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SUMMARY

The under-integrated hexahedron is one of the best candidates for use in real-time surgical simulations,
because of its computational efficiency. This element requires a very efficient method of controlling
the zero energy (hourglass) modes that arise from one-point integration. An efficient implementation
of the perturbation hourglass control method proposed by Flanagan and Belytschko for the uniform
strain hexahedron is presented. The implementation uses the Total Lagrangian formulation and takes into
consideration large deformations and rigid body motions. By using the Total Lagrangian formulation
most of the necessary components for calculating the hourglass forces can be pre-computed, leading to a
significant reduction of the additional computation time required for hourglass control. The performance
evaluation results show the very good accuracy and computational efficiency of the presented algorithm.
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1. INTRODUCTION

Speed is the main requirement from a finite element model used for surgical simulation. This re-
quirement led many researchers to use linear elastic models, because these models allow to increase
the computation speed by applying techniques, such as superposition [1] or static condensation
[2–4]. In [5], it is shown that a good material model is crucial for making accurate predictions

∗Correspondence to: Karol Miller, Intelligent Systems for Medicine Laboratory, School of Mechanical Engineering,
The University of Western Australia, 35 Stirling Highway, Crawley/Perth, WA 6009, Australia.

†E-mail: kmiller@mech.uwa.edu.au

Contract/grant sponsor: Australian Research Council, Discovery Project; contract/grant numbers: DP0343112,
DP0664534, LX0560460
Contract/grant sponsor: NIH; contract/grant number: 1-RO3-CA126466-01A1

Copyright q 2007 John Wiley & Sons, Ltd.



1316 G. R. JOLDES, A. WITTEK AND K. MILLER

on tissue deformations and Picinbono et al. [6] and Wittek et al. [7] demonstrate the shortcoming
of linear elasticity when rigid body motions are present. As tissue deformations during surgery
are large and material properties of biological tissues are highly nonlinear [8–11], we can draw
the conclusion that nonlinear material laws and nonlinear finite element models should be used in
order to have accurate results.

In a previous paper, we presented a very efficient Total Lagrangian Explicit Dynamics (TLED)
algorithm for computing soft tissue deformations, with application to real-time surgical simulation
[12]. This algorithm can be used for nonlinear models with any material law or element type. We
demonstrated that the Total Lagrangian formulation has advantages over the Updated Lagrangian
formulation from the computational point of view. This algorithm is capable of computing a time
step in 16ms for a mesh having 6000 elements and 6741 nodes on a standard Pentium 4. It is clear
that improvements in the algorithm and computing hardware can make real-time computations
possible.

This paper presents algorithmic improvements related to hourglass control. In order to meet the
speed requirements, the finite element models must use computationally inexpensive low-order
elements such as the linear under-integrated hexahedron or the linear tetrahedron. The single
integration point first-order hexahedral finite elements can also be used with materials having
high Poisson’s ratio because they do not exhibit volumetric locking [13]. But these elements also
require the use of an hourglass control algorithm in order to eliminate the zero energy modes
that arise from one-point integration [14]. We will show that the Total Lagrangian formulation
is recommended from the point of view of efficient hourglass control implementation, as many
quantities involved can be pre-computed.

One of the earliest and most popular hourglass control algorithms that is currently available in
many commercial software finite element packages (ABAQUS [15], LS-DYNA [16]) is the one
proposed by Flanagan and Belytschko [14], also known as the perturbation hourglass control. This
method is applicable for hexahedral elements with arbitrary geometry used for the simulation of
large deformations (including rigid body motions).

Several other algorithms were proposed for hourglass control. Liu et al. [17] proposed the usage
of stabilization matrices for hourglass control in the so-called physical stabilization method. The
algorithm required the storage of 36 hourglass stresses in addition to the single-point stresses
and the resulting stabilization forces causes the element to experience volumetric and shear
locking [18].

Belytschko and Bindeman [19] proposed an assumed strain stabilization method and Puso [18]
combined the physical stabilization method with the assumed strain method in order to obtain
an efficient enhanced assumed strain physically stabilized element. These methods provide an
improved behavior of the element in bending-dominated problems. However, the stability of these
methods cannot be guaranteed for general deformation states and arbitrarily shaped elements [20].
The enhanced strain physically stabilized element is also available in the commercial finite element
codes [15, 16].

In the context of large deformations, rigid body motions and arbitrarily shaped elements, the
perturbation hourglass control is the most computationally efficient of the presented hourglass
control methods. The increased performance of the enhanced assumed strain hourglass control
methods in bending-dominated problems is of little importance in surgical simulation.

The remainder of the paper is organized as follows. The improved algorithm for the computation
of hourglass control forces is presented in Section 2. Performance of the algorithm is assessed using
two numerical simulations in Section 3. Discussion and the conclusions are presented in Section 4.
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2. COMPUTATION OF HOURGLASS CONTROL FORCES

The notation from [13], also used in our previous paper [12], is used, where the left superscript
represents the current time and the left subscript represents the time of the reference configuration,
which is 0 when Total Lagrangian formulation is used.

Based on the relations presented in [14], the following quantities can be defined with respect
to the original configuration (using indicial notation):

• The mean shape functions derivatives, for the uniform strain hexahedron

0hI,i = BIi

V
= 1

V

∫
V

0hI,i dV, I = 1 . . . 8, i = 1 . . . 3 (1)

where the B-matrix and the element volume V are computed as presented in [14].
• The hourglass shape vectors

0�I� =�I� − 1

V
BIi

0xJi�J� =�I� − 0hI,i
0xJi�J�, � = 1 . . . 4, I = 1 . . . 8 (2)

where �I� are the constant hourglass base vectors and 0xJi are the initial nodal coordinates
(see [14]).

• The hourglass nodal velocities

t
0q̇�i = 1√

8
t
0u̇ I i 0�I� (3)

where t
0uI i are the nodal displacements with regard to the original configuration.

• The hourglass resistance for the artificial stiffness is given in terms of the maximum stiffness
of the element Kmax

t
0Q�i = � · Kmax · t0q�i (4)

where � is a user-defined stiffness parameter.
• The contribution of the hourglass resistance to the nodal forces

t
0 f

Hg
I i = 1√

8
t
0Q�i 0�I� (5)

For a lumped mass matrix in which the mass is distributed equally among the 8 nodes (usually
used in an explicit analysis), the maximum stiffness is related to the maximum element frequency
�max by

Kmax = �V

8
�2
max (6)

where � is the density.
An estimate of the maximum element frequency is used, as given in [21]

�max�cD · g1/2 (7)
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where cD is the dilatational wave velocity in the material and g is the geometrical parameter. In
the case of a hexahedron with arbitrary configuration, g is given in [14] as

g= 8
BIi BI i

V 2
= 80hI,i 0hI,i (8)

When the Lame material parameters � and � are known, the dilatational wave velocity can be
expressed as

cD =
√

� + 2�

�
(9)

From the above relations it can be seen that the mean shape function derivatives and the hourglass
shape vectors are constant when they are defined with respect to the initial configuration and can
be pre-computed. A further simplification can be obtained by integrating (3) with zero initial
conditions for displacements and hourglass nodal displacements

t
0uI i = 0 and t

0q�i = 0 (10)

The zero initial conditions are obtained from the fact that when the nodal displacements t
0uI i are

zero, the hourglass nodal displacements t
0q� j are also zero, and therefore no hourglass resistance

force is present. After integration we obtain

t
0q�i = 1√

8
t
0uI i 0�I� (11)

If we use the following notation:

k = � · Kmax

8
(12)

and replace (4), (11) and (12) in (5), the hourglass resistance forces will become

t
0 f

Hg
I i = k t

0uJi 0�J� 0�I� (13)

Written in the matrix form, relation (13) becomes
t
0F

Hg = k0c0c
Tt
0u (14)

where c is the matrix of hourglass shape vectors and u is the matrix of displacements.
In (14) all the involved quantities, except the displacements, are constant and can be pre-

computed. Therefore, the computation of the hourglass control forces in a Total Lagrangian frame-
work becomes very efficient, requiring only 360 floating point operations per element. An estimation
of the number of operations required for implementing the same algorithm (relations 1–14) in an
Updated Lagrangian framework is given in Table I. When the Total Lagrangian formulation is
used instead of Updated Lagrangian, the number of floating point operations per element reduces
by a factor larger than 4.

3. PERFORMANCE EVALUATION

In order to assess the performances of the proposed hourglass control mechanism, its implementa-
tion was included in the TLED algorithm presented in [12]. This algorithm was used to conduct two
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Table I. Number of floating point operations per element required for the implementation of
the proposed hourglass control algorithm when using different formulations.

Formulation Total Lagrangian Updated Lagrangian

Number of floating point operations 360 1585

numerical experiments, which include large deformations, rigid body motions and elements with
arbitrary geometry: indentation of an ellipsoid (that coarsely resembles the brain) and deformation
of a column.

In both the experiments the loading was imposed by displacing selected nodes on the surface.
The displacements were applied using a smooth loading curve given by

d(t) = dmax · (10 − 15t + 6t2) · t3 (15)

where t is the relative time (varying from 0 to 1).
The simulation results were compared with the results obtained using the commercial finite

element software ABAQUS [22]. Fully integrated linear hexahedra, hybrid displacement–pressure
formulation, were used in ABAQUS. Because these elements do not exhibit hourglassing or
volumetric locking in the case of almost incompressible materials, the obtained results were
considered as the ‘golden standard’ for comparison. The results were obtained using the implicit
solver with the default configuration.

3.1. Indentation of an ellipsoid

We presented an ellipsoid indentation experiment in our previous paper [12], used for assessing
the accuracy of the TLED algorithm. A similar experiment is presented here, but this time we
used the asymmetric loading and much larger deformations in order to excite the hourglass modes
of the elements. If no hourglass control is used, the simulation leads to very unrealistic results.

The ellipsoid presented in Figure 1 was deformed by constraining a part of the lower surface
(�x =�y = �z = 0) and displacing selected nodes from the upper surface (�x = 0,�y = 0, �z =
dz(t)), with maximum displacements of 0.04m in the z direction. The mesh was constructed using
Altair HyperMesh [23] and has 2535 nodes and 2200 elements with arbitrary geometry.

A Neo-Hookean almost incompressible material model was used, having the mechanical prop-
erties similar to those of the brain (mass density of 1000 kg/m3, Young’s modulus in undeformed
state equal to 3000 Pa and Poisson’s ratio 0.49).

The comparison of displacements of nodes located on the surface and in the plane y = 0 is
presented in Figure 2.

3.2. Deformation of a column

This experiment was artificially designed to compound difficulties associated with hourglass con-
trol: large deformations, bending and rigid body motions. A column having a height of 1m and a
square section with the side size 0.1m was meshed using hexahedral elements (Figure 3(a)). The
mesh has 496 nodes and 270 elements. The material properties were the same as those used in the
previous experiment.
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Figure 1. Indentation of an ellipsoid—undeformed shape (a) and deformed shape (b).

Figure 2. Indentation of an ellipsoid—middle line displacements.

The deformation was imposed by constraining the lower face (�x = �y = �z = 0) and displacing
the upper face (�x = dx (t),�y = 0,�z = dz(t)), with maximum displacements of 0.5m in the x
direction and 0.3m in the z direction.

The deformed shape obtained using the TLED algorithm is presented in Figure 3(b) for the case
when under-integrated hexahedral elements with no hourglass control are used. The influence of
the presented hourglass control mechanism can be clearly seen in Figure 3(c).

The comparison of displacements of a line of nodes from the side of the column (in the plane
y = 0) is presented in Figure 4.
Very good agreement between the results obtained using the under-integrated elements with the

presented hourglass control and the fully integrated linear hexahedra with hybrid displacement–
pressure formulation can be observed. The displacement maximum relative error, defined as the
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Figure 3. Deformation of a column—undeformed shape (a), deformed shape with no hourglass control
(b) and deformed shape with successful hourglass control (c).

Figure 4. Deformation of a column—middle line displacements.

ratio between the maximum displacement difference and the imposed displacement, was 0.34% in
the case of ellipsoid indentation and 1.4% in the case of column deformation. This demonstrates
the good accuracy of the elements using the proposed hourglass control mechanism.

Table II presents the computation time required for running one time step in an explicit anal-
ysis when using different hourglass control mechanisms in the Total Lagrangian and Updated
Lagrangian frameworks. The ellipsoid indentation simulation was used for time measurement. The
presented hourglass control method was compared with two other methods available in ABAQUS
Explicit. The first is basically the same perturbation-based stiffness hourglass control, but imple-
mented in the Updated Lagrangian framework. The second is an enhanced assumed strain hourglass
control method. A fixed time step and no output requests were used in order to eliminate other
influences on the computation time. Because the usage of Total Lagrangian or Updated Lagrangian
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Table II. Computation time required for running one time step using under-integrated hexahedra
with different hourglass control methods and different frameworks (ellipsoid indentation

simulation—2535 nodes and 2200 elements).

Perturbation-based stiffness

Enhanced assumed
Hourglass control Total Updated strain, Updated
method Lagrangian framework Lagrangian framework Lagrangian framework

Software used TLED ABAQUS explicit ABAQUS explicit
Computation time (ms) 2.1 10.6 13.7

does not influence the critical time step [13], the same step size and number of steps can be used
for all analyses and we can compare the computation time required for only one time step.

The simulation results demonstrate the computational efficiency of the under-integrated hexa-
hedral element with perturbation-based stiffness hourglass control in the case of Total Lagrangian
framework. They also demonstrate the known fact that the enhanced assumed strain hourglass
control is more computationally expensive than the perturbation-based stiffness hourglass control.

4. CONCLUSIONS

A very efficient implementation of the stiffness-based hourglass control mechanism described in
[14] in the case of a Total Lagrangian computational framework is presented in this paper. By
referring all the components necessary for computing the hourglass control forces to the original
configuration, they can be pre-computed and therefore only a few operations are required at every
time step for the hourglass control mechanism.

The influence of the hourglass control mechanism on the simulation results is clearly visible.
In order to assess the accuracy of the computation results, they were compared with the results
obtained using mixed formulation fully integrated elements and the commercial finite element
software (ABAQUS). A very good agreement of the results was obtained.

Our under-integrated hexahedral element using perturbation-based stiffness hourglass control
is almost five times more computationally efficient in the Total Lagrangian framework than in
the Updated Lagrangian framework. This demonstrates the need to consider the Total Lagrangian
framework for real-time surgical simulations.
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