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Constitutive Modeling of Cartilaginous Tissues:
A Review
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An important and longstanding field of research
in orthopedic biomechanics is the elucidation
and mathematical modeling of the mechanical
response of cartilaginous tissues. Traditional
approaches have treated such tissues as continua
and have described their mechanical response
in terms of macroscopic models borrowed
from solid mechanics. The most important of
such models are the biphasic and single-phase
viscoelastic models, and the many variations
thereof. These models have reached a high level
of maturity and have been successful in describ-
ing a wide range of phenomena. An alternative
approach that has received considerable recent
interest, both in orthopedic biomechanics and
in other fields, is the description of mechanical
response based on consideration of a tissue’s
structure—so-called microstructural modeling.
Examples of microstructurally based approaches
include fibril-reinforced biphasic models and
homogenization approaches. A review of both
macroscopic and microstructural constitutive
models is given in the present work.
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The function of synovial joints is largely gov-
erned by the mechanical properties of their structural
materials, that is, the ligaments, tendons, menisci,
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articular cartilage, and so on. Significant effort has
therefore been devoted to the elucidation of such
properties (through experimental testing) and to
the analysis of observed mechanical responses with
mathematical models. This review is concerned with
constitutive modeling of cartilaginous tissues. The
most popular mechanical testing configurations
for cartilaginous tissues have been confined and
unconfined compression (Armstrong, Lai, & Mow,
1984; Ateshian, Warden, Kim, Grelsamer, & Mow,
1997; Chen, Bae, Schinagl, & Sah, 2001a; Hunter,
Noyes, Haridas, Levy, & Butler, 2003; Korhonen et
al., 2002a; Leslie, Gardner, McGeough, & Moran,
2000; Mow, Kuei, Lai, & Armstrong, 1980), uni-
axial tension (Charlebois, McKee, & Buschmann,
2004; Goertzen, Budney, & Cinats, 1997; Huang,
Stankiewicz, Ateshian, & Mow, 2005; Kempson,
Muir, Pollard, & Tuke, 1973; Lechner, Hull, &
Howell, 2000; Roth & Mow, 1980; Schmidt, Mow,
Chun, & Eyre, 1990; Sweigart & Athanasiou, 2005b;
Tissakht & Ahmed, 1995), pure shear (torsion)
(Anderson, Woo, Kwan, & Gershuni, 1991; Hayes
& Bodine, 1978; Spirt, Mak, & Wassell, 1989; Zhu,
Chern, & Mow, 1994; Zhu, Mow, Koob, & Eyre,
1993), and indentation (Hori & Mockros, 1976;
Jurvelin, Kiviranta, Arokoski, Tammi, & Helminen,
1987; Jurvelin, Kiviranta, Saamanen, Tammi, &
Helminen, 1990; Kempson, Freeman, & Swanson,
1971a; Mow, Gibbs, Lai, Zhu, & Athanasiou, 1989;
Sweigart & Athanasiou, 2005a, 2005b). Such
configurations are chosen as they greatly simplify
the analysis of the sample deformation and allow
more rigorous assessment of the validity of a given
model.



The overall response of cartilage is complex,
and this fact has driven several decades of model
development. However, deconstruction of this
complexity becomes more tractable once a number
of key features of the response are identified:

1. Stresses and strains in the tissues vary with
time, giving rise to the well-documented
creep and stress relaxation behavior (Mow
et al., 1980). It is generally accepted that
two distinct mechanisms contribute to this
time dependence (DiSilvestro & Suh, 2001;
DiSilvestro & Suh, 2002; DiSilvestro, Zhu, &
Suh, 2001a; DiSilvestro, Zhu, Wong, Jurvelin,
& Suh, 2001b; Mak, 1986a, 1986b; Setton,
Zhu, & Mow, 1993): frictional drag forces
from interstitial fluid flow through the porous
extracellular matrix, and the inherent visco-
elasticity of the extracellular matrix itself (Mow,
Mak, Lai, Rosenberg, & Tang, 1984; Sanjeevi,
Somanathan, & Ramaswamy, 1982).

2. The response of cartilage is strain dependent in
both tension (Charlebois et al., 2004; Huang,
Mow, & Ateshian, 2001; Lechner et al., 2000;
Roth & Mow, 1980; Tissakht & Ahmed, 1995;
Uezaki, Kobayashi, & Matsushige, 1979; Woo,
Akeson, & Jemmott, 1976) and compression
(Bader, Kempson, Egan, Gilbey, & Barrett,
1992; Lai, Mow, & Roth, 1981; Leslie et al.,
2000; Maroudas, 1975; Zhu et al., 1993).

3. The response of cartilage is strain rate depen-
dent—generally appearing stiffer under higher
strain rates (DiSilvestro et al., 2001a; Lai et al.,
1981; Langelier & Buschmann, 2003; Oloyede
& Broom, 1993; Oloyede, Flachsmann, &
Broom, 1992; Radin, Paul, & Lowy, 1970;
Silver, Bradica, & Tria, 2004; Verteramo &
Seedhom, 2004).

4. Cartilage properties are anisotropic (Chahine,
Wang, Hung, & Ateshian, 2004; Huang et al.,
2005; Jurvelin, Buschmann, & Hunziker, 2003;
Kempson et al., 1973; Leslie et al., 2000; Mow,
Ratcliffe, & Poole, 1992; Myers, Lai, & Mow,
1984; Proctor, Schmidt, Whipple, Kelly, &
Mow, 1989; Roth & Mow, 1980; Verteramo &
Seedhom, 2004; Whipple, Wirth, & Mow, 1985;
Woo et al., 1979).

5. Cartilaginous tissues are structurally heteroge-
neous, and this endows them with depth- and
location-dependent mechanical properties
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(Boschetti, Pennati, Gervaso, Peretti, & Dubini,
2004; Chen et al., 2001a; Chen, Falcovitz,
Schneiderman, Maroudas, & Sah, 2001b;
Erne et al., 2005; Gore, Higginson, & Minns,
1983; Jurvelin, Buschmann, & Hunziker, 1997,
Laasanen et al., 2003; Schinagl, Gurskis, Chen,
& Sah, 1997; Verteramo & Seedhom, 2004;
Woo et al., 1976; Woo et al., 1979).

6. Cartilaginous tissues generally behave differ-
ently in tension and compression (Akizuki et
al., 1986; Chahine et al., 2004; Huang et al.,
2005; Laasanen et al., 2003).

In view of the complexity, a plethora of mathe-
matical models have been developed for describing
the mechanical response of cartilaginous tissues.
Macroscopic (i.e., those that make no consideration
of the underlying tissue structure) constitutive
models of varying form and level of sophistication
have been formulated over the past several decades.
Microstructural formulations have also been devel-
oped to allow greater insight into the relationship
between tissue structure and function.

Macroscopic Models of
Cartilage Mechanical Behavior

Generalized Hooke’s Law
for Linear Elasticity

A number of studies have treated cartilage as a
linear elastic material. While a linear elastic model
by itself would probably constitute an inadequate
description of cartilage response for many applica-
tions (in view of the pronounced time, strain, and
strain rate dependence, as mentioned), it has none-
theless been applied in several simplified analyses
and in cases where time-dependence effects are
secondary (discussed below). Additionally, the
linear elastic constitutive framework is integral
to many of the more sophisticated models to be
discussed.

For a linear elastic material, the generalized
Hooke’s law may be written in direct tensor nota-
tion as

c=C:g, (D

where o and € are (Cauchy) stresses and infinitesi-
mal strains, C is a stiffness tensor, and the operator
“:” denotes a double inner product. Equation 1 is
often expressed in matrix equation form as
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in which the fully populated stiffness tensor is rep-
resentative of a fully anisotropic material.

In the isotropic case, the constitutive Equation
1, may also be expressed as

o=Ael+2ue, 3)

where A and u are so-called Lamé constants, I is the
identity tensor, e = Tr(¢e) is the infinitesimal cubic
dilatation, and Tr(-) is the trace operator.

As mentioned, a significant limitation of
linear elastic models is their inability to account
for the time dependence of mechanical response.
In spite of this, such models have been applied to
the study of cartilage, particularly in the analysis
of indentation tests (Hayes, Keer, Herrmann, &
Mockros, 1972; Hoch, Grodzinsky, Koob, Albert,
& Eyre, 1983; Hori & Mockros, 1976; Jin &
Lewis, 2004; Jurvelin et al., 1987; Jurvelin et al.,
1990; Jurvelin et al., 1988; Kempson et al., 1971a;
Kempson, Spivey, Swanson, & Freeman, 1971b;
Newberry, Zukosky, & Haut, 1997; Sakamoto, Li,
Hara, & Chao, 1996) and joint contact problems
(Blankevoort, Kuiper, Huiskes, & Grootenboer,
1991; Carter & Wong, 2003; Chand, Haug, &
Rim, 1976; Eberhardt, Keer, Lewis, & Vithoontien,
1990; Eberhardt, Lewis, & Keer, 1991a, 1991b;
Meakin, Shrive, Frank, & Hart, 2003). In such
situations, linear elastic solutions may be inter-
preted as representing instantaneous (time, t —
0) or equilibrium responses (¢ — o) (Armstrong
et al., 1984).

Monophasic Viscoelastic Models

In order to account for time and strain rate
dependence of mechanical response, a number
of investigators have proposed single-phase
(monophasic) viscoelastic (MPVE) models for
cartilage. Initial models were derived from analo-
gies with arrangements of mechanical spring and
dashpot (viscous dampers) elements (Coletti,
Akeson, & Woo, 1972; Hayes & Mockros, 1971;
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Parsons & Black, 1977)—whence the name
viscoelastic was derived. These models were
inherently one-dimensional, however, and were
therefore of limited use. Of much greater utility
were subsequent continuum-based formulations,
for example, Fung’s quasi-linear viscoelasticity
(e.g., see [Fung, 1993] and the references cited
therein). Such models extend elastic formula-
tions by incorporating so-called relaxation func-
tions G(#)—typically exponential functions in
time—which effectively convert constant elastic
moduli (e.g., A and u) into functions of time .
Most commonly, isotropic symmetry is assumed,
so that the constitutive equation may be presented
as a generalization of Equation 3 in the form of a
convolution integral:

t

dr’,

d(el) ‘ oe
= P S P 2 _M\
o () A!G(r )= dr'+ ,uJ;G(t )
“4)
where
G(t)=1+IS(z')e"’r’dr )
0
18 the relaxation function,
¢
S(r): ; for 7,<7<r7, ©
0 for r<r,7>7,

is a continuous relaxation spectrum, € =€—1el is
the deviatoric strain component, T, are short- and
long-term relaxation time constants, and ¢is the
relaxation power spectrum magnitude.

In Equation 4, viscoelasticity is incorporated
into both volumetric and deviatoric components of
deformation. Both modes are here modeled with the
same relaxation function G(t), but this need not be
s0. Another common approach is to assign relaxation
behavior to the deviatoric component only, so that
Equation 4 reduces to
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Finally, in place of the continuous spectrum
relaxation function described above, G(¢) is often
presented as a series of discrete exponentials (or
Prony series):

N
G(t)=1+).Gge™™, 8)
K=l
where G, are relaxation moduli, and 7, are time
constants.

Monophasic viscoelastic models have been
applied in the analysis of cartilage in confined
and unconfined compression (Bader et al., 1992;
DiSilvestro et al., 2001a; DiSilvestro et al., 2001b;
Hayes & Mockros, 1971), pure shear (Anderson et
al., 1991; Hayes & Bodine, 1978; Hayes & Mockros,
1971; Spirt et al., 1989; Zhu et al., 1993), uniaxial
tension (Simon, Coats, & Woo, 1984; Woo, Simon,
Kuei, & Akeson, 1980), and indentation (Parsons
& Black, 1977, 1979). They have also been widely
applied in the analysis of other soft tissues, includ-
ing brain (Miller, 1999; Miller, 2002; Miller &
Chinzei, 1997, 2002; Miller, Taylor, & Nowinski,
2005), passive myocardium (Huyghe, van Campen,
Arts, & Heethaar, 1991), and tendon (Pioletti &
Rakotomanana, 2000).

Linear Biphasic Models

A second constitutive framework that accounts for
time dependence of mechanical response is the
linear biphasic (LBP) model introduced by Mow and
coworkers (Mow et al., 1980); it describes the tissue
as a binary mixture of immiscible solid and fluid
phases. The tissue is envisaged as a porous linearly
elastic intrinsically incompressible solid matrix
permeated by an inviscid incompressible fluid.
Neither phase is intrinsically dissipative. As a sig-
nificant portion of the fluid is free to move under an
imposed pressure gradient, loading and subsequent
deformation of the tissue causes pressurization and
flow of interstitial fluid. The time dependence of the
tissue mechanical responses (e.g., creep and stress
relaxation) is seen as a manifestation of the dissipa-
tive effects of this fluid flow. Although conceptually
different, the LBP model is mathematically equiva-
lent to the poroelastic model of Biot (Biot, 1941),
assuming the fluid phase is inviscid (Simon, 1992).
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Since its introduction in 1980 (Mow et al., 1980), the
LBP model has become the most widely employed
formulation for modeling of cartilage mechanical
behavior. It has also been used in modeling of such
other biological tissues as brain (Miller et al., 2005;
Taylor & Miller, 2004), skin (Oomens, van Campen,
& Grootenboer, 1987), bone (Cowin, 1999), and
tendon (Yin & Elliott, 2004).

The constitutive equations for the solid and fluid
phases, and for the tissue as a whole are given by

o, =0,V pl, ©)
o, ==V, plL, (10)
6,=0,+0,=0,-pl, (11)

where o are solid, fluid, and total stresses, respec-
tively; o, is the effective stress (interpreted as the
stress component borne by the solid phase); p is the
fluid pressure; and V € [0,1] are solid and fluid
volume fractions, respectlvely The solid phase is
assumed to be linear elastic, so that in the most
general case the effective solid stress may be given
by Equation 1, that is,

o,=C:¢ (12)

where ¢ is the total elastic strain tensor. Important
special cases of Equation 12 relating to different
levels of material symmetry are described in sec-
tions below.

The continuity of both phases requires

V-(V,v,+V,v,)=0, (13)

where v are solid and fluid phase velocities,
respectlvely Under quasi-static conditions (so that
inertial body forces may be ignored), the governing
equations of motion are

Vio.+x=0
s (14)
V—Gf—'n;=0’
where
m=x(v,-v,) (15)

is the momentum exchange between the phases
(associated with frictional drag forces arising from
the relative velocity between phases), and x is the
diffusive drag coefficient. Coefficient x'is related to
the hydraulic permeability k through

2
v (16)

K=—.
k
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While in the linear case k is treated as constant, it
has been shown in reality to be strain dependent. To
quantify the dependence, Lai and coworkers (Lai &
Mow, 1980; Lai et al., 1981) proposed an exponen-
tial form that has often been employed (Boschetti
et al., 2004; Holmes, Lai, & Mow, 1985):

k =k,e™, (17)

where & is the intrinsic (strain-free) permeability, M
is a constant, and e_ is the solid dilatation. Models
that employ this relation are, of course, no longer
linear.

Isotropic Models

By far the most popular LBP models have been
those that assume isotropic material symmetry for
the solid phase. The effective solid stress in such
models is then given by Equation 3:

c,=Ael+2u¢, (18)

where A_and u_are solid-phase Lamé constants. The
isotropic LBP model is therefore defined by three
parameters: A, i, and k.

Isotropic LBP models have been employed
in the analysis of cartilage in confined (Hunter et
al., 2003; Hunter, Noyes, Haridas, Levy, & Butler,
2005; Joshi, Suh, Marui, & Woo, 1995; Mow et al.,
1980; Soltz & Ateshian, 1998; Spilker & Suh, 1990;
Suh, Li, & Woo, 1995) and unconfined compression
(Armstrong et al., 1984; Brown & Singerman, 1986;
DiSilvestro et al., 2001a; DiSilvestro et al., 2001b;
Joshi et al., 1995; Spilker & Suh, 1990), indenta-
tion (Athanasiou et al., 1995; Athanasiou, Liu,
Lavery, Lanctot, & Schenck, 1998; Hale, Rudert,
& Brown, 1993; Herzog et al., 1998; Mak, Lai,
& Mow, 1987; Mow et al., 1989; Spilker, Suh, &
Mow, 1992; Sweigart & Athanasiou, 2005b), joint
contact (Ateshian, Lai, Zhu, & Mow, 1994; Ateshian
& Wang, 1995; Donzelli & Spilker, 1998; Herzog
et al., 1998; Hou, Holmes, Lai, & Mow, 1989; Wu,
Herzog, & Epstein, 1997; Wu, Herzog, & Epstein,
1998, 2000; Wu, Herzog, & Ronsky, 1996), and
impact studies (Atkinson & Haut, 1995; Atkinson,
Haut, & Altiero, 1998).

Anisotropic and
Inhomogeneous Models

There is some microstructural evidence that some
cartilaginous tissues exhibit at least transversely iso-

tropic symmetry. In view of this, a number of trans-
versely isotropic LBP models have been proposed
for the analysis of confined and unconfined com-
pression (Bursac, Obitz, Eisenberg, & Stamenovic,
1999; Cohen, Lai, & Mow, 1998; DiSilvestro et
al., 2001b; Lanir, 1987), indentation (Korhonen
et al., 2002b), uniaxial tension (LeRoux & Setton,
2002), contact (Donzelli, Spilker, Ateshian, & Mow,
1999; Spilker, Donzelli, & Mow, 1992; Wilson, van
Rietbergen, van Donkelaar, & Huiskes, 2003), and
impact loading (Garcia, Altiero, & Haut, 1998).
In such cases, the effective solid stress is given by
Equation 1, with the stiffness tensor C of the form

Cin G Cin 0 0 0
Com Cuy 0 0 0
Com 0 0 0
C= szzz = C2233 0 0
2
Sym Ciis 0
L Ciis i
(19)

A small number of papers have reported the use
of orthotropic LBP models. Bachrach, Mow, and
Guilak (1998) used such a model in their exami-
nation of the commonly used incompressibility
assumption for solid-phase elements of biphasic
models, but no assessment of the performance of
the model against more common test regimes as
above was reported. More recently, Wang, Chahine,
Hung, and Ateshian (2003) and Chahine et al. (2004)
demonstrated experimentally the orthotropic sym-
metry (within the context of tension-compression
nonlinearity) of articular cartilage. The solid phase
stiffness tensor C in such cases is given by

_Cllil Cin G 0 0 0
Con G 0 0 0
C= Ciss 0 0 0
Gy 0 0
Sym Ciss 0

L Chaia

(20)

A similarly small number of papers have reported
the inclusion of cartilage heterogeneity into the



solid phase description—that is, depth-dependent
stiffness. Wang, Hung, and Mow (2001) studied
the effects of nonuniform moduli (using a finite
deformation biphasic formulation, which will be
discussed in the following section) on the chondro-
cyte mechanical environment, whereas Korhonen et
al. (2002b) studied the implications for indentation
response. In view of the abundance of experimental
evidence for heterogeneity in cartilage, and the rela-
tive ease of including such effects in, for example,
finite element analyses, the dearth of theoretical
investigations is surprising.

Finite Deformation Biphasic Models

Linear biphasic models employ linear elastic consti-
tutive formulations for the tissue solid phase, and are
therefore strictly valid only for small deformation
problems. Since cartilage deformations in vivo are
conceivably large, a number of finite deformation
biphasic (FDBP) models employing hyperelastic
solid-phase formulations have been developed
(Holmes & Mow, 1990; Kwan, Lai, & Mow, 1990).
In such models, effective solid stresses are defined
in terms of a Helmholtz free energy function:

G, = oW 1)
)

where W is the Helmholtz fee energy per unit volume
and E is an appropriate strain tensor (chosen so as to
be energetically conjugate with ). Many forms for
W are possible. Use of such a kinematic formulation
leads to slight modifications of the expressions for
momentum exchange , and the strain-dependent
permeability k (Ateshian et al., 1997; Holmes &
Mow, 1990; Kwan et al., 1990). Finite deformation
biphasic models have been applied in the analysis
of confined compression (Ateshian et al., 1997;
Kwan et al., 1990; Wang et al., 2001; Wayne,
Woo, & Kwan, 1991), indentation (Suh & Spilker,
1994), and ultrafiltration (Holmes & Mow, 1990) of
cartilaginous tissues. As many studies have found
cartilage equilibrium moduli to be approximately
linear over a reasonable strain range (Jurvelin et al.,
2003; Khalsa & Eisenberg, 1997; Mow et al., 1980),
it is unclear whether incorporation of a hyperelastic
solid-phase model is of great importance—at least

cE(a)=i{}ﬁ(A :€)Tr(A,-€)+ Y 4, Tr(A, )

a=.
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compared to the inclusion of finite deformation
stress and strain measures, intrinsic viscoelasticity
(see next section), or anisotropy.

Poroviscoelastic Models

Poroviscoelastic (PVE) models are generalizations
of the LBP models that include flow-independent
viscoelasticity in the solid-phase description. Only
isotropic formulations have thus far been proposed
(excepting the conewise poroviscoelastic formula-
tion of Huang et al. [2001]; see next section), so the
model is constructed by replacing the linear elastic
effective solid stress equation (Equation 12) with
either of the integral forms in Equations 4 and 7.
Additionally, either continuous or discrete relaxation
functions may be employed. Suh and Bai (1998)
compared the two relaxation function formulations
and found that results from the discrete formulation
were little different from the continuous formula-
tion, but the use of the former was significantly more
computationally efficient.

Poroviscoelastic models have been used in the
analysis of cartilage in confined and unconfined
compression (DiSilvestro & Suh, 2001, 2002;
DiSilvestro et al., 2001a; DiSilvestro et al., 2001b;
Huang et al., 2001; Mak, 1986a, 1986b; Setton et
al., 1993; Suh & Bai, 1998; Suh & DiSilvestro,
1999), volumetric (hydrostatic) compression (Ehlers
& Markert, 2001), indentation (DiSilvestro & Suh,
2001; Ehlers & Markert, 2001), pure shear (Ehlers
& Markert, 2001), and uniaxial tension (Huang et
al., 2001).

Conewise Linear Biphasic Models

As discussed in the introductory paragraphs, carti-
laginous tissues exhibit different tensile and com-
pressive responses. That is, they are bimodular. In
an effort to incorporate such a feature, Soltz and
Ateshian (2000) used a conewise linear elastic
constitutive formulation to describe the solid-phase
response in the biphasic model. In its implemented
form, the resulting conewise linear biphasic (CLBP)
model has cubic mechanical symmetry. The effec-
tive solid stress equation (12) is replaced with
Equation 22:

3

b:|+2,ua, (22)

b=1,bza
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where A =a_ ® a_is a texture tensor correspond-
ing to material directions a_, Tr(-) is the trace
operator, ® represents a dyadic product, and A, is
the “off-diagonal” modulus. The bimodularity of
the formulation arises from the dependence of the
Lamé constant A, on the normal strain in the a®
direction:

(A, :5) A, for A,:e<0
€)= :
(A, A, for A,:€>0

+1

(23)

Conewise linear biphasic models have been used in
the analysis of cartilage in confined and unconfined
compression, pure shear, and uniaxial tension (Huang
etal., 2001; Huang, Soltz, Kopacz, Mow, & Ateshian,
2003; Soltz & Ateshian, 2000). Wang et al. (2003)
also used an orthotropic symmetry single-phase
conewise linear elastic model to investigate the aniso-
tropic equilibrium response of articular cartilage. The
CLBP model has been further generalized to include
a viscoelastic solid phase (Huang et al., 2001).

Analysis of the Macroscopic Models

By far the most popular model for describing car-
tilage behavior has been the LBP model of Mow
and coworkers (Mow et al., 1980) (or equivalently,
the poroelastic model), and its derivative formula-
tions (e.g., the FDBP, PVE, and CLBP models).
There are several reasons for the predominance of
this framework over, for example, the MPVE for-
mulations. Firstly, the biphasic formulations allow
discrimination of stresses borne by the solid and
fluid phases in the tissue. Such a feature may be
of importance in, for example, analysis of damage
or degenerative processes (Ateshian et al., 1994),
where knowledge of the load proportion borne by
solid components is required. Secondly, they allow
computation of fluid flow fields within the tissue
as a result of deformation. Such features have been
used in the analysis of synovial joint lubrication
mechanisms (Ateshian, Wang, & Lai, 1998; Kwan,
Lai, & Mow, 1984), and investigations concerning
fluid transport within cartilage (see [Mow, Holmes,
& Lai, 1984]). And thirdly (and probably most
importantly), the phenomenon of time dependence
of mechanical response is explained on the basis of
an experimentally established (Lai & Mow, 1980;
Lai et al., 1981) physiological mechanism (i.e.,
dissipative fluid flow). In contrast, MPVE models
are phenomenological in nature—they make no

reference to underlying physiological mechanisms
that give rise to the observed phenomena (i.e., time
dependence, rate dependence, etc.), but simply
provide equations with which certain of these phe-
nomena may be predicted.

Although these are important points, there are
also areas in which biphasic models have been
shown to be inadequate. It may be seen from Equa-
tion 15 that LBP models predict dissipative effects
only in cases in which there is appreciable relative
velocity between the two phases. Clearly, such
conditions (i.e., fluid flow) may occur only when
the tissue undergoes volumetric deformation. This
has important implications for the performance of
the models in the analysis of cartilage response to
different loading configurations. Many reports have
described confined compression testing of cylindri-
cal cartilage specimens (Mow et al., 1980; Soltz &
Ateshian, 1998; Suh et al., 1995), and generally
good agreement has been found with the response
predicted with the LBP model. During such experi-
ments, fluid is forced to flow from the tissue through
the top surface of the specimen. Since the motion of
the solid phase has no lateral components, and since
both phases are considered incompressible, the rela-
tive phase velocity is then equal to the solid phase
velocity; by careful specification of permeability and
stiffness values, the observed time dependence can
be satisfactorily explained. In the case of unconfined
compression, however, impermeable load platens are
generally used so that fluid flow must occur laterally.
Since the solid components also expand laterally,
the relative phase velocity must be small, mean-
ing that dissipative effects will be much reduced.
Brown and Singerman (1986) analyzed unconfined
compression tests of fetal chondroepiphysis using
an isotropic LBP model and found that it was
inadequate for fitting experimental data, especially
during the transient load phase. Armstrong et al.
(1984) had earlier encountered similar difficulties
but had attributed them to interfacial adhesion (or
equivalently, friction) effects. Spilker, Suh, and Mow
(1990) conducted numerical studies of the effects
of friction and found that these could not wholly
explain the discrepancies. Brown and Singerman
instead suggested that since flow-related dissipation
is necessarily small in unconfined compression, but
significant dissipation is still observed, the solid
phase itself must be recognized as inherently dis-
sipative. A similar problem appears in the case of



tissue subjected to pure shear. Significant dissipation
is observed experimentally (Hayes & Bodine, 1978;
Zhu et al., 1993), yet the lack of any volumetric
deformation precludes fluid flow, and so the LBP
model predicts no dissipation. Again the inherent
viscoelasticity of the solid phase is concluded.

Further difficulties arise when strain rate effects
are considered. DiSilvestro et al. (2001a) tested
articular cartilage in unconfined compression at
various strain rates and found that the LBP model
was unable to account for the observed strain rate
dependence. Brown and Singerman reported similar
findings in their study of chondroepiphysis (Brown
& Singerman, 1986). Miller has also previously
noted the inadequacy of LBP models in account-
ing for such effects (Miller, 1998). In each case,
there is a clear implication that the flow-associated
dissipation mechanism alone is inadequate. The
MPVE model used by DiSilvestro et al. (2001a) was
shown to account for the strain rate dependence of
reaction force.

Such considerations led to the development of
PVE models (Mak, 1986a), the most popular formu-
lations of which included viscoelastic moduli in the
deviatoric terms only (as in Equation 7). The justifi-
cation for this is that since the biphasic mechanism
acts during volumetric deformation, the inclusion
of relaxation functions in volumetric terms would
cause ambiguity regarding the contributions of each
mechanism. DiSilvestro et al. (2001a; 2001b) com-
pared the performance of the LBP, MPVE, and PVE
models in the analysis of unconfined compression
results. The MPVE model was of the form given in
Equations 7 and 8, and the PVE solid phase used an
identical formulation. It was found that the MPVE
model could account for the reaction force very well,
but not for the lateral displacement, whereas the LBP
model could account for the lateral displacement
but not for the reaction force. The PVE model was
able to account for both data, leading the authors to
conclude that inclusion of both the biphasic mecha-
nism and the viscoelastic shear mechanism were
necessary for a complete description.

An alternative interpretation may be given, how-
ever: models that include only shear (MPVE model)
or volumetric (LBP model) dissipation mechanisms
are inadequate, and dissipation mechanisms must
be included for both deformation modes—as in
the PVE model. If this more general statement is
accepted, then it is possible that, for example, an
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MPVE model of the form of Equation 4 (i.e., with
both deviatoric and volumetric relaxation terms)
would perform just as well as the PVE model. Such
a model was not investigated by those authors,
and to our knowledge has not been investigated
elsewhere.

It has also been suggested that the anisotropic
nature of cartilage is an important confounding
factor in the analysis of unconfined compression
data with isotropic LBP models (Cohen et al., 1998).
As a result, several authors proposed transversely
isotropic LBP models. Cohen et al. (1998) reported
good agreement between measured and predicted
reaction force for confined and unconfined com-
pression using such a model. However, DiSilvestro
et al. (2001b) measured both reaction force and
lateral expansion during unconfined compression
and reported that the transversely isotropic LBP
model was able to independently fit either data, but
importantly was not able to fit both data with one set
of parameters. Additionally, the fits of Cohen et al.
were achieved using a value of O for the out-of-plane
Poisson ratio, based on their observation that equi-
librium axial stresses for confined and unconfined
compression were almost equal (Cohen et al., 1998).
However, as pointed out by Bursac et al. (1999), this
implies that the radial confining stress in the confined
compression experiment is also 0—a notion experi-
mentally refuted by Khalsa and Eisenberg (1997),
and by Bursac et al. (1999) themselves. When the
relevant Poisson ratio is left unconstrained and the
radial stress is included as a measured quantity,
the model is unable to account for all data (Bursac
et al., 1999). It would appear then that inclusion of
both deviatoric and volumetric relaxation terms is
more important than inclusion of anisotropy.

A further modification of the LBP model is
the CLBP model of Soltz and Ateshian (2000).
The motivation for such a model was the appar-
ent tension-compression nonlinearity of cartilage
response (see introductory paragraphs herein). The
model also included anisotropic (cubic symmetry)
properties. It was shown that reaction forces from
both confined and unconfined compression experi-
ments could be accounted for using this model (Soltz
& Ateshian, 2000) but that reaction force and lateral
expansion during unconfined compression could
not be predicted simultaneously. This is similar to
the problem encountered with the transversely iso-
tropic LBP model and suggests that there may be
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confusion regarding the precise nature of anisotropy
and tension-compression nonlinearity in cartilage
response. Features of the response attributed to
anisotropy effects may in fact be manifestations of
inherent tension-compression nonlinearity, or vice
versa. Issues of this sort were studied recently by
Wang et al. (2003), who claimed that both features
were required for a full description of cartilage
response. Reaction forces and lateral expansions
were measured during compression of cube-shaped
cartilage samples along three mutually perpendicu-
lar directions (linked to the split line directions).
No direct measurements of tensile responses were
conducted, however, so the issue appears to be still
open.

To further extend the capabilities of the CLBP
model, Huang et al. (2001) incorporated a visco-
elastic solid-phase description. The resulting model
could then account simultaneously for reaction
forces from uniaxial tension and unconfined
compression under stress relaxation and dynamic
loading.

Microstructural Models
of Mechanical Behavior

All of the models described thus far may be des-
ignated as macroscopic models since they make
no consideration of the underlying structure of the
tissue, but characterize the tissue only on the basis
of its bulk mechanical response. They are therefore
of limited use in, for example, assessing the effects
of microstructural variation (e.g., concentration
and morphology) of tissue components, which may
arise among individuals or as a result of pathology.
In response to this issue, various models based on
microstructural features of the tissue have been
proposed. A review of such models is presented in
this section.

Fibril-Reinforced Biphasic Models

Fibril-reinforced biphasic (FRBP) models are
here classified as microstructural models since
they differentiate the contributions of fibrillar and
nonfibrillar tissue components, and can incorporate
specific fibril arrangements. Such models consider
the tissue to consist of a linear biphasic continuum
(representing a fluid-saturated proteoglycan matrix)
reinforced with fibrils. The fibrils are considered to

support load in tension only, so that compressive
loads are carried by the biphasic continuum and
tensile loads are supported by both biphasic and
fibril components. One of the primary strengths of
these models is that fibrillar and nonfibrillar solid
components are modeled separately. This is in
contrast to other biphasic models described above,
which lump all solid components together, and in
doing so mask the potentially different manner in

which each component may support load.
Although introduced as recently as 1999
(Soulhat, Buschmann, & Shirazi-Adl, 1999), sig-
nificant development of the theme has occurred.
The first formulation (Fortin, Soulhat, Shirazi-Adl,
Hunziker, & Buschmann, 2000; Soulhat et al.,
1999) modeled the fibrils as bimodular elastic with
a tensile Young’s modulus E* >0 and a compres-
sive modulus E”, = 0. A cylindrical specimen was
modeled with a homogeneous distribution of fibrils
in cylindrical (% 6, z) coordinates. Li and coworkers
(Li, Buschmann, & Shirazi-Adl, 2001, 2002a; Li,
Soulhat, Buschmann, & Shirazi-Adl, 1999) pro-
duced a finite element version that modeled fibrils
as springs with strain-dependent stiffness given by

& 0
E,= {Eﬁbeﬁb +Eg for &, >0 o
‘ 0 for £, <0

where €, is the fibril strain, and E;.b and E%b and
are constants. Korhonen et al. (2003) also used this
model to simulate the effects of extracellular matrix
degradation. The model was further expanded to
include depth-dependent biphasic and fibril param-
eters (Li, Buschmann, & Shirazi-Adl, 2000, 2003;
Li, Shirazi-Adl, & Buschmann, 2002b). Li and
Herzog (2004) developed a continuum finite element
formulation for the fibrillar network response (as
opposed to implementation with discrete spring ele-
ments as in earlier models), and used it to assess the
resulting strain rate sensitivity of the model. Wilson,
van Donkelaar, van Reitbergen, Ito, and Huiskes
(2004) also developed a continuum formulation,
but they included a strain-dependent viscoelastic
constitutive model for the fibrils and a more micro-
structurally realistic arcade-like fibril arrangement.
Depth-dependent properties were also included in
this model. The viscoelastic fibril formulation was
based on a mechanically analogous arrangement
of parallel springs and dashpots. A quasi-linear
viscoelastic fibril formulation using a relaxation



function similar to Equation 8 was incorporated
by Li, Herzog, Korhonen, and Jurvelin (2005).
Finally, Wilson, van Donkelaar, van Reitbergen,
and Huiskes (2005) extended their model to include
proteoglycan-related swelling effects.

As noted, the key contribution of these models
is the distinction of roles played by fibrillar and
nonfibrillar solid components. Additionally, such
models may naturally incorporate both mechani-
cal anisotropy and bimodularity as a result of the
specific arrangement of fibrils and the bimodularity
of the fibrils themselves. On this point it must be
noted that most of the FRBP models presented do
not in fact incorporate realistic fibril arrangements
but instead use some regular axisymmetric assembly
(Lietal., 2000, 2002a, 2003; Li & Herzog, 2004; Li
etal., 2005; Liet al., 2002b; Liet al., 1999). Recent
formulations by Wilson and coworkers (Wilson et
al., 2004, 2005) rectify this by employing fibril
arrangements based on the arcade description of
Benninghoff (Benninghoff, 1925). Nonetheless,
all such models achieve the aim of differentiating
fibrillar and nonfibrillar contributions.

A second prominent feature is their use of
strain-dependent fibril stiffness (Li et al., 1999).
As such, they provide a mechanism for the well-
documented strain dependence of cartilaginous
tissues (see introductory paragraphs)—a feature
lacking in the macroscopic models discussed. Such
a feature contributes significantly to the model’s
response (Li et al., 1999). Some recently developed
viscoelastic FRBP models (Li & Herzog, 2004; Li
et al., 2005) also suggest the importance of col-
lagen fibril viscoelasticity in cartilage mechanical
response, especially with respect to its strain rate
dependence.

Homogenization Models

A number of authors have developed models based
on theories of the mechanics of composite materi-
als. Homogenization theories allow computation of
the effective properties of a heterogeneous mate-
rial from its constituent material properties and
geometric configuration. This is achieved through
requiring that “under a given state of deformation a
sample of the composite material and a like sample
of an equivalent homogeneous material possess
the same amount of stored energy” (Christensen &
Waals, 1972). Various methods have been developed
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for deriving effective material properties based on
such ideas.

Wu et al. (1999) and Federico, Herzog, Wu,
and Rosa (2004) treated cartilage as a particulate
composite with chondrocytes modeled as spheroidal
inclusions embedded in an amorphous solid matrix.
This allowed estimation of the effects of variations
in chondrocyte concentration, morphology, and
arrangement on overall tissue mechanical response.
In both models, collagen fibers and ground sub-
stance were treated as an amorphous matrix phase.
In the case of Wu et al. (1999), both matrix and cells
were biphasic so that time-dependent effects could
be included (within the limits of regular LBP models
discussed previously). The particulate composites
approach was also used by Wu and Herzog (2002)
but with the explicit inclusion of fibrous structures
in the form of spheroids of zero (horizontal) and
infinite (vertical) aspect ratio. This expanded model
therefore addressed the influence of cellular inclu-
sions, as well as vertical and horizontal collagen
fibers. The model did not allow arbitrary orienta-
tion of collagen fibers and treated only the elastic
response of the tissue. Finally, Federico, Grillo,
La Rosa, Giaquinta, and Herzog (2005) presented
a further generalized model that included statistical
distributions of fibrils (again in the form of elongated
spheroids) and cells embedded in an elastic matrix,
which then formed the solid phase of a biphasic
model. Fibril orientation distributions were assumed
from qualitative observations in the literature.

An important determinant of mechanical aniso-
tropy and heterogeneity of cartilage is probably
the microstructural arrangement of fibrous tissue
components. Several fiber composite—based models
have therefore been developed so that the effects of
such arrangements may be incorporated directly.
Ault and Hoffman (1992a) and Schwartz, Leo, and
Lewis (1994) used the composite cylinders model of
Hashin and Rosen (1964) and Hill (1964) as a basis
for incorporating constituent material properties in
the overall tissue response. An averaging procedure
expounded by Christensen and Waals (1972) was
used in such cases to incorporate fiber orientation
information so that the resulting estimate of tissue
response was a function of constituent material
mechanical properties, concentration, and micro-
structural arrangement. Ault and Hoffman incor-
porated experimentally derived two-dimensional
fiber orientation distributions (Ault & Hoffman,
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1992b). This theory was further used by Simha,
Fedewa, Leo, Lewis, and Oegema (1999) to study
the response of cartilage culture tissues. In each
case, fiber and matrix materials were considered
linearly elastic and isotropic so that no account was
made of strain rate sensitivity or time dependence
of mechanical response. A viscoelastic composite
cylinders model was recently used to model brain
stem dynamic response (Arbogast & Margulies,
1999). Owing to the parallel arrangement of axonal
fiber bundles in the brain stem, the fiber components
were treated as completely aligned, and the averag-
ing procedure of Christensen and Waals (1972) was
not required. Since the fibrils in cartilage do not
necessarily align with one particular direction, a
weighted averaging of fibril responses is a necessary
process. Similar averaging was used in the models of
Farquhar, Dawson, and Torzilli (1990) and Wren and
Carter (1998) (see next section) to account for the
directionality of microstructural components. Unlike
the particulate theories described above, these fiber
composite—based models do not include the effects
of cellular inclusions. Because of their significantly
lower stiffness, cells act almost like voids in the
tissue (Federico et al., 2005) and can therefore affect
the tissue’s response. Federico et al. (2005) further
justify the incorporation of cellular inclusions by
citing studies showing cell volume concentrations
of up to 20% in small animals. In human cartilage,
however, concentrations are generally much lower
(Hunziker, Quinn, and Hauselmann [2002] report
a value of 1.65%). Even though cellular inclusions
certainly enhance the completeness and applicabil-
ity of the models, it is the collagenous and matrix
components, by virtue of their higher concentration
and much higher stiffness, that contribute most to
the tissue response.

Several authors have also developed numeri-
cal homogenization schemes for the assessment
of engineered tissues (Agoram & Barocas, 2001;
Breuls, Sengers, Oomens, Bouten, & Baaijens,
2002; Sengers, Donkelaar, Oomens, & Baaijens,
2004). These models employ multiscale finite ele-
ment analyses in which macroscopic properties are
derived from the effective response of a periodic
microscale model. The microscale model incorpo-
rates microstructural details—cell and pericellular
matrix distributions in the cases of Breuls et al.
[2002] and Sengers et al. [2004] and fibrous compo-
nents in the case of Agoram & Barocas [2001]—of a

representative volume element. The response of this
model is then used as the basis for assigning proper-
ties in the macroscale model. Assuming adequate
computational resources, such an approach is useful
as it allows the incorporation of a wide range of
microstructural features.

Along with brain stem as mentioned above,
homogenization techniques have also been used to
model the response of tissues other than cartilage.
Yin and Elliot (2005) used the method in a model of
annulus fibrosus, which accounted for two popula-
tions of aligned fibers. Hollister, Fyhrie, Jepsen, and
Goldstein (1991) proposed a model for trabecular
bone, whereas Crolet, Aoubiza, and Meunier (1993)
and Aoubiza, Crolet, and Meunier (1996) proposed
models for compact bone, taking account of the
material’s Haversian microstructure.

Homogenization models directly relate tissue
response to constituent material properties. In the
case of the fiber- and particulate composite—based
approaches, there are also direct relations between
the geometric arrangement and concentration of
structural elements. These models therefore provide
a natural framework for assessment of microstruc-
tural variation.

Miscellaneous Microstructural Models

Farquhar et al. (1990) presented a model for the
equilibrium elastic response of articular cartilage.
The tissue was conceptualized as a composite of
collagen fibrils and a charged proteoglycan ground
substance. Constitutive responses for individual
fibril and ground substance units were defined, and
the overall tissue response was obtained from a
weighted sum of fibril contributions from all direc-
tions plus an additional proteoglycan-swelling pres-
sure. Such a summation is similar to the procedure
used by Ault and Hoffman (1992a) and Schwartz et
al. (1994). By explicitly summing fibril and swelling
contributions, the model bears similarity to FRBP
models, which instead sum fibril and biphasic con-
tinuum responses.

A later model developed by Wren and Carter
(1998) adopted a “rule of mixtures” approach to
compiling fiber and matrix response contributions.
The rule of mixtures may be shown to be a special
case (for which fiber and matrix phase Poisson ratios
are equal) of the Hashin and Rosen homogenization
model (Hashin & Rosen, 1964) mentioned above.



Wren and Carter incorporated nonlinear fiber and
matrix responses and also an orientation distribution-
weighted fiber summation scheme similar to above
(Wren & Carter, 1998). Significant emphasis was
placed on describing the failure behavior of fibrous
tissues, and this motivated the selection of fiber and
matrix constitutive models. However, combining
constituent responses using the rule of mixtures has
been shown to give a simplistic estimation of overall
response (Christensen & Waals, 1972).

Finally, Bursac, McGrath, Eisenberg, and
Stamenovic (2000) presented a model based on
regular arrays of elastic interconnected cables
(representing collagen fibrils) encasing a pressur-
ized proteoglycan solution. Cables were arranged
into either hexagonal or triangular networks. Com-
parisons were made with confined compression test
data. A key achievement of the modeling approach
was the separation of fiber and matrix load-bearing
modes, as was done in the FRBP models. As fibers
assumed a regular (and not necessarily physiologi-
cal) geometric arrangement, the model is unable to
predict the effects of varying fibril orientations.

Conclusions

The mechanical response of cartilaginous tissues
is complex, and the importance of such tissues
to the function of synovial joints has motivated
several decades of investigation of this response.
In particular, significant effort has been devoted
to the development of comprehensive constitutive
models of these tissues. Linear biphasic models
have been the most popular and have been useful
in describing various phenomena, but have also
been shown to be inadequate for describing many
aspects of tissue mechanical response. Similarly,
MPVE models have been successful in describing
certain features but less successful in other areas.
Significant development of the biphasic theme has
occurred, mainly in the form of PVE, CLBP, and
FRBP formulations.

This review has highlighted a number of areas
in which investigation is still required. The precise
nature of the apparent tension-compression non-
linearity of cartilaginous tissues is still unclear, and
in particular its relation to tissue anisotropy. Clari-
fication of this relationship and the distinct roles
played by each feature is required. Additionally,
clarification of the roles and relative importance of
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flow-related dissipation mechanisms and intrinsic
viscoelasticity (or equivalently, volumetric and
deviatoric dissipation mechanisms) is required.
From a constitutive modeling point of view, it would
appear that recent CLBP and FRBP formulations,
both of which include viscoelastic solid phase
components, are the most promising candidates
for such investigations. The significance of tissue
heterogeneity to tissue and joint function is an area
of further potential enquiry.

Various microstructural models were also dis-
cussed. Such models offer significant potential for
insight into mechanisms of tissue response, and
relations between tissue structure and function.
Fibril-reinforced biphasic models have been suc-
cessful in explaining many of the phenomena that
have escaped clarification with most macroscopic
models. Homogenization approaches offer a means
of directly investigating the effects of variation in
structural arrangement, but most models have so far
used only simplified elastic formulations or biphasic
mechanisms, which, as mentioned, have been shown
to be inadequate in many cases.

Although a high level of maturity has been
reached, there would thus appear to be many avenues
for investigation in the field of cartilaginous tissue
constitutive modeling.
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