynamics
[TLED] algorithm is presented in (Miller et al., 2007). The main
benefits of the TLED algorithm are:

� allows pre-computing of many variables involved (e.q. deriva-
tives with respect to spatial coordinates, hourglass control
parameters),

� no accumulation of errors – increase stability for quasistatic
solutions,

� Second-Piola Kirchoff stress and Green strain are used – appro-
priate for handling geometric non-linearities,

� easy implementation of the material law for hyper-elastic mate-
rials using the deformation gradient,

� straightforward treatment of non-linearities,
� no iterations required for a time step,
� no system of equations need to be solved,
� low computational cost for each time step,
� low internal memory requirements.

2.2. Computation grid: elements used in the finite element mesh

Because of the computation time requirement, the mesh must
be constructed using low order elements that are not computation-
ally intensive, such as the linear tetrahedron or the linear under-
integrated hexahedron. The standard formulation of the linear tet-
rahedral element exhibits artificial stiffening, referred to in the lit-
erature as volumetric locking (Bathe, 1996) when used for
incompressible (or almost incompressible) continua such as brain
and other soft tissues. To reduce locking special countermeasures
must be employed and therefore hexahedral elements are pre-
ferred when modelling the behaviour of soft organs.

Many algorithms are now available for fast and accurate auto-
matic mesh generation using tetrahedral elements, but not for
automatic hexahedral mesh generation (Owen, 1998, 2001; Vice-
conti and Taddei, 2003). Some template based meshing algorithms
can be used for meshing different organs using hexahedrons (Cas-
tellano-Smith et al., 2001; Couteau et al., 2000; Luboz et al., 2005),
but these types of algorithms only work for healthy organs. In case
of severe pathologies (such as a brain tumour), such algorithms can
not be used, as the shape, size and position of the pathology is
unpredictable. This is one reason why many authors proposed
the use of tetrahedral meshes for their models (Clatz et al., 2003,
2005, Ferrant et al., 2000, 2002; Warfield et al., 2002). In order to
automate the simulation process, mixed meshes (having both
hexahedral and tetrahedral elements) with predominantly hexahe-
dral elements are the most convenient.

The under-integrated hexahedral elements require the use of an
hourglass control algorithm in order to eliminate the instabilities,
known as zero energy modes, which arise from the one-point inte-
gration (Flanagan and Belytschko, 1981). Special algorithms for
handling hourglass control for the hexahedral elements must be
implemented.



Table 1
Mean, standard deviation and maximum values of the error in nodal position (applied
displacement was 1, initial hexahedron height was 3).

Model Mean Standard deviation Maximum

Without hourglass control 0.028 0.015 0.055
With hourglass control 0.006 0.004 0.014
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2.3. Hourglass control

The use of one point quadrature schemes for stress integration
results in certain deformation modes remaining stressless. These
modes are called kinematic, or zero energy, modes in the literature
and hourglass modes for the hexahedron and quadrilateral in the
finite element literature (Bathe, 1996) – because of the deforma-
tion patterns they produce in a mesh (Fig. 1a).

The hourglass modes can be controlled by calculating hourglass
forces that oppose the hourglass deformation modes. One of the
most popular and powerful hourglass control algorithms, that is
currently available in many commercial software finite element
packages, is the one proposed in (Flanagan and Belytschko,
1981). This method is applicable for hexahedral and quadrilateral
elements with arbitrary geometry undergoing large deformations.
The result of applying this hourglass control mechanism can be
clearly seen in Fig. 1b.

Starting from the algorithm proposed by Flanagan and Bely-
tschko we proved that the Total Lagrangian formulation is also rec-
ommended from the point of view of efficient hourglass control
implementation, as many quantities involved can be pre-computed.
We have shown in (Joldes et al., 2007) that the hourglass control
forces for each element can be computed (in matrix form) as:

ð1Þ

where k is a constant that depends on the element geometry and
material properties, Y is the matrix of hourglass shape vectors
and u is the matrix of current displacements. The notation from
(Bathe, 1996) is used, where the left superscript represents the cur-
rent time and the left subscript represents the time of the reference
configuration, which is 0 for Total Lagrangian. In Eq. (1) all quanti-
ties except u are constant and can be pre-computed, making the
hourglass control mechanism very efficient from the computational
point of view.

The effectiveness of the hourglass control mechanism summa-
rized in Eq. (1) can be clearly seen in Fig. 1b.

In Table 1 we present the mean, standard deviation and maxi-
mum values of the error in nodal position computed using the
two models (with and without hourglass control) when compared
with a ‘‘gold standard” solution obtained using fully integrated ele-
ments in Abaqus. The introduction of hourglass control leads to a
visible reduction of the error, with the maximum error reduced
from 5.5% to 1.4% of the applied displacement.

2.4. Non-locking tetrahedral elements

In modelling of incompressible continua, artificial stiffening (of-
ten referred to as volumetric locking) afflicts many standard ele-
Fig. 1. Compression of a hexahedron meshed with under-integrated elemen
ments including the linear tetrahedral element. This
phenomenon occurs also for nearly incompressible materials and
therefore introducing slight compressibility does not solve the
problem.

By examining the two-dimensional case from Fig. 2, adapted
from (Hughes, 2000), we can see that the incompressibility con-
strain applied to elements 1 and 2 make the displacement of node
a impossible (ua = 0). An analysis of the rest of the mesh can be
done to conclude that, regardless of the magnitude of the loading,
every node in the mesh must have zero displacements in order to
enforce the incompressibility constrains.

A number of improved linear tetrahedral elements with anti-
locking features have been proposed by different authors (Bonet
and Burton, 1998; Bonet et al., 2001; Dohrmann et al., 2000;
Zienkiewicz et al., 1998). The average nodal pressure (ANP) tetra-
hedral element proposed in Bonet and Burton (1998) is computa-
tionally inexpensive and provides much better results for nearly
incompressible materials compared to the standard tetrahedral
element. Nevertheless, one shortcoming of the ANP element and
its implementation in a finite element code is the handling of inter-
faces between different materials. We extended the formulation of
the ANP element so that all elements in a mesh are treated in a
similar way, requiring no special handling of the interface
elements.

The ANP element defined in Bonet et al. (2001) is obtained by
assuming that the volume ratio J remains constant over the volume
attached to each node (instead of each element), therefore reduc-
ing the number of incompressibility constraints. The nodal volume
ratio for a node a is defined in terms of current and initial nodal
volumes as:

Ja ¼
va

Va
ð2Þ

If only one material is considered, the average nodal pressure
can be defined as:

pa ¼ jðJa � 1Þ ð3Þ

The resulting element has the same deviatoric component of
the strain energy as the standard tetrahedral element and a mod-
ified volumetric component. The modified volumetric component
ts. (a) Without hourglass control. (b) With successful hourglass control.



Fig. 2. Mesh for which incompressibility dictates zero displacements. Adapted from (Hughes, 2000).
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of the strain energy is computed in such a way that the element
pressure for an element e is given as the average of the nodal pres-
sures for the nodes belonging to that element:

pðeÞ ¼ 1
4

X4

a¼1

pðeÞa ð4Þ

In case of multiple material interfaces, the nodal pressure can-
not be computed using (3), as it is not clear what bulk modulus
j should be used. For each material type i converging at node a,
a different nodal volume is defined as:

vðiÞa ¼
XmðiÞa

e¼1

1
4

vðeÞ ð5Þ

where mðiÞa represents the number of elements of material type i
sharing node a. A different nodal pressure is then evaluated for each
material as:

pðiÞa ¼ jðiÞðJðiÞa � 1Þ ð6Þ

When the pressures are averaged over an element, only those
corresponding to the same element material are used.

The different treatment of elements having different material
types at the interface nodes leads to:

� implementation problems, as not all elements in the mesh are
treated in the same manner,

� a weaker enforcement of the incompressibility constraints for
the nodes belonging to material interfaces (the elements of dif-
ferent material type are treated separately).

Instead of considering different nodal pressure for different
material types (as given by (6)) we make the assumption that
the nodal pressure is constant over the nodal volume. This assump-
tion derives from the relation that exists between pressure and
stress (p = �rii/3) (Hughes, 2000) and from the fact that at the
interface between two different materials the stress in the materi-
als should be the same. Starting from this assumption, we demon-
strated in Joldes et al. (2008a) that the nodal pressure should be
computed as:

pa ¼

Pma

e¼1
pðeÞV ðeÞ

Pma

e¼1
V ðeÞ

ð7Þ
where ma is the number of elements surrounding node a. The ele-
ment pressure is computed afterwards in the same manner as for
the standard ANP element, using (4).

In case of a node surrounded by elements made of the same
material, the nodal pressure given by (7) reduces to (3). Therefore,
the standard ANP element and the improved ANP element pro-
posed by us behave differently only for elements situated at an
interface between different materials.

Regarding the implementation, the ANP element only modifies
the deviatoric component of the strain energy of the standard tet-
rahedral element, which in turn depends only on the volumetric
part of the deformation gradient. Therefore we can obtain the de-
sired behaviour of the ANP element by modifying the volumetric
part of the deformation gradient of the standard tetrahedral ele-
ment (the element Jacobian).

We compute the element Jacobian, required so that the element
pressure (as given by 4) for the ANP element is obtained, using the
following formula:

JðeÞ ¼ pðeÞ

j
þ 1 ð8Þ

Because the element Jacobian is equal to the determinant of the
element deformation gradient, we define a modified deformation
gradient that has the same isochoric part as the normal deforma-
tion gradient, but the volumetric part is modified so that its deter-
minant (and therefore the volumetric deformation) is equal to the
required element Jacobian:

XðeÞ ¼ ðJðeÞÞ1=3ðJðeÞÞ�1=3X; JðeÞ ¼ detðXÞ ð9Þ

The computation of the nodal forces (or stiffness matrix) can
now be done in the usual manner, but using the modified deforma-
tion gradient instead of the normal deformation gradient for defin-
ing the strains. This way any existing material law implementation
can be used.

2.5. Modelling of interactions between different organs: contact
algorithm

Many simulations require the treatment of interactions be-
tween different parts of the model. In order to handle the brain–
skull interaction we developed a very efficient algorithm that
treats this interaction as a finite sliding, frictionless contact be-
tween a deformable object (the brain) and a rigid surface (the



Fig. 3. Simulation of brain indentation – the mixed mesh is deformed by displacing
4 nodes. The colour code represents the differences in nodal displacements
compared to the Abaqus simulation. Dimensions are in mm.
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skull). The contact type was chosen based on the anatomical prop-
erties of the brain-skull interface. The brain is surrounded by cere-
brospinal-fluid (CSF) inside the skull and we considered that a
complete CSF drainage takes place after craniotomy, allowing the
brain to enter into contact and easily slide along the skull (Hu
et al., 2007; Skrinjar et al., 2002).

Unlike contacts in commercial finite element solvers (e.g. Aba-
qus, LS-DYNA), our contact algorithm has no configuration param-
eters (as it only imposes kinematic restrictions on the movement
of the brain surface nodes) and is very fast, with the speed almost
independent of the mesh density for the skull surface.

The main parts of the contact algorithm are: detection of nodes
on the brain surface (also called the slave surface) which have pen-
etrated the skull surface (master surface) and the displacement of
each slave node that has penetrated the master surface to the clos-
est point on the master surface.

The surfaces of the anatomical structures of segmented brain
images are typically discretised using triangles; therefore we con-
sider the skull surface as a triangular mesh. We will call each trian-
gle surface a ‘‘face”, the vertices – ‘‘nodes” and the triangle sides –
‘‘edges”.

We base our penetration detection algorithm on the closest
master node (nearest neighbour) approach (Hallquist, 2005). The
basic algorithm is as follows:

For each slave node P:

� Find the closest master node C (global search)
� Check the faces and edges surrounding C for penetration (local

search)

To improve the computation speed, following (Hallquist, 2005),
we implemented the global search phase using bucket sort. A good
description of this searching algorithm is given in (Sauve and Mor-
andin, 2004). In our implementation the size of the buckets used
for the global search is different in the three directions, being given
in each direction by half of the maximum size of the projections of
all master edges on that direction. This ensures that the number of
nodes in each bucket is minimal while there are no buckets for
which a closest node cannot be found.

The next step (local search) aims at finding for each slave node P
the closest node R (on the master surface) on the faces or edges
surrounding node C. Once the closest point on the master surface
is identified, the penetration is detected by checking the sign of
the scalar product RP�n, with n the inside normal to the master sur-
face in R. For an edge or a node the normal is defined as the sum of
the normal vectors of adjacent faces.

In most of the cases, the basic tests presented above are suffi-
cient for identifying the closest point on the master surface. Never-
theless, there are also special cases that must be considered, when
the closest point on the master surface is not on the faces and
edges adjacent to C. In commercial software this problem is solved
by searching for the closest face or edge on the master surface in-
stead of searching for the closest master node (Hallquist, 2005).
This search is time consuming even if bucket sort is used. Therefore
our proposal for handling these special cases is to make an analysis
of the master surface and identify for each node C all the faces and
edges that can be penetrated by a slave node P in the case C is the
closest master node to P. This analysis is done based on geometri-
cal considerations and is not detailed in this paper. A detailed
description of this analysis is presented in Joldes et al. (2008b).
The identified faces and edges are kept in a list for each master
node C and are checked in addition to the faces and edges that con-
tain C when the local search is performed. Because the master sur-
face is rigid this analysis can be done pre-operatively, greatly
reducing the contact computation time during the intra-operative
simulation.
3. Validation of the developed algorithms

The accuracy and reliability of the new algorithms is best as-
sessed against existing, verified numerical procedures imple-
mented in commercial finite element packages. Validation by
modelling of an actual surgery may be compromised by many un-
knowns (e.g. patient-specific geometry, boundary conditions and
material properties) involved in such a simulation. Therefore, we
applied our algorithms in two simulations, a brain indentation
and a brain shift, and compared the results with those obtained
using the commercial solvers Abaqus and LS-DYNA.

The main focus of the brain indentation simulation was to verify
the developed algorithms in terms of their accuracy in predicting
reaction forces. The mesh we used had 2428 nodes and 2059 ele-
ments (2023 under-integrated hexahedron and 36 improved tetra-
hedral elements in the indentation area – see Fig. 3). The results
obtained using our algorithms were compared with those obtained
using the commercial software package Abaqus. We selected the
Abaqus package as it is regarded as one of the most accurate and
reliable packages for predicting stresses in nonlinear continua.

The indentation was simulated by displacing 4 nodes in the
direction normal to the brain surface by 20 mm using a smooth
loading curve. An almost incompressible non-linear neo-Hookean
material was used for the brain tissue (mass density of 1000 kg/
m3, Young’s modulus in un-deformed state equal to 3000 Pa and
Poisson’s ratio 0.49) and a compressible neo-Hookean material
for the ventricle (mass density of 1000 kg/m3, Young’s modulus
in un-deformed state equal to 100 Pa and Poisson’s ratio 0.1). The
same constraints as in Wittek et al. (2004) were used and brain
symmetry was assumed.

In Abaqus we used fully integrated mixed formulation elements
for the mesh, which are the ‘‘gold standard” elements in case of al-
most incompressible materials simulations (ABAQUS, 1998). We
used the implicit solver with the default configuration.

Computations were performed on a standard 3 GHz Intel� Cor-
eTM Duo CPU system using Windows XP operating system. The sim-
ulation consisted of 2000 time steps and took less than 2s using
our TLED method, giving a force feedback frequency of about
1000 Hz. The Abaqus implicit simulation performed 100 time steps
in about 3 min. There is very good agreement between the results
obtained using our software and the results from the Abaqus sim-
ulation, in cases of both displacements and reaction forces (Fig. 4) –
the displaced profiles almost overlap and the maximum relative
error in reaction forces is 2.5%. The difference in nodal displace-
ments between the two simulations (in mm) has a mean value of



Fig. 4. Computed displacements (a) and reaction forces (b) using Abaqus implicit solver and our algorithms

Table 2
Observed and computed centres of gravity displacements for ventricles and tumour
[mm].

Model Ventricles Tumour

DX DY DZ DX DY DZ

Intra-operative MRI 3.4 0.2 1.7 5.5 �0.2 1.7
LS-DYNA 2.7 �0.2 2.3 5.6 �0.7 2.5
TLED 3.2 �0.3 2.2 5.7 �0.8 2.5
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0.02, a standard deviation of 0.03 and a maximum value of 0.92.
The distribution of this difference on the brain surface is presented
in Fig. 3, where one can notice that the maximum error is obtained
close to the area where the deformation is applied (being the result
of high element distortion).

In another experiment we performed the registration of a pa-
tient specific brain shift. LS-DYNA simulations for this case have
been done previously and the results were found to agree well with
the MRI derived deformations (Wittek et al., 2008). The mesh was
obtained from a pre-operative MRI and was deformed by applying
displacements recovered in the area of the craniotomy from the in-
tra-operative MRI image. The LS-DYNA simulation was altered by
eliminating the self contact on the brain surface (between cerebel-
lum and cerebrum), as this contact is not handled by our algorithm,
but the changes to the model had little effect on the simulation re-
sults as the cerebellum is only loosely coupled to the rest of the
brain through the brain stem. We performed the same simulations
using our contact algorithm and TLED with mass proportional
damping added in order to obtain the steady state solution. The
difference in the nodal displacement field has a mean value of
0.4 mm, a standard deviation of 0.2 mm and a maximum value of
1.2 mm (including the nodes on the cerebellum) (Fig. 5).

The results presented in Table 2 show the very good agreement
between the centre of gravity displacements obtained using LS-
DYNA and our algorithms (maximum 0.5 mm difference). The
Fig. 5. Brain shift simulation – difference between the TLED and LS-DYNA results.
The transparent mesh represents the master contact surface. The colour code
represents the differences in nodal displacements between the two simulations. All
dimensions are in mm.
computed deformations are also very close to the ones extracted
from the intra-operative MRI considering that the accuracy of
determining the MRI based deformations is limited by the voxel
size in the MRI images used (in this case 0.85 mm � 0.85 mm �
2.5 mm).

In Fig. 6 the results of the two simulations are compared with
the intra-operative MRI for three transverse sections through the
brain. We notice the good agreement between the simulation re-
sults in these cross sections. The differences between the com-
puted and MRI derived intra-operative cross sections are also
very small, but these differences are influenced by other errors
(e.g. segmentation differences between pre- and intra-operative
MRI images).

The used mesh had 16,710 nodes and 15,050 elements. The
computation time for 1000 time steps was about 12 s and less than
3,000 time steps were needed to reach the steady state solution.
Therefore we need less than one minute for a complete brain shift
simulation. For the same number of time steps, our simulation is at
least 2 times faster than the LS-DYNA simulation.

For a master surface consisting of 1993 nodes and 3960 triangu-
lar faces and a slave surface having 1749 nodes, the computation
time dedicated to the contact handling for 1000 time steps is about
3.2 s. If we refine the master surface and increase the number of
triangles 4 times (to 15,840), the computation time for 1000 time
steps increases to 3.8 s. Therefore, the contacts computation time
is almost independent of the number of triangles on the master
surface.

4. Conclusions

In this paper we presented a suite of finite element algorithms
that can be used for accurate and fast computation of soft tissue
deformation for surgical simulation. The basic concept behind
these algorithms is the use of the Total Lagrangian formulation
for solving finite element problems. The presented algorithms cov-
er issues related to time integration, hourglassing, volumetric lock-
ing and contacts. We use fully nonlinear formulation, accounting
for large deformations, rigid body motions and material
nonlinearities.



Fig. 6. Brain shift simulation – comparison between the simulation results and the intra-operative MRI. The cutting sections are perpendicular to the superiorly pointing axis,
with 0 on the brain’s most superior vertex, at distances of (a) �45.5 mm (b) �50.5 mm and (c) �55.5 mm. Grid lines are 5 mm apart.
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Explicit time integration is the preferred method for performing
real time simulations. The treatment of nonlinearities is straight-
forward, without the need for any iterations. Even if the method
is only conditionally stable, the material properties of biological
soft tissues make possible the use of much larger time steps com-
pared with other engineering applications. Nevertheless, in the
case of very large deformations or high deformation speeds, some
elements can become highly distorted, leading to a reduction of the
critical time step. In such a case, monitoring of the critical time
step is required and the simulation time step must be automati-
cally adjusted (if a time accurate solution is needed) or the mass
of the distorted elements can be scaled (if only the steady state
solution is sought). On a dual core PC this can be done in a separate
thread leading to only a slight increase in the computation time.

A very efficient hourglass control implementation is proposed
for the under-integrated hexahedral element. Having only one
integration point, this element is very inexpensive from the com-
putational point of view, being a perfect candidate for real time
surgical simulations. The possibility to use this type of element
and the improved tetrahedral element in mix meshes is a step to-
wards complete automated patient specific surgical simulation.

An improved version of the average nodal pressure tetrahedral
element was developed. This improved formulation handles all the
elements of the mesh in the same manner (including elements at
an interface between materials) and therefore the use of different
materials and the implementation in an existing finite element
code can be made without difficulties.

We developed a very simple and efficient contact algorithm that
can be used for simulating the brain–skull interaction. Because the
skull is modelled as a rigid surface, it can be analyzed pre-opera-
tively and many quantities needed for handling the contact can
be pre-computed. No parameters are needed for defining the con-
tact (contact thickness, stiffness, etc.) as it only imposes kinematic
restrictions on the movement of the brain nodes. Such contact
algorithm is needed for intra-operative brain shift simulations
when only limited information about the brain surface deforma-
tion can be obtained from the craniotomy area.

The simulation examples confirm the speed and accuracy of the
presented algorithms. We could compute reaction forces at fre-
quencies of 1000 Hz for a mesh having more than 2000 hexahedral
elements and perform a full brain shift simulation in less than a
minute for a model having more than 50,000 degrees of freedom
on a simple PC workstation. The accuracy of our results was dem-
onstrated by comparing them with the results of similar simula-
tions done using much more complex elements and contact
algorithms in the commercial finite element software Abaqus
and LS-DYNA. Good agreement (differences in displacement of an
order of 0.2 mm) with the commercial finite element software re-
sults was obtained.
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