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Abstract

We present four examples to illustrate the use of a type of numerical approximation as an intermediate step in analytical
derivation of seemingly complicated biomechanical equations. The method involves examination of curve shapes to elucidate useful
underlying trends, which may otherwise be overlooked through consideration of only the equations themselves. Two examples of the
method’s use are drawn from recently published results in the area of experimental methods in biomechanics of very soft tissues, and
two others are taken from our current work on cartilage tissue mechanics. We think that such observations provide a useful means
of circumventing complexity issues when deriving models for biomechanical analysis, and further that the method, while simple in
concept, could be effective in a range of biomechanics applications.
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1. Introduction

Investigations of a number of problems in tissue
mechanics have yielded the useful observation that
many apparently quite complicated relationships may be
approximated by much simpler ones with virtually no
loss of accuracy. This is achieved through scrutiny of the
curve shapes (generated numerically in some cases) of
such relations, and consideration of the true trend
conveyed by these. While it may be desirable to retain
exact equations, in many cases it is unnecessary, and
possibly even prohibitive of further analytical develop-
ment of the relevant biomechanical model. Such
simplified relations can further be used in model
development using analytical rather then numerical
methods.
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Four examples are presented in this paper to illustrate
where use of such a process has proved valuable. Two of
the examples draw on recent published research by
members of the Intelligent Systems for Medicine Lab at
the University of Western Australia (Miller, 2001, 2004),
and two others are taken from our current work on
cartilage tissue mechanics.

2. Example: analysis of extension and compression tests
for soft tissues

Two examples of this process of numerical approx-
imation based on observed curve shape may be drawn
from recently published work on experimental methods
for very soft tissue biomechanics. Miller (2001, 2004)
presented analyses of two configurations for mechanical
testing of very soft tissues: extension and compression of
cylindrical samples with no-slip boundary conditions—
top and bottom surfaces attached to opposing rigid
plates, Fig. 1.
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Fig. 1. Sketch of the experimental set-up with no-slip boundary conditions; (a) extension, (b) compression; the deformation is induced by the motion

of the platens; sample height 2h and vertical force are measured.

In both cases it was of critical importance to relate the
measured displacements of the load plates h/H and the
vertical stretch in the plane of symmetry, 4. (Z = 0). For
the extension case these relationships, assuming Neo-
Hookean and Extreme-Mooney materials, are, respec-
tively
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These equations are sufficiently complicated that
explicit expressions for the unknown stretch 4, are
unobtainable. While they may be solved numerically to
obtain A. for a given displacement, i/ H, they present a
problem when considering investigation of strain rate
dependence of the tissue. In such cases, one requires an
indication of the stretch rate A. produced by a given
velocity of the machine head, h /H, and this is difficult to
obtain from relations such as (1)—(4). A simpler solution
based on the curve shape of Egs. (1)—(4) was sought.
Examination of such plots, Fig. 2, reveals that Egs. (1)
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Fig. 2. Linear (for practical purposes) relationships between the
measured machine head movement //H and the vertical stretch in the
plane of symmetry /. (Z = 0) for samples made of Neo-Hookean and
Extreme-Mooney materials. (a) extension, (b) compression (Miller,
2001, 2004).

and (2) (for extension) and (3) and (4) (for compression),
respectively, approximate the same linear relationships
to high level of accuracy, for stretch ratios up to ~30%
(Miller, 2001, 2004). This is a very useful observation as
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it implies that constant velocities of the machine head,
h/H, translate to constant stretch rates in the plane of
symmetry, A, (Z = 0):for extension

: h
N(Z=0=K—; K=1.
(Z=0) I 583, (5)
for compression
: h
JVZ(Z=0):KCH; K, =1411. (6)

3. Example: viscoelastic fibre composite constitutive
relations

An important topic of current interest in biomecha-
nics is the development of relations between the
macroscopic tissue mechanical response (called “‘effec-
tive characteristics”” by composite materials community)
and the tissue’s microstructure—particularly for the
case of fibrous connective tissues. A number of efforts in
this area have drawn on methods developed for analysis
of fibre composite materials (Ault and Hoffman,
1992; Schwartz et al., 1994), and specifically the
composite cylinders model of Hashin and Rosen
(1964). This model is based on the concept of a fibrous
material being composed of a large number of so-called
fibre sub-units, which consist of a pair of coaxial
cylinders. The inner and outer cylinders are assigned
fibre and matrix material properties, respectively, and
equations are derived for the effective properties of
the composite. Such models can allow examination of
the effects of variations in tissue constituent materials
on the overall tissue mechanical response—that is,
material properties of the tissue as a whole may be
expressed as functions of the constituent material
properties. The basic theoretical framework of the
Hashin—Rosen model is well documented (Hashin and
Rosen, 1964; Christensen and Waals, 1972; Ault and
Hoffman, 1992), and so only the final result is stated
here—that is, the overall tissue stiffness matrix, C_’,-j, is
obtained from the summation of responses of fibre sub-
units oriented in all directions, weighted with an
appropriate statistical fibre orientation distribution
function, f(6, ¢):

_ 2n pm/2 o
Cy= /0 /0 (0, 9)C;; sin ¢ d¢ do, (7

where C;.j is the stiffness matrix (in global coordinates)
of a fibre sub-unit with orientation given by the
spherical coordinate angles 6 and ¢. One limitation of
this model is that the constituent materials are
taken to be linearly elastic, meaning that viscoelasticity
is ignored completely, which for analysis of biological
materials seems unacceptable. A possible solution to this
problem is the incorporation of time-dependent con-

stituent material properties, for example, through the
replacement of constant elastic parameters with so-
called Prony series expansions of the form

N
Q1) = Qo + > Qe ®)
i=1

where Q. represents the long-term modulus, Q; are
relaxation moduli, and 7; are relaxation times. If explicit
relations can be obtained between the macroscopic and
microscopic parameters, then direct substitution of
equations of the form of (8) may be implemented. As
will be seen though, such explicit relations are either
complicated or unobtainable, and a process of numer-
ical approximation is required.

The cases in point are the derivation of relations
between the overall (effective) shear modulus of a
fibrous connective tissue and the shear modulus of the
tissue’s matrix phase using the Hashin—Rosen composite
cylinders theory.

3.1. Case of uniform fibre orientation distribution

If we consider the case of a uniform distribution of
fibre orientations, (7) may be evaluated directly and the
result shown to be representative of an isotropic
material (see Appendix A) (Christensen and Waals,
1972). From this follows a relation between the overall
tissue shear modulus, G, and the constituent matrix
phase shear modulus, Gp,:

G_a0+a1Gm+a2Gr2n+a3G3n+a4Gﬁ1 (9)
N b0+b1Gm+bZan+b3Gr3n .

Coefficients ay,...,aq and by,...,b; depend on proper-
ties of fibres Gy, vp, matrix Poisson’s ratio v, and the
fibre volume fraction V;. It should be noted that no
common factors exist between the numerator and
denominator polynomials of Eq. (9), meaning that no
further algebraic simplification of the equation is
possible. It thus appears that the relationship between
G and G,, is complicated; possibly strong nonlinearities
exist close to the roots of the denominator, and
incorporation of a time-dependent G,, of the form given
in (8) would prove difficult. Inspection of a plot of
Eq. (9) (Fig. 3), however, reveals that for a reasonable
range of values of G, (e.g. if we consider the case of
articular cartilage, and treat the proteoglycan ground
substance as constituting the matrix phase, then values
up to 1 MPa may be considered reasonable—see e.g.
Simha et al., 1999; Wilson et al., 2004, and references
cited therein), the relationship is, for practical purposes,
linear (linear fit correlation coefficient, R>0.999).

The complicated expression in (9) may therefore be
replaced with the significantly more tractable form:

G~aGy+b (10)
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Fig. 3. Tissue overall shear modulus as a function of matrix phase
shear modulus (@) using a spherical fibre orientation distribution,
overlaid with a linear fit (-). Values for constituent material parameters
are taken from Schwartz et al. (1994) for articular cartilage:
G = 53.57TMPa (derived from Schwartz et al.’s Young’s modulus
and Poisson’s ratio values of Er = 150 MPa and v; = 0.4, respectively,
Gy = Er/2(1 + vp)), ve= 0.4, vy, = 0.3, ¥ = 0.3. The shear modulus of
the proteoglycan matrix phase is assumed to lie in the range 0—1 MPa.

with virtually no loss of accuracy. Replacement of
G, with a time-dependent function is now a simple
task, with a more availing result.

3.2. Case of ellipsoidal fibre orientation distribution

A further development of the previous example is the
inclusion of an ellipsoidal fibre orientation distribution
(as opposed to the spherical uniform case). This has the
effect of introducing a degree of anisotropy to the
distribution, and so is likely to better approximate real
tissue fibre orientation distributions. For convenience,
the semi-axes of the ellipsoid are taken to be aligned
with the global coordinate axes (as defined in Ault and
Hoffman, 1992). A spherical coordinate equation for the
distribution is thus

10, ¢) =

1 1
7 \/(sinz ¢ cos? 0/a?) + (sin’ ¢ sin® 0/b%) + (cos? ¢ /c2)

(In
where 6 and ¢ are spherical coordinate angles. The
square root term defines an ellipsoid with semi-axes
lengths a, b, and ¢ in the x-, y-, and z-directions,
respectively. y is a scaling factor for converting this
arbitrary ellipsoid into a probability density function.
Such a distribution may be shown to produce an
orthotropic stiffness matrix. While there is no single
overall (effective) shear modulus (G) for the tissue in this
case (in fact, there are three shear moduli, plus six other
independent parameters), a relation between G, and
any of the overall stiffness matrix components (C_’,-j)

would still be very useful—i.e. we may seek a relation of
the form C_',-j = ¥;i(Gm). In this case, however, it proves
prohibitively difficult to evaluate the double integral in
(7) analytically, and so numerical integration must be
used. This then raises the problem that G, must take a
numerical value, and an algebraic expression analogous
to (9) cannot be found. In spite of this, a plot of a
particular stiffness matrix component, C_'“ﬁ, versus Gp,
may still be obtained by evaluating Eq. (7) numerically
for a range of G, values. Such a plot is given for the case
of Cy; in Fig. 4.

Gy, 1s assigned values from 0 to 1 MPa in increments
of 0.05, and other constituent material parameters are as
used in the uniform distribution case. Again, it seems
clear that a simple linear approximation may be used to
a high level of accuracy (again, R>0.999) for relating
this component of the overall stiffness matrix to the
constituent matrix phase shear modulus. A similar result
may be obtained for each of the stiffness matrix
components. As in the uniform distribution case
explored above, this result is very useful for the further
aim of incorporating a viscoelastic constitutive model
for G,,. In particular, since in this case no explicit
relation is obtainable from (7), examination of the form
of the plot and use of numerical approximation is in fact
a necessary step in the process.

It should be noted that in both the spherical and
ellipsoidal cases, the stiffness matrices obtained in such a
way may be directly implemented in a commercial finite
element analysis package.

The obtained linearity of the relationship between
the effective moduli C_'lﬁ and the matrix shear modulus
Gy, 1s not entirely unexpected because collagen fibres
are treated as being two orders of magnitude stiffer
than the matrix (for discussion see Germanovich
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Fig. 4. Component (1,1) of the tissue overall stiffness matrix as a
function of matrix phase shear modulus (@) using an ellipsoidal fibre
orientation distribution, overlaid with a linear fit (-). C}; is obtained by
numerically integrating Eq. (7) for each value of Gy,. Constituent
material parameters are as used in the uniform distribution case, while
ellipsoidal distribution semi-axes lengths are a =7, b =5, ¢ = 3.
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and Dyskin, 1994). However, for not too high fibre
volume fractions (V; <0.35) this apparent linearity
holds also for much lower Gy to Gy, ratios, so that the
linear relationship is not a limiting case valid only when
Gf/Gm —> OQ.

It should be noted that this linearity is a feature of the
mathematical model itself, and it will hold for real
materials only in as much as the simplified assumptions
behind Hashin—Rosen composite cylinders theory are
satisfied.

4. Conclusions

Four examples from biomechanics illustrating the
use of numerical approximation of seemingly compli-
cated equations have been presented. Such observations
are very useful from the point of view of
further development of the respective models using

_ 2n  pm/2 o
c,-,-:/o /0 £(6,$)C; sin ¢ d do

1 2n pm/2
-1 / C,, sin ¢pdgdo

27'C 0 0 Y

23Cy1 +4C12 +8Cx + 8Css)
2(C11 +8C12+ Cn 4+ 5C23 — 4Css)

2501

concept, could provide useful results in many areas of
biomechanics.
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Appendix A. : Derivation of stiffness matrix and G—G,,
relation for uniform fibre distribution

For a uniform distribution of fibres, there is no
preferred direction, and so f(6, ¢) becomes a constant
(= 1/2n). Then,

2(C11 +8C1p+ Cop +5C23 —4Css)  2(Cpp +8C1p + Cyp + 5Cy3 — 4Css)
2(3C11 +4C12 +8Cy +8Css)
1 |2(C11 +8C1n+ Cp+5C3 —4Css)  2(Cr1 +8C1a + Cap + 5Ca3 — 4Css)

2(C11 +8C12+ Cop 4+ 5C23 — 4Css)
2(3C11 +4C12 +8Cx +8Css)

30 0 0 0
0 0 0
i 0 0 0

0 0 0 1
0 0 0
0 0 0

(2C11 —4C12 4+ 7Cr — 5C3 + 12Css) 0 0 ’

0 (2C11 —4C12 +7Cyp» — 5C23 + 12Css) 0

0 0 (2C11 —4Ci3 4 7Cx — 5Ca3 + 12Cs5) |

analytical rather than numerical methods. In each case it
was noted that extension of the relevant equations was
probably unfeasible without closer scrutiny of the
particular curve shapes, and introduction of significant
simplifications. The process is analogous to determina-
tion of empirical equations from experimental data.
Instead of physical experimentation, however, a kind of
numerical experiment is performed from which an
empirical relation is deduced. It is the authors’ belief
that consideration of this process, while simple in

where C,p refers to the (o, f) term of the fibre sub-unit
stiffness matrix in local, fibre aligned coordinates—refer
to Ault and Hoffman (1992). A similar result was
obtained by Christensen and Waals (1972), who noted
that the above matrix is in fact isotropic. Each C,p is a
function of fibre and matrix phase shear moduli (Gy and
G, respectively) and Poisson ratios (v¢ and vy,
respectively), and fibre volume fraction, V;. Since C_'i/» is
isotropic, we have G = Cy = O(Gy, Gy, v, Vi, V).
Holding all other variables constant and expressing G
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in terms of Gy, only, an expression of the form

agp+ a; Gy + azGrzn + a3an + a4an
bo+ b1Gm + byGo, + b3 G,

is obtained, where a; and b; are constants.

G=
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