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An important and longstanding field of research 
in orthopedic biomechanics is the elucidation 
and mathematical modeling of the mechanical 
response of cartilaginous tissues. Traditional 
approaches have treated such tissues as continua 
and have described their mechanical response 
in terms of macroscopic models borrowed 
from solid mechanics. The most important of 
such models are the biphasic and single-phase 
viscoelastic models, and the many variations 
thereof. These models have reached a high level 
of maturity and have been successful in describ-
ing a wide range of phenomena. An alternative 
approach that has received considerable recent 
interest, both in orthopedic biomechanics and 
in other fields, is the description of mechanical 
response based on consideration of a tissue’s 
structure—so-called microstructural modeling. 
Examples of microstructurally based approaches 
include fibril-reinforced biphasic models and 
homogenization approaches. A review of both 
macroscopic and microstructural constitutive 
models is given in the present work.
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The function of synovial joints is largely gov-
erned by the mechanical properties of their structural 
materials, that is, the ligaments, tendons, menisci, 

articular cartilage, and so on. Significant effort has 
therefore been devoted to the elucidation of such 
properties (through experimental testing) and to 
the analysis of observed mechanical responses with 
mathematical models. This review is concerned with 
constitutive modeling of cartilaginous tissues. The 
most popular mechanical testing configurations 
for cartilaginous tissues have been confined and 
unconfined compression (Armstrong, Lai, & Mow, 
1984; Ateshian, Warden, Kim, Grelsamer, & Mow, 
1997; Chen, Bae, Schinagl, & Sah, 2001a; Hunter, 
Noyes, Haridas, Levy, & Butler, 2003; Korhonen et 
al., 2002a; Leslie, Gardner, McGeough, & Moran, 
2000; Mow, Kuei, Lai, & Armstrong, 1980), uni-
axial tension (Charlebois, McKee, & Buschmann, 
2004; Goertzen, Budney, & Cinats, 1997; Huang, 
Stankiewicz, Ateshian, & Mow, 2005; Kempson, 
Muir, Pollard, & Tuke, 1973; Lechner, Hull, & 
Howell, 2000; Roth & Mow, 1980; Schmidt, Mow, 
Chun, & Eyre, 1990; Sweigart & Athanasiou, 2005b; 
Tissakht & Ahmed, 1995), pure shear (torsion) 
(Anderson, Woo, Kwan, & Gershuni, 1991; Hayes 
& Bodine, 1978; Spirt, Mak, & Wassell, 1989; Zhu, 
Chern, & Mow, 1994; Zhu, Mow, Koob, & Eyre, 
1993), and indentation (Hori & Mockros, 1976; 
Jurvelin, Kiviranta, Arokoski, Tammi, & Helminen, 
1987; Jurvelin, Kiviranta, Saamanen, Tammi, & 
Helminen, 1990; Kempson, Freeman, & Swanson, 
1971a; Mow, Gibbs, Lai, Zhu, & Athanasiou, 1989; 
Sweigart & Athanasiou, 2005a, 2005b). Such 
configurations are chosen as they greatly simplify 
the analysis of the sample deformation and allow 
more rigorous assessment of the validity of a given 
model.
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The overall response of cartilage is complex, 
and this fact has driven several decades of model 
development. However, deconstruction of this 
complexity becomes more tractable once a number 
of key features of the response are identified:

	 1.	Stresses and strains in the tissues vary with 
time, giving rise to the well-documented 
creep and stress relaxation behavior (Mow 
et al., 1980). It is generally accepted that 
two distinct mechanisms contribute to this 
time dependence (DiSilvestro & Suh, 2001; 
DiSilvestro & Suh, 2002; DiSilvestro, Zhu, & 
Suh, 2001a; DiSilvestro, Zhu, Wong, Jurvelin, 
& Suh, 2001b; Mak, 1986a, 1986b; Setton, 
Zhu, & Mow, 1993): frictional drag forces 
from interstitial fluid flow through the porous 
extracellular matrix, and the inherent visco
elasticity of the extracellular matrix itself (Mow, 
Mak, Lai, Rosenberg, & Tang, 1984; Sanjeevi, 
Somanathan, & Ramaswamy, 1982).

	 2.	The response of cartilage is strain dependent in 
both tension (Charlebois et al., 2004; Huang, 
Mow, & Ateshian, 2001; Lechner et al., 2000; 
Roth & Mow, 1980; Tissakht & Ahmed, 1995; 
Uezaki, Kobayashi, & Matsushige, 1979; Woo, 
Akeson, & Jemmott, 1976) and compression 
(Bader, Kempson, Egan, Gilbey, & Barrett, 
1992; Lai, Mow, & Roth, 1981; Leslie et al., 
2000; Maroudas, 1975; Zhu et al., 1993).

	 3.	The response of cartilage is strain rate depen-
dent—generally appearing stiffer under higher 
strain rates (DiSilvestro et al., 2001a; Lai et al., 
1981; Langelier & Buschmann, 2003; Oloyede 
& Broom, 1993; Oloyede, Flachsmann, & 
Broom, 1992; Radin, Paul, & Lowy, 1970; 
Silver, Bradica, & Tria, 2004; Verteramo & 
Seedhom, 2004).

	 4.	Cartilage properties are anisotropic (Chahine, 
Wang, Hung, & Ateshian, 2004; Huang et al., 
2005; Jurvelin, Buschmann, & Hunziker, 2003; 
Kempson et al., 1973; Leslie et al., 2000; Mow, 
Ratcliffe, & Poole, 1992; Myers, Lai, & Mow, 
1984; Proctor, Schmidt, Whipple, Kelly, & 
Mow, 1989; Roth & Mow, 1980; Verteramo & 
Seedhom, 2004; Whipple, Wirth, & Mow, 1985; 
Woo et al., 1979).

	 5.	Cartilaginous tissues are structurally heteroge-
neous, and this endows them with depth- and 
location-dependent mechanical properties 

(Boschetti, Pennati, Gervaso, Peretti, & Dubini, 
2004; Chen et al., 2001a; Chen, Falcovitz, 
Schneiderman, Maroudas, & Sah, 2001b; 
Erne et al., 2005; Gore, Higginson, & Minns, 
1983; Jurvelin, Buschmann, & Hunziker, 1997; 
Laasanen et al., 2003; Schinagl, Gurskis, Chen, 
& Sah, 1997; Verteramo & Seedhom, 2004; 
Woo et al., 1976; Woo et al., 1979).

	 6.	Cartilaginous tissues generally behave differ-
ently in tension and compression (Akizuki et 
al., 1986; Chahine et al., 2004; Huang et al., 
2005; Laasanen et al., 2003).

In view of the complexity, a plethora of mathe
matical models have been developed for describing 
the mechanical response of cartilaginous tissues. 
Macroscopic (i.e., those that make no consideration 
of the underlying tissue structure) constitutive 
models of varying form and level of sophistication 
have been formulated over the past several decades. 
Microstructural formulations have also been devel-
oped to allow greater insight into the relationship 
between tissue structure and function.

Macroscopic Models of  
Cartilage Mechanical Behavior

Generalized Hooke’s Law  
for Linear Elasticity

A number of studies have treated cartilage as a 
linear elastic material. While a linear elastic model 
by itself would probably constitute an inadequate 
description of cartilage response for many applica-
tions (in view of the pronounced time, strain, and 
strain rate dependence, as mentioned), it has none-
theless been applied in several simplified analyses 
and in cases where time-dependence effects are 
secondary (discussed below). Additionally, the 
linear elastic constitutive framework is integral 
to many of the more sophisticated models to be 
discussed.

For a linear elastic material, the generalized 
Hooke’s law may be written in direct tensor nota-
tion as

		  (1)

where  and  are (Cauchy) stresses and infinitesi-
mal strains, C is a stiffness tensor, and the operator 
“:” denotes a double inner product. Equation 1 is 
often expressed in matrix equation form as
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(2)

in which the fully populated stiffness tensor is rep-
resentative of a fully anisotropic material.

In the isotropic case, the constitutive Equation 
1, may also be expressed as

		  (3)

where λ and µ are so-called Lamé constants, I is the 
identity tensor, e = Tr() is the infinitesimal cubic 
dilatation, and Tr(·) is the trace operator.

As mentioned, a significant limitation of 
linear elastic models is their inability to account 
for the time dependence of mechanical response. 
In spite of this, such models have been applied to 
the study of cartilage, particularly in the analysis 
of indentation tests (Hayes, Keer, Herrmann, & 
Mockros, 1972; Hoch, Grodzinsky, Koob, Albert, 
& Eyre, 1983; Hori & Mockros, 1976; Jin & 
Lewis, 2004; Jurvelin et al., 1987; Jurvelin et al., 
1990; Jurvelin et al., 1988; Kempson et al., 1971a; 
Kempson, Spivey, Swanson, & Freeman, 1971b; 
Newberry, Zukosky, & Haut, 1997; Sakamoto, Li, 
Hara, & Chao, 1996) and joint contact problems 
(Blankevoort, Kuiper, Huiskes, & Grootenboer, 
1991; Carter & Wong, 2003; Chand, Haug, & 
Rim, 1976; Eberhardt, Keer, Lewis, & Vithoontien, 
1990; Eberhardt, Lewis, & Keer, 1991a, 1991b; 
Meakin, Shrive, Frank, & Hart, 2003). In such 
situations, linear elastic solutions may be inter-
preted as representing instantaneous (time, t → 
0) or equilibrium responses (t → ∞) (Armstrong 
et al., 1984).

Monophasic Viscoelastic Models

In order to account for time and strain rate 
dependence of mechanical response, a number 
of investigators have proposed single-phase 
(monophasic) viscoelastic (MPVE) models for 
cartilage. Initial models were derived from analo-
gies with arrangements of mechanical spring and 
dashpot (viscous dampers) elements (Coletti, 
Akeson, & Woo, 1972; Hayes & Mockros, 1971; 

Parsons & Black, 1977)—whence the name 
viscoelastic was derived. These models were 
inherently one-dimensional, however, and were 
therefore of limited use. Of much greater utility 
were subsequent continuum-based formulations, 
for example, Fung’s quasi-linear viscoelasticity 
(e.g., see [Fung, 1993] and the references cited 
therein). Such models extend elastic formula-
tions by incorporating so-called relaxation func-
tions G(t)—typically exponential functions in 
time—which effectively convert constant elastic 
moduli (e.g., λ and µ) into functions of time t. 
Most commonly, isotropic symmetry is assumed, 
so that the constitutive equation may be presented 
as a generalization of Equation 3 in the form of a 
convolution integral:

		  (4)

where

		  (5)

is the relaxation function,

		  (6)

is a continuous relaxation spectrum,            is 
the deviatoric strain component, τ

1,2
 are short- and 

long-term relaxation time constants, and c is the 
relaxation power spectrum magnitude.

In Equation 4, viscoelasticity is incorporated 
into both volumetric and deviatoric components of 
deformation. Both modes are here modeled with the 
same relaxation function G(t), but this need not be 
so. Another common approach is to assign relaxation 
behavior to the deviatoric component only, so that 
Equation 4 reduces to
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		  (7)

Finally, in place of the continuous spectrum 
relaxation function described above, G(t) is often 
presented as a series of discrete exponentials (or 
Prony series):

		  (8)

where G
K
 are relaxation moduli, and τ

K
 are time 

constants.
Monophasic viscoelastic models have been 

applied in the analysis of cartilage in confined 
and unconfined compression (Bader et al., 1992; 
DiSilvestro et al., 2001a; DiSilvestro et al., 2001b; 
Hayes & Mockros, 1971), pure shear (Anderson et 
al., 1991; Hayes & Bodine, 1978; Hayes & Mockros, 
1971; Spirt et al., 1989; Zhu et al., 1993), uniaxial 
tension (Simon, Coats, & Woo, 1984; Woo, Simon, 
Kuei, & Akeson, 1980), and indentation (Parsons 
& Black, 1977, 1979). They have also been widely 
applied in the analysis of other soft tissues, includ-
ing brain (Miller, 1999; Miller, 2002; Miller & 
Chinzei, 1997, 2002; Miller, Taylor, & Nowinski, 
2005), passive myocardium (Huyghe, van Campen, 
Arts, & Heethaar, 1991), and tendon (Pioletti & 
Rakotomanana, 2000).

Linear Biphasic Models

A second constitutive framework that accounts for 
time dependence of mechanical response is the 
linear biphasic (LBP) model introduced by Mow and 
coworkers (Mow et al., 1980); it describes the tissue 
as a binary mixture of immiscible solid and fluid 
phases. The tissue is envisaged as a porous linearly 
elastic intrinsically incompressible solid matrix 
permeated by an inviscid incompressible fluid. 
Neither phase is intrinsically dissipative. As a sig-
nificant portion of the fluid is free to move under an 
imposed pressure gradient, loading and subsequent 
deformation of the tissue causes pressurization and 
flow of interstitial fluid. The time dependence of the 
tissue mechanical responses (e.g., creep and stress 
relaxation) is seen as a manifestation of the dissipa-
tive effects of this fluid flow. Although conceptually 
different, the LBP model is mathematically equiva-
lent to the poroelastic model of Biot (Biot, 1941), 
assuming the fluid phase is inviscid (Simon, 1992). 

Since its introduction in 1980 (Mow et al., 1980), the 
LBP model has become the most widely employed 
formulation for modeling of cartilage mechanical 
behavior. It has also been used in modeling of such 
other biological tissues as brain (Miller et al., 2005; 
Taylor & Miller, 2004), skin (Oomens, van Campen, 
& Grootenboer, 1987), bone (Cowin, 1999), and 
tendon (Yin & Elliott, 2004).

The constitutive equations for the solid and fluid 
phases, and for the tissue as a whole are given by

		  (9)

		  (10)

		  (11)

where 
s,f,t 

are solid, fluid, and total stresses, respec-
tively; 

E
 is the effective stress (interpreted as the 

stress component borne by the solid phase); p is the 
fluid pressure; and V

s,f
 ∈ [0,1] are solid and fluid 

volume fractions, respectively. The solid phase is 
assumed to be linear elastic, so that in the most 
general case the effective solid stress may be given 
by Equation 1, that is,

		  (12)

where  is the total elastic strain tensor. Important 
special cases of Equation 12 relating to different 
levels of material symmetry are described in sec-
tions below.

The continuity of both phases requires

		  (13)

where v
s,f

 are solid and fluid phase velocities, 
respectively. Under quasi-static conditions (so that 
inertial body forces may be ignored), the governing 
equations of motion are

		  (14)

where

		  (15)

is the momentum exchange between the phases 
(associated with frictional drag forces arising from 
the relative velocity between phases), and κ is the 
diffusive drag coefficient. Coefficient κ is related to 
the hydraulic permeability k through

		  (16)
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While in the linear case k is treated as constant, it 
has been shown in reality to be strain dependent. To 
quantify the dependence, Lai and coworkers (Lai & 
Mow, 1980; Lai et al., 1981) proposed an exponen-
tial form that has often been employed (Boschetti 
et al., 2004; Holmes, Lai, & Mow, 1985):

		  (17)

where k
0
 is the intrinsic (strain-free) permeability, M 

is a constant, and e
s
 is the solid dilatation. Models 

that employ this relation are, of course, no longer 
linear.

Isotropic Models

By far the most popular LBP models have been 
those that assume isotropic material symmetry for 
the solid phase. The effective solid stress in such 
models is then given by Equation 3:

		  (18)

where λ
s
 and µ

s
 are solid-phase Lamé constants. The 

isotropic LBP model is therefore defined by three 
parameters: λs

, µ
s
, and k.

Isotropic LBP models have been employed 
in the analysis of cartilage in confined (Hunter et 
al., 2003; Hunter, Noyes, Haridas, Levy, & Butler, 
2005; Joshi, Suh, Marui, & Woo, 1995; Mow et al., 
1980; Soltz & Ateshian, 1998; Spilker & Suh, 1990; 
Suh, Li, & Woo, 1995) and unconfined compression 
(Armstrong et al., 1984; Brown & Singerman, 1986; 
DiSilvestro et al., 2001a; DiSilvestro et al., 2001b; 
Joshi et al., 1995; Spilker & Suh, 1990), indenta-
tion (Athanasiou et al., 1995; Athanasiou, Liu, 
Lavery, Lanctot, & Schenck, 1998; Hale, Rudert, 
& Brown, 1993; Herzog et al., 1998; Mak, Lai, 
& Mow, 1987; Mow et al., 1989; Spilker, Suh, & 
Mow, 1992; Sweigart & Athanasiou, 2005b), joint 
contact (Ateshian, Lai, Zhu, & Mow, 1994; Ateshian 
& Wang, 1995; Donzelli & Spilker, 1998; Herzog 
et al., 1998; Hou, Holmes, Lai, & Mow, 1989; Wu, 
Herzog, & Epstein, 1997; Wu, Herzog, & Epstein, 
1998, 2000; Wu, Herzog, & Ronsky, 1996), and 
impact studies (Atkinson & Haut, 1995; Atkinson, 
Haut, & Altiero, 1998).

Anisotropic and  
Inhomogeneous Models

There is some microstructural evidence that some 
cartilaginous tissues exhibit at least transversely iso-

tropic symmetry. In view of this, a number of trans-
versely isotropic LBP models have been proposed 
for the analysis of confined and unconfined com-
pression (Bursac, Obitz, Eisenberg, & Stamenovic, 
1999; Cohen, Lai, & Mow, 1998; DiSilvestro et 
al., 2001b; Lanir, 1987), indentation (Korhonen 
et al., 2002b), uniaxial tension (LeRoux & Setton, 
2002), contact (Donzelli, Spilker, Ateshian, & Mow, 
1999; Spilker, Donzelli, & Mow, 1992; Wilson, van 
Rietbergen, van Donkelaar, & Huiskes, 2003), and 
impact loading (Garcia, Altiero, & Haut, 1998). 
In such cases, the effective solid stress is given by 
Equation 1, with the stiffness tensor C of the form

		  (19)

A small number of papers have reported the use 
of orthotropic LBP models. Bachrach, Mow, and 
Guilak (1998) used such a model in their exami-
nation of the commonly used incompressibility 
assumption for solid-phase elements of biphasic 
models, but no assessment of the performance of 
the model against more common test regimes as 
above was reported. More recently, Wang, Chahine, 
Hung, and Ateshian (2003) and Chahine et al. (2004) 
demonstrated experimentally the orthotropic sym-
metry (within the context of tension-compression 
nonlinearity) of articular cartilage. The solid phase 
stiffness tensor C in such cases is given by

		  (20)

A similarly small number of papers have reported 
the inclusion of cartilage heterogeneity into the 
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solid phase description—that is, depth-dependent 
stiffness. Wang, Hung, and Mow (2001) studied 
the effects of nonuniform moduli (using a finite 
deformation biphasic formulation, which will be 
discussed in the following section) on the chondro-
cyte mechanical environment, whereas Korhonen et 
al. (2002b) studied the implications for indentation 
response. In view of the abundance of experimental 
evidence for heterogeneity in cartilage, and the rela-
tive ease of including such effects in, for example, 
finite element analyses, the dearth of theoretical 
investigations is surprising.

Finite Deformation Biphasic Models

Linear biphasic models employ linear elastic consti-
tutive formulations for the tissue solid phase, and are 
therefore strictly valid only for small deformation 
problems. Since cartilage deformations in vivo are 
conceivably large, a number of finite deformation 
biphasic (FDBP) models employing hyperelastic 
solid-phase formulations have been developed 
(Holmes & Mow, 1990; Kwan, Lai, & Mow, 1990). 
In such models, effective solid stresses are defined 
in terms of a Helmholtz free energy function:

		  (21)

where W is the Helmholtz fee energy per unit volume 
and E is an appropriate strain tensor (chosen so as to 
be energetically conjugate with 

E
). Many forms for 

W are possible. Use of such a kinematic formulation 
leads to slight modifications of the expressions for 
momentum exchange , and the strain-dependent 
permeability k (Ateshian et al., 1997; Holmes & 
Mow, 1990; Kwan et al., 1990). Finite deformation 
biphasic models have been applied in the analysis 
of confined compression (Ateshian et al., 1997; 
Kwan et al., 1990; Wang et al., 2001; Wayne, 
Woo, & Kwan, 1991), indentation (Suh & Spilker, 
1994), and ultrafiltration (Holmes & Mow, 1990) of 
cartilaginous tissues. As many studies have found 
cartilage equilibrium moduli to be approximately 
linear over a reasonable strain range (Jurvelin et al., 
2003; Khalsa & Eisenberg, 1997; Mow et al., 1980), 
it is unclear whether incorporation of a hyperelastic 
solid-phase model is of great importance—at least 

compared to the inclusion of finite deformation 
stress and strain measures, intrinsic viscoelasticity 
(see next section), or anisotropy.

Poroviscoelastic Models

Poroviscoelastic (PVE) models are generalizations 
of the LBP models that include flow-independent 
viscoelasticity in the solid-phase description. Only 
isotropic formulations have thus far been proposed 
(excepting the conewise poroviscoelastic formula-
tion of Huang et al. [2001]; see next section), so the 
model is constructed by replacing the linear elastic 
effective solid stress equation (Equation 12) with 
either of the integral forms in Equations 4 and 7. 
Additionally, either continuous or discrete relaxation 
functions may be employed. Suh and Bai (1998) 
compared the two relaxation function formulations 
and found that results from the discrete formulation 
were little different from the continuous formula-
tion, but the use of the former was significantly more 
computationally efficient.

Poroviscoelastic models have been used in the 
analysis of cartilage in confined and unconfined 
compression (DiSilvestro & Suh, 2001, 2002; 
DiSilvestro et al., 2001a; DiSilvestro et al., 2001b; 
Huang et al., 2001; Mak, 1986a, 1986b; Setton et 
al., 1993; Suh & Bai, 1998; Suh & DiSilvestro, 
1999), volumetric (hydrostatic) compression (Ehlers 
& Markert, 2001), indentation (DiSilvestro & Suh, 
2001; Ehlers & Markert, 2001), pure shear (Ehlers 
& Markert, 2001), and uniaxial tension (Huang et 
al., 2001).

Conewise Linear Biphasic Models

As discussed in the introductory paragraphs, carti-
laginous tissues exhibit different tensile and com-
pressive responses. That is, they are bimodular. In 
an effort to incorporate such a feature, Soltz and 
Ateshian (2000) used a conewise linear elastic 
constitutive formulation to describe the solid-phase 
response in the biphasic model. In its implemented 
form, the resulting conewise linear biphasic (CLBP) 
model has cubic mechanical symmetry. The effec-
tive solid stress equation (12) is replaced with 
Equation 22:

		  (22)
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where A
a
 = a

a
 ⊗ a

a
 is a texture tensor correspond-

ing to material directions a
a
, Tr(·) is the trace 

operator, ⊗ represents a dyadic product, and λ
2
 is 

the “off-diagonal” modulus. The bimodularity of 
the formulation arises from the dependence of the 
Lamé constant λ

1
 on the normal strain in the ath 

direction:

		  (23)

Conewise linear biphasic models have been used in 
the analysis of cartilage in confined and unconfined 
compression, pure shear, and uniaxial tension (Huang 
et al., 2001; Huang, Soltz, Kopacz, Mow, & Ateshian, 
2003; Soltz & Ateshian, 2000). Wang et al. (2003) 
also used an orthotropic symmetry single-phase 
conewise linear elastic model to investigate the aniso-
tropic equilibrium response of articular cartilage. The 
CLBP model has been further generalized to include 
a viscoelastic solid phase (Huang et al., 2001).

Analysis of the Macroscopic Models

By far the most popular model for describing car-
tilage behavior has been the LBP model of Mow 
and coworkers (Mow et al., 1980) (or equivalently, 
the poroelastic model), and its derivative formula-
tions (e.g., the FDBP, PVE, and CLBP models). 
There are several reasons for the predominance of 
this framework over, for example, the MPVE for-
mulations. Firstly, the biphasic formulations allow 
discrimination of stresses borne by the solid and 
fluid phases in the tissue. Such a feature may be 
of importance in, for example, analysis of damage 
or degenerative processes (Ateshian et al., 1994), 
where knowledge of the load proportion borne by 
solid components is required. Secondly, they allow 
computation of fluid flow fields within the tissue 
as a result of deformation. Such features have been 
used in the analysis of synovial joint lubrication 
mechanisms (Ateshian, Wang, & Lai, 1998; Kwan, 
Lai, & Mow, 1984), and investigations concerning 
fluid transport within cartilage (see [Mow, Holmes, 
& Lai, 1984]). And thirdly (and probably most 
importantly), the phenomenon of time dependence 
of mechanical response is explained on the basis of 
an experimentally established (Lai & Mow, 1980; 
Lai et al., 1981) physiological mechanism (i.e., 
dissipative fluid flow). In contrast, MPVE models 
are phenomenological in nature—they make no 

reference to underlying physiological mechanisms 
that give rise to the observed phenomena (i.e., time 
dependence, rate dependence, etc.), but simply 
provide equations with which certain of these phe-
nomena may be predicted.

Although these are important points, there are 
also areas in which biphasic models have been 
shown to be inadequate. It may be seen from Equa-
tion 15 that LBP models predict dissipative effects 
only in cases in which there is appreciable relative 
velocity between the two phases. Clearly, such 
conditions (i.e., fluid flow) may occur only when 
the tissue undergoes volumetric deformation. This 
has important implications for the performance of 
the models in the analysis of cartilage response to 
different loading configurations. Many reports have 
described confined compression testing of cylindri-
cal cartilage specimens (Mow et al., 1980; Soltz & 
Ateshian, 1998; Suh et al., 1995), and generally 
good agreement has been found with the response 
predicted with the LBP model. During such experi-
ments, fluid is forced to flow from the tissue through 
the top surface of the specimen. Since the motion of 
the solid phase has no lateral components, and since 
both phases are considered incompressible, the rela-
tive phase velocity is then equal to the solid phase 
velocity; by careful specification of permeability and 
stiffness values, the observed time dependence can 
be satisfactorily explained. In the case of unconfined 
compression, however, impermeable load platens are 
generally used so that fluid flow must occur laterally. 
Since the solid components also expand laterally, 
the relative phase velocity must be small, mean-
ing that dissipative effects will be much reduced. 
Brown and Singerman (1986) analyzed unconfined 
compression tests of fetal chondroepiphysis using 
an isotropic LBP model and found that it was 
inadequate for fitting experimental data, especially 
during the transient load phase. Armstrong et al. 
(1984) had earlier encountered similar difficulties 
but had attributed them to interfacial adhesion (or 
equivalently, friction) effects. Spilker, Suh, and Mow 
(1990) conducted numerical studies of the effects 
of friction and found that these could not wholly 
explain the discrepancies. Brown and Singerman 
instead suggested that since flow-related dissipation 
is necessarily small in unconfined compression, but 
significant dissipation is still observed, the solid 
phase itself must be recognized as inherently dis-
sipative. A similar problem appears in the case of 
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tissue subjected to pure shear. Significant dissipation 
is observed experimentally (Hayes & Bodine, 1978; 
Zhu et al., 1993), yet the lack of any volumetric 
deformation precludes fluid flow, and so the LBP 
model predicts no dissipation. Again the inherent 
viscoelasticity of the solid phase is concluded.

Further difficulties arise when strain rate effects 
are considered. DiSilvestro et al. (2001a) tested 
articular cartilage in unconfined compression at 
various strain rates and found that the LBP model 
was unable to account for the observed strain rate 
dependence. Brown and Singerman reported similar 
findings in their study of chondroepiphysis (Brown 
& Singerman, 1986). Miller has also previously 
noted the inadequacy of LBP models in account-
ing for such effects (Miller, 1998). In each case, 
there is a clear implication that the flow-associated 
dissipation mechanism alone is inadequate. The 
MPVE model used by DiSilvestro et al. (2001a) was 
shown to account for the strain rate dependence of 
reaction force.

Such considerations led to the development of 
PVE models (Mak, 1986a), the most popular formu-
lations of which included viscoelastic moduli in the 
deviatoric terms only (as in Equation 7). The justifi-
cation for this is that since the biphasic mechanism 
acts during volumetric deformation, the inclusion 
of relaxation functions in volumetric terms would 
cause ambiguity regarding the contributions of each 
mechanism. DiSilvestro et al. (2001a; 2001b) com-
pared the performance of the LBP, MPVE, and PVE 
models in the analysis of unconfined compression 
results. The MPVE model was of the form given in 
Equations 7 and 8, and the PVE solid phase used an 
identical formulation. It was found that the MPVE 
model could account for the reaction force very well, 
but not for the lateral displacement, whereas the LBP 
model could account for the lateral displacement 
but not for the reaction force. The PVE model was 
able to account for both data, leading the authors to 
conclude that inclusion of both the biphasic mecha-
nism and the viscoelastic shear mechanism were 
necessary for a complete description.

An alternative interpretation may be given, how-
ever: models that include only shear (MPVE model) 
or volumetric (LBP model) dissipation mechanisms 
are inadequate, and dissipation mechanisms must 
be included for both deformation modes—as in 
the PVE model. If this more general statement is 
accepted, then it is possible that, for example, an 

MPVE model of the form of Equation 4 (i.e., with 
both deviatoric and volumetric relaxation terms) 
would perform just as well as the PVE model. Such 
a model was not investigated by those authors, 
and to our knowledge has not been investigated 
elsewhere.

It has also been suggested that the anisotropic 
nature of cartilage is an important confounding 
factor in the analysis of unconfined compression 
data with isotropic LBP models (Cohen et al., 1998). 
As a result, several authors proposed transversely 
isotropic LBP models. Cohen et al. (1998) reported 
good agreement between measured and predicted 
reaction force for confined and unconfined com-
pression using such a model. However, DiSilvestro 
et al. (2001b) measured both reaction force and 
lateral expansion during unconfined compression 
and reported that the transversely isotropic LBP 
model was able to independently fit either data, but 
importantly was not able to fit both data with one set 
of parameters. Additionally, the fits of Cohen et al. 
were achieved using a value of 0 for the out-of-plane 
Poisson ratio, based on their observation that equi-
librium axial stresses for confined and unconfined 
compression were almost equal (Cohen et al., 1998). 
However, as pointed out by Bursac et al. (1999), this 
implies that the radial confining stress in the confined 
compression experiment is also 0—a notion experi-
mentally refuted by Khalsa and Eisenberg (1997), 
and by Bursac et al. (1999) themselves. When the 
relevant Poisson ratio is left unconstrained and the 
radial stress is included as a measured quantity,  
the model is unable to account for all data (Bursac 
et al., 1999). It would appear then that inclusion of 
both deviatoric and volumetric relaxation terms is 
more important than inclusion of anisotropy.

A further modification of the LBP model is 
the CLBP model of Soltz and Ateshian (2000). 
The motivation for such a model was the appar-
ent tension-compression nonlinearity of cartilage 
response (see introductory paragraphs herein). The 
model also included anisotropic (cubic symmetry) 
properties. It was shown that reaction forces from 
both confined and unconfined compression experi-
ments could be accounted for using this model (Soltz 
& Ateshian, 2000) but that reaction force and lateral 
expansion during unconfined compression could 
not be predicted simultaneously. This is similar to 
the problem encountered with the transversely iso-
tropic LBP model and suggests that there may be 
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confusion regarding the precise nature of anisotropy 
and tension-compression nonlinearity in cartilage 
response. Features of the response attributed to 
anisotropy effects may in fact be manifestations of 
inherent tension-compression nonlinearity, or vice 
versa. Issues of this sort were studied recently by 
Wang et al. (2003), who claimed that both features 
were required for a full description of cartilage 
response. Reaction forces and lateral expansions 
were measured during compression of cube-shaped 
cartilage samples along three mutually perpendicu-
lar directions (linked to the split line directions). 
No direct measurements of tensile responses were 
conducted, however, so the issue appears to be still 
open.

To further extend the capabilities of the CLBP 
model, Huang et al. (2001) incorporated a visco
elastic solid-phase description. The resulting model 
could then account simultaneously for reaction 
forces from uniaxial tension and unconfined 
compression under stress relaxation and dynamic 
loading.

Microstructural Models  
of Mechanical Behavior

All of the models described thus far may be des-
ignated as macroscopic models since they make 
no consideration of the underlying structure of the 
tissue, but characterize the tissue only on the basis 
of its bulk mechanical response. They are therefore 
of limited use in, for example, assessing the effects 
of microstructural variation (e.g., concentration 
and morphology) of tissue components, which may 
arise among individuals or as a result of pathology. 
In response to this issue, various models based on 
microstructural features of the tissue have been 
proposed. A review of such models is presented in 
this section.

Fibril-Reinforced Biphasic Models

Fibril-reinforced biphasic (FRBP) models are 
here classified as microstructural models since 
they differentiate the contributions of fibrillar and 
nonfibrillar tissue components, and can incorporate 
specific fibril arrangements. Such models consider 
the tissue to consist of a linear biphasic continuum 
(representing a fluid-saturated proteoglycan matrix) 
reinforced with fibrils. The fibrils are considered to 

support load in tension only, so that compressive 
loads are carried by the biphasic continuum and 
tensile loads are supported by both biphasic and 
fibril components. One of the primary strengths of 
these models is that fibrillar and nonfibrillar solid 
components are modeled separately. This is in 
contrast to other biphasic models described above, 
which lump all solid components together, and in 
doing so mask the potentially different manner in 
which each component may support load.

Although introduced as recently as 1999 
(Soulhat, Buschmann, & Shirazi-Adl, 1999), sig-
nificant development of the theme has occurred. 
The first formulation (Fortin, Soulhat, Shirazi-Adl, 
Hunziker, & Buschmann, 2000; Soulhat et al., 
1999) modeled the fibrils as bimodular elastic with 
a tensile Young’s modulus E+

fib
 > 0 and a compres-

sive modulus E–
fib

 = 0. A cylindrical specimen was 
modeled with a homogeneous distribution of fibrils 
in cylindrical (r, θ, z) coordinates. Li and coworkers 
(Li, Buschmann, & Shirazi-Adl, 2001, 2002a; Li, 
Soulhat, Buschmann, & Shirazi-Adl, 1999) pro-
duced a finite element version that modeled fibrils 
as springs with strain-dependent stiffness given by

		  (24)

where ε
fib

 is the fibril strain, and E
fib

 and E0
fib

 and 
are constants. Korhonen et al. (2003) also used this 
model to simulate the effects of extracellular matrix 
degradation. The model was further expanded to 
include depth-dependent biphasic and fibril param-
eters (Li, Buschmann, & Shirazi-Adl, 2000, 2003; 
Li, Shirazi-Adl, & Buschmann, 2002b). Li and 
Herzog (2004) developed a continuum finite element 
formulation for the fibrillar network response (as 
opposed to implementation with discrete spring ele-
ments as in earlier models), and used it to assess the 
resulting strain rate sensitivity of the model. Wilson, 
van Donkelaar, van Reitbergen, Ito, and Huiskes 
(2004) also developed a continuum formulation, 
but they included a strain-dependent viscoelastic 
constitutive model for the fibrils and a more micro-
structurally realistic arcade-like fibril arrangement. 
Depth-dependent properties were also included in 
this model. The viscoelastic fibril formulation was 
based on a mechanically analogous arrangement 
of parallel springs and dashpots. A quasi-linear 
viscoelastic fibril formulation using a relaxation 
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function similar to Equation 8 was incorporated 
by Li, Herzog, Korhonen, and Jurvelin (2005). 
Finally, Wilson, van Donkelaar, van Reitbergen, 
and Huiskes (2005) extended their model to include 
proteoglycan-related swelling effects.

As noted, the key contribution of these models 
is the distinction of roles played by fibrillar and 
nonfibrillar solid components. Additionally, such 
models may naturally incorporate both mechani-
cal anisotropy and bimodularity as a result of the 
specific arrangement of fibrils and the bimodularity 
of the fibrils themselves. On this point it must be 
noted that most of the FRBP models presented do 
not in fact incorporate realistic fibril arrangements 
but instead use some regular axisymmetric assembly 
(Li et al., 2000, 2002a, 2003; Li & Herzog, 2004; Li 
et al., 2005; Li et al., 2002b; Li et al., 1999). Recent 
formulations by Wilson and coworkers (Wilson et 
al., 2004, 2005) rectify this by employing fibril 
arrangements based on the arcade description of 
Benninghoff (Benninghoff, 1925). Nonetheless, 
all such models achieve the aim of differentiating 
fibrillar and nonfibrillar contributions.

A second prominent feature is their use of 
strain-dependent fibril stiffness (Li et al., 1999). 
As such, they provide a mechanism for the well-
documented strain dependence of cartilaginous 
tissues (see introductory paragraphs)—a feature 
lacking in the macroscopic models discussed. Such 
a feature contributes significantly to the model’s 
response (Li et al., 1999). Some recently developed 
viscoelastic FRBP models (Li & Herzog, 2004; Li 
et al., 2005) also suggest the importance of col-
lagen fibril viscoelasticity in cartilage mechanical 
response, especially with respect to its strain rate 
dependence.

Homogenization Models

A number of authors have developed models based 
on theories of the mechanics of composite materi-
als. Homogenization theories allow computation of 
the effective properties of a heterogeneous mate-
rial from its constituent material properties and 
geometric configuration. This is achieved through 
requiring that “under a given state of deformation a 
sample of the composite material and a like sample 
of an equivalent homogeneous material possess 
the same amount of stored energy” (Christensen & 
Waals, 1972). Various methods have been developed 

for deriving effective material properties based on 
such ideas.

Wu et al. (1999) and Federico, Herzog, Wu, 
and Rosa (2004) treated cartilage as a particulate 
composite with chondrocytes modeled as spheroidal 
inclusions embedded in an amorphous solid matrix. 
This allowed estimation of the effects of variations 
in chondrocyte concentration, morphology, and 
arrangement on overall tissue mechanical response. 
In both models, collagen fibers and ground sub-
stance were treated as an amorphous matrix phase. 
In the case of Wu et al. (1999), both matrix and cells 
were biphasic so that time-dependent effects could 
be included (within the limits of regular LBP models 
discussed previously). The particulate composites 
approach was also used by Wu and Herzog (2002) 
but with the explicit inclusion of fibrous structures 
in the form of spheroids of zero (horizontal) and 
infinite (vertical) aspect ratio. This expanded model 
therefore addressed the influence of cellular inclu-
sions, as well as vertical and horizontal collagen 
fibers. The model did not allow arbitrary orienta-
tion of collagen fibers and treated only the elastic 
response of the tissue. Finally, Federico, Grillo, 
La Rosa, Giaquinta, and Herzog (2005) presented 
a further generalized model that included statistical 
distributions of fibrils (again in the form of elongated 
spheroids) and cells embedded in an elastic matrix, 
which then formed the solid phase of a biphasic 
model. Fibril orientation distributions were assumed 
from qualitative observations in the literature.

An important determinant of mechanical aniso
tropy and heterogeneity of cartilage is probably 
the microstructural arrangement of fibrous tissue 
components. Several fiber composite–based models 
have therefore been developed so that the effects of 
such arrangements may be incorporated directly. 
Ault and Hoffman (1992a) and Schwartz, Leo, and 
Lewis (1994) used the composite cylinders model of 
Hashin and Rosen (1964) and Hill (1964) as a basis 
for incorporating constituent material properties in 
the overall tissue response. An averaging procedure 
expounded by Christensen and Waals (1972) was 
used in such cases to incorporate fiber orientation 
information so that the resulting estimate of tissue 
response was a function of constituent material 
mechanical properties, concentration, and micro-
structural arrangement. Ault and Hoffman incor-
porated experimentally derived two-dimensional 
fiber orientation distributions (Ault & Hoffman, 
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1992b). This theory was further used by Simha, 
Fedewa, Leo, Lewis, and Oegema (1999) to study 
the response of cartilage culture tissues. In each 
case, fiber and matrix materials were considered 
linearly elastic and isotropic so that no account was 
made of strain rate sensitivity or time dependence 
of mechanical response. A viscoelastic composite 
cylinders model was recently used to model brain 
stem dynamic response (Arbogast & Margulies, 
1999). Owing to the parallel arrangement of axonal 
fiber bundles in the brain stem, the fiber components 
were treated as completely aligned, and the averag-
ing procedure of Christensen and Waals (1972) was 
not required. Since the fibrils in cartilage do not 
necessarily align with one particular direction, a 
weighted averaging of fibril responses is a necessary 
process. Similar averaging was used in the models of 
Farquhar, Dawson, and Torzilli (1990) and Wren and 
Carter (1998) (see next section) to account for the 
directionality of microstructural components. Unlike 
the particulate theories described above, these fiber 
composite–based models do not include the effects 
of cellular inclusions. Because of their significantly 
lower stiffness, cells act almost like voids in the 
tissue (Federico et al., 2005) and can therefore affect 
the tissue’s response. Federico et al. (2005) further 
justify the incorporation of cellular inclusions by 
citing studies showing cell volume concentrations 
of up to 20% in small animals. In human cartilage, 
however, concentrations are generally much lower 
(Hunziker, Quinn, and Hauselmann [2002] report 
a value of 1.65%). Even though cellular inclusions 
certainly enhance the completeness and applicabil-
ity of the models, it is the collagenous and matrix 
components, by virtue of their higher concentration 
and much higher stiffness, that contribute most to 
the tissue response.

Several authors have also developed numeri-
cal homogenization schemes for the assessment 
of engineered tissues (Agoram & Barocas, 2001; 
Breuls, Sengers, Oomens, Bouten, & Baaijens, 
2002; Sengers, Donkelaar, Oomens, & Baaijens, 
2004). These models employ multiscale finite ele-
ment analyses in which macroscopic properties are 
derived from the effective response of a periodic 
microscale model. The microscale model incorpo-
rates microstructural details—cell and pericellular 
matrix distributions in the cases of Breuls et al. 
[2002] and Sengers et al. [2004] and fibrous compo-
nents in the case of Agoram & Barocas [2001]—of a 

representative volume element. The response of this 
model is then used as the basis for assigning proper-
ties in the macroscale model. Assuming adequate 
computational resources, such an approach is useful 
as it allows the incorporation of a wide range of 
microstructural features.

Along with brain stem as mentioned above, 
homogenization techniques have also been used to 
model the response of tissues other than cartilage. 
Yin and Elliot (2005) used the method in a model of 
annulus fibrosus, which accounted for two popula-
tions of aligned fibers. Hollister, Fyhrie, Jepsen, and 
Goldstein (1991) proposed a model for trabecular 
bone, whereas Crolet, Aoubiza, and Meunier (1993) 
and Aoubiza, Crolet, and Meunier (1996) proposed 
models for compact bone, taking account of the 
material’s Haversian microstructure.

Homogenization models directly relate tissue 
response to constituent material properties. In the 
case of the fiber- and particulate composite–based 
approaches, there are also direct relations between 
the geometric arrangement and concentration of 
structural elements. These models therefore provide 
a natural framework for assessment of microstruc-
tural variation.

Miscellaneous Microstructural Models

Farquhar et al. (1990) presented a model for the 
equilibrium elastic response of articular cartilage. 
The tissue was conceptualized as a composite of 
collagen fibrils and a charged proteoglycan ground 
substance. Constitutive responses for individual 
fibril and ground substance units were defined, and 
the overall tissue response was obtained from a 
weighted sum of fibril contributions from all direc-
tions plus an additional proteoglycan-swelling pres-
sure. Such a summation is similar to the procedure 
used by Ault and Hoffman (1992a) and Schwartz et 
al. (1994). By explicitly summing fibril and swelling 
contributions, the model bears similarity to FRBP 
models, which instead sum fibril and biphasic con-
tinuum responses.

A later model developed by Wren and Carter 
(1998) adopted a “rule of mixtures” approach to 
compiling fiber and matrix response contributions. 
The rule of mixtures may be shown to be a special 
case (for which fiber and matrix phase Poisson ratios 
are equal) of the Hashin and Rosen homogenization 
model (Hashin & Rosen, 1964) mentioned above. 
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Wren and Carter incorporated nonlinear fiber and 
matrix responses and also an orientation distribution-
weighted fiber summation scheme similar to above 
(Wren & Carter, 1998). Significant emphasis was 
placed on describing the failure behavior of fibrous 
tissues, and this motivated the selection of fiber and 
matrix constitutive models. However, combining 
constituent responses using the rule of mixtures has 
been shown to give a simplistic estimation of overall 
response (Christensen & Waals, 1972).

Finally, Bursac, McGrath, Eisenberg, and 
Stamenovic (2000) presented a model based on 
regular arrays of elastic interconnected cables 
(representing collagen fibrils) encasing a pressur-
ized proteoglycan solution. Cables were arranged 
into either hexagonal or triangular networks. Com-
parisons were made with confined compression test 
data. A key achievement of the modeling approach 
was the separation of fiber and matrix load-bearing 
modes, as was done in the FRBP models. As fibers 
assumed a regular (and not necessarily physiologi-
cal) geometric arrangement, the model is unable to 
predict the effects of varying fibril orientations.

Conclusions

The mechanical response of cartilaginous tissues 
is complex, and the importance of such tissues 
to the function of synovial joints has motivated 
several decades of investigation of this response. 
In particular, significant effort has been devoted 
to the development of comprehensive constitutive 
models of these tissues. Linear biphasic models 
have been the most popular and have been useful 
in describing various phenomena, but have also 
been shown to be inadequate for describing many 
aspects of tissue mechanical response. Similarly, 
MPVE models have been successful in describing 
certain features but less successful in other areas. 
Significant development of the biphasic theme has 
occurred, mainly in the form of PVE, CLBP, and 
FRBP formulations.

This review has highlighted a number of areas 
in which investigation is still required. The precise 
nature of the apparent tension-compression non
linearity of cartilaginous tissues is still unclear, and 
in particular its relation to tissue anisotropy. Clari-
fication of this relationship and the distinct roles 
played by each feature is required. Additionally, 
clarification of the roles and relative importance of 

flow-related dissipation mechanisms and intrinsic 
viscoelasticity (or equivalently, volumetric and 
deviatoric dissipation mechanisms) is required. 
From a constitutive modeling point of view, it would 
appear that recent CLBP and FRBP formulations, 
both of which include viscoelastic solid phase 
components, are the most promising candidates 
for such investigations. The significance of tissue 
heterogeneity to tissue and joint function is an area 
of further potential enquiry.

Various microstructural models were also dis-
cussed. Such models offer significant potential for 
insight into mechanisms of tissue response, and 
relations between tissue structure and function. 
Fibril-reinforced biphasic models have been suc-
cessful in explaining many of the phenomena that 
have escaped clarification with most macroscopic 
models. Homogenization approaches offer a means 
of directly investigating the effects of variation in 
structural arrangement, but most models have so far 
used only simplified elastic formulations or biphasic 
mechanisms, which, as mentioned, have been shown 
to be inadequate in many cases.

Although a high level of maturity has been 
reached, there would thus appear to be many avenues 
for investigation in the field of cartilaginous tissue 
constitutive modeling.
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