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Abstract

Parallel manipulators offer much higher rigidity and smaller mo-
bile mass than their serial counterparts, thus allowing much faster
and more precise manipulations. The main disadvantage of paral-
lel robots is their small workspace in comparison to serial arms of
similar size. Furthermore, the manipulability of parallel robots is of-
ten poor in some regions of the (already small) workspace. Another
problematic issue is effective modeling of parallel robot dynamics,
often needed for control algorithms. Dynamic algorithms developed
for serial robots or general closed-loop mechanisms cannot be easily
applied to parallel robots when the objective is real-time, dynamic-
model-based control. Therefore, in this work we investigate how to
design parallel manipulators so that their workspace size and manip-
ulability are maximized, and how to model parallel robot dynamics
effectively.

We develop a new performance index that combines measures
of manipulability and workspace size, and a kinematic optimization
process yielding a design that delivers the best compromise between
manipulability and space utilization. Two examples are considered:
the New University of Western Australia Robot (NUWAR) and the
Linear Delta robot. Our experience in optimal design studies shows
that the exhaustive search minimization algorithm is effective for as
many as four independent design variables and presents a viable
alternative to advanced non-linear programming methods.

We develop a method based on Hamilton’s canonical equations to
solve both the inverse and direct problems of dynamics for parallel
robots. The method uses carefully chosen dependent coordinates,
called here the coordinates of the extended space. The approach is
shown to be computationally more efficient than the more common
acceleration-based methods.
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1. Introduction

The literature contains much information regarding various
types of parallel robots (e.g., Merlet 2000; Tsai 1999). Paral-
lel robots, unlike serial, traditional ones, have the end-effector
connected to the base by several kinematic chains in parallel.
Research into the field of parallel robots documented in the
literature dates back to 1938, when Pollard (1942) patented
his mechanism for car painting. In 1947 McGough proposed
a six-degrees-of-freedom platform, which was later used by
Stewart (1966) in his flight simulator. Parallel manipulators
are particularly suited to a number of typical industrial ap-
plications and have been investigated by various researchers
over the years. In recent years, several new structures and
mechanisms have been proposed, developed for a variety of
established and novel applications, such as packaging, assem-
bly, haptic interfaces, etc. (Pierrot, Dauchez, and Fournier
1991; Badano et al. 1993; Herve 1994; Uchiyama 1994; Arai
and Tanikawa 1996; Tsai 1997; Tsumaki et al. 1998). Most
important here, however, is the development of the Delta, a
three-degrees-of-freedom translational, spatial manipulator,
by Clavel at the EPFL in Lausanne (Clavel 1988; Miller and
Clavel 1992); see Figure 1.

Parallel manipulators possess a number of advantages
when compared to traditional serial arms. Generally they offer
much higher rigidity and smaller mobile mass than their se-
rial counterparts. These features allow much faster and more
precise manipulations. The main drawback of parallel manip-
ulators is their small workspace, and often limited manipu-
lability in certain regions of the workspace. Also, due to the
presence of closed kinematic chains in the manipulator struc-
ture, the dynamics modeling, often necessary for control of
high-speed manipulations, is not as straightforward as in the
case of serial manipulators.

Problematic issues related to optimal design and dynamic
modeling are amongst the most important research topics in
the area of parallel manipulators. This contribution summa-
rizes work on these topics conducted at the School of Me-
chanical Engineering, The University of Western Australia.
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Fig. 1. Layout of Delta robot.

2. Optimal Design of Parallel Robots

2.1. Maximization of the Workspace Volume

After deciding on the kinematic structure of a manipulator
(type design), often a designer is confronted by the task of
maximizing the manipulator’s workspace volume for a given
size of a robot. In this section, an optimal design method is
proposed suited for workspace maximization of spatial paral-
lel manipulators.

Like the Delta (Figure 1), the robots considered here con-
sist of three kinematic chains in parallel, which connect the
base to the end-effector. For the given dimensions of a manip-
ulator, it is of particular interest to determine how the size and
shape of the robot workspace vary with values of two angles
defining the orientation of the motor axes (Figure 2).

In addition to the dimensions of each component, two de-
sign variables (angles α and β) were introduced; α measures
the inclination of each motor to the horizontal plane (for the
Delta robot α = 0◦) and β measures the rotation of each mo-
tor with respect to the vertical axis (for the Delta robot β=0◦).
As the arm is rigidly attached to its motor axis, the angles α
and β control the orientation of the three-arm/forearm assem-
blies. Varying α and β angles leaves the locations of the three
motors unchanged.

The choice of α and β resulting in maximum workspace
volume was decided by an exhaustive search; the volume was
calculated for 91 × 91 = 8281 combinations of design variable
values from the interval (0◦, 90◦). The details of the algorithm
can be found in Miller (2002). The calculations show that the

Delta configuration is not optimal in terms of the workspace
volume. Other feasible configurations occur in the range α >
30◦ and β > 50◦. The optimal motor axis orientation is given
by α = 35.26◦ and β = 60◦. It is worth noting that for such a
choice of the design variables the motor axes are orthogonal.
This configuration, known as the New University of Western
Australia Robot (NUWAR), see Figure 2, has a workspace
9.4% larger than the workspace of the Delta, assuming that
all dimensions are the same.

The results of the workspace volume maximization de-
scribed in this section lead to the construction of the proto-
type; see Figure 2 (Miller 1998). NUWAR is one of the fastest
robots in the world capable of achieving end-effector accel-
erations of 600 m s−2.

2.2. Simultaneous Maximization of Workspace Volume and
Manipulability1

When designing parallel manipulators it is often necessary to
reach a compromise between two conflicting design goals:
manipulability and workspace size. Maximization of the
workspace volume alone tends to produce manipulators that
are singular in all configurations, whilst considering manip-
ulability in isolation may lead to architectures with relatively
small workspaces; a clear example of this phenomenon may
be found in the results of Stamper, Tsai, and Walsh (1997).
Accordingly, the objective function considered in this section
is a weighted sum of two performance indices, characterizing
manipulability and workspace size.

1. This subsection is based on Stock (2000) and Stock and Miller (2003).
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(a) (b)

Fig. 2. (a) Layout of NUWAR and (b) NUWAR prototype. The design variables are the inclination of each motor to the
horizontal plane, α (= 35.26◦ for NUWAR and = 0◦ for Delta) and the rotation of each motor with respect to the vertical axis,
β (=60◦ for NUWAR and =0◦ for Delta).

2.2.1. Performance Indices

Manipulability

The first performance index, η1, measures the average value
of the inverse of the condition number of the Jacobian matrix
1/κJ over the workspace, normalized by the workspace vol-
ume, VW :

η1 =

∫
VW

1
κJ

dVW
∫
VW

dVW
=

∫
VW

1
κJ

dVW

VW
. (1)

Adapted from Gosselin and Angeles (1989), this index pos-
sesses several favorable characteristics. The index is nor-
malized by the workspace size, and therefore gives a mea-
sure of kinematic performance independent of the differing
workspace sizes of design candidates. Furthermore, the re-
ciprocal of κJ is bounded between 0 and 1, and is more con-
venient to handle than κJ , which tends to infinity at singu-
larities. Hence, during numerical integration, the number of
sample points near singularities has a reduced effect on the re-
sult, since 1/κJ approaches zero (rather than infinity) at these
points. Finally, the (dimensionless) value of the index lies be-
tween zero, for a manipulator singular in all configurations,
and unity, for a manipulator perfectly kinematically isotropic
in all configurations.

Space Utilization

This performance index was developed in order to over-
come the problems involved in applying simple performance
indices in isolation. For example, attempts to optimize the
structure by maximizing η1 alone usually lead to architectures
with a large structural space requirement but a workspace size

tending to zero, whilst the maximization of the workspace
volume often produces manipulators that are singular in all
configurations. Clearly a practical optimization would require
a utility function comprising multiple performance indices.

The space utilization performance index is defined as

η2 = Workspace Volume

Bounding Box Volume

= VW

Bounding Box Volume

(2)

where the bounding box is defined as the smallest rectangu-
lar prism, whose sides are parallel to the global coordinate
axes, containing all fixed actuators and every point within
the workspace. The space utilization value reflects the ratio
of workspace size to the physical size of the robot’s struc-
ture. The index is dimensionless, bounded by the range [0 1],
its calculation is simple and inexpensive (cf. numerical inte-
gration of the Jacobian condition number), and its value is
independent of the overall scale of each design that it is ap-
plied to. Most importantly, designs requiring large volumes
of space, but yielding small workspaces, are penalized. The
utility function for maximization is therefore defined as

η = w1




∫
VW

1
κJ

dVW

VW




+ w2

(
VW

Bounding Box Volume

)
(3)

= w1η1 + w2η2.

The function is bounded by the range [0 (w1 +w2)], and is
independent of both the overall scale of the design candidate
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Fig. 3. Render MATLAB representation of the Linear Delta.

Fig. 4. Wireframe representation of the Linear Delta showing nomenclature.

to which it is applied and the limits chosen for the design
variables (since neither performance index is normalized by
its maximum observed value).

2.2.2. Application Example: Linear Delta Robot

The method was applied to the Linear Delta Robot (Figures 3,
4 and 5).

In order to reduce the number of variables and render the
results independent of the scale of each design candidate, sev-
eral non-dimensional ratios were chosen as the design vari-
ables. These variables, shown in Table 1, were selected to
reflect intuitive measures of the relative proportions of the
Linear Delta robot.

When considering regions away from the limits of travel
of the actuators, the Linear Delta’s workspace cross-section
in the y–z plane, Aw, is constant, with its boundaries defined
by the following.

Three circles, each centered on one actuator’s position,

with a radius equal to the length of the corresponding paral-
lelogram arms (L1 or L2).

The plane z = 0, through which the end-effector cannot
pass.

If ZR < 0, the position of the central actuator restricts the
inward motion of the outer arms.

In practice, the rails of the Linear Delta are long, and there-
fore it is reasonable to assume that, from the perspective of
workspace calculations, the rails are infinite. This allows the
ratio of the workspace volume to the bounding box volume
to be replaced by the ratio of the YZ cross-sectional area of
the workspace to the YZcross-sectional area of the bounding
box.

2.2.3. Computational Issues

An exhaustive (brute force) search method was used to solve
the optimization problem. Whilst computationally expensive,
an exhaustive search is simple, reduces the probability of any
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Table 1. Kinematic Design Variables

Variable Description Restrictions
L1
YR

Ratio of outer arm length to actuator separation ≥ 1
YA

YR
Ratio of center actuator horizontal eccentricity to actuator separation 0 – 1

ZR

YR
Ratio of center actuator vertical eccentricity to actuator separation

L2
L1

Ratio of center arm length to outer arm length ≥ 0

Fig. 5. End view (y–z plane) of wireframe representation
showing nomenclature.

local maxima being overlooked, and provides information re-
garding the behavior of the utility function over the entire
range of allowable values for each of the design variables.

The limits selected for the design variables were as follows:
1.4 ≤ L1/YR ≤ 2.7; 0 ≤ YA/YR ≤ 0.7; -0.5 ≤ ZR/YR ≤ 0.5;
0.6 ≤ L2/L1 ≤ 1.8. Several of these limits are necessary to
ensure that the resulting structure is practical. The remaining
limits were chosen heuristically, with alterations made on a
trial-and-error basis to yield a reasonably large range, and to
ensure the inclusion of any local maxima of the utility func-
tion. A notable exception is the case where the manipulability
index, η1, was considered in isolation (i.e., w2 = 0); in this
situation L2/L1 was allowed to approach zero.

Since there is no analytical means of calculating the Ja-
cobian condition number (κJ ), and therefore no closed-form
expression for the manipulability index, numerical integration
is required to determine the value of the utility function. The

integral of eq. (1) may be approximated by a discrete sum

η1 =

∫
AW

1
κJ

dAW

AW
≈

∑
a∈AW

1
κJ

Na
, (4)

where each a is one of Na integration points in the y–z plane
workspace cross-section. These points were generated by ex-
amining the boundaries of the cross-section and forming a
uniformly distributed grid inside it.

In the majority of cases, closed-form methods may be
utilized to calculate the exact cross-sectional area of the
workspace (AW). However, in some instances the choice of
design variables precludes the application of the closed-form
solutions, and it was necessary to approximate AW . The fol-
lowing approximation was used

AW ≈ dAWNa (5)

where dAW is the small area associated with each of theNa in-
tegration points. The accuracy of the approximation in eq. (5)
increases asNa increases. Application of this equation to sev-
eral situations in which a closed-form solution forAW existed
revealed that if dAW was sufficiently small such that Na >
5000, then the relative error in AW for these cases was gener-
ally less than 0.1%.

The complete four-dimensional optimization, programmed
in MATLAB 5.3 (MATLAB 1999) required about three hours
of computations using Pentium II 200 MHz PC.

2.2.4. Optimization Results

Since the weights of the utility function,w1 andw2 in eq. (3),
are necessarily subjective, results for several combinations of
values are presented in Table 2. The tendency for the solu-
tion to converge on zero workspace size architecture when
manipulability was optimized alone was the reason for devel-
oping the second performance index, space utilization. Other
behaviors of the manipulability index that were noted in-
clude the confirmation that the optimal value of YA is zero
(a symmetrical architecture), and that for an arbitrary cross-
section through the four-dimensional data set manipulabil-
ity generally exhibits little variation when compared to space
utilization.
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Table 2. Optimization Results

Weights Description
(
L1
YR
, YA
YR
, ZR
YR
, L2
L1

)
w1 = 1 , w2 = 0 Manipulability alone (1.55, 0, –0.75, →0)
w1 = 1 , w2 = 0 Manipulability alone, with ZR = 0 (1.48, 0, 0, 0.56)
w1 = 0 , w2 = 1 Space utilization alone (2.00, 0, 0, 0.60)
www1 = 1,www2 = 1 Equally weighted utility function (2.00, 0, 0, 0.63)

Visualization via several surface plots greatly aids the in-
terpretation of these results. Figure 6 shows the values of (a)
η = η1 + η2, (b) η1, and (c) η2. In order to present the four-
dimensional data set, two planes are displayed, each of which
passes through the optimum point highlighted in Table 2.

The optimum architecture is relatively insensitive to in-
creasing w1; large increases in the weighting of manipulabil-
ity (w1 > 3) are necessary before a considerable change in
geometry is noted. Whilst small increases in w2 affect the re-
sults of the optimization, the change is limited to the variable
L2/L1, with the greatest possible variation being a decrease
of 0.03.

Currently, a Linear Delta prototype intended for cutting
the shape of surfboards is under construction.

3. Parallel Robot Dynamics Using Hamilton’s
Equations in Extended Space

Fast and precise robot manipulation requires control algo-
rithms that make the best use of the information extracted from
the dynamic analysis of the robot: feedforward, computed
torque (An et al. 1989); resolved acceleration (Luh, Walker,
and Paul 1980), model-reference adaptive control (Liegois,
Fournier, and Aldom 1980, and references therein). Common
to all these control approaches, except the last, is the difficulty
of solving the inverse dynamics problem for manipulators, and
the challenge of doing so in real time. This has necessitated
an adapted numerical representation and a high computing
efficiency. The intrinsic nature of the NUWAR parallel robot
(Miller 1998) is representative of most of the complexities
and difficulties commonly encountered in the dynamic mod-
eling of parallel structures. These include problematic issues
such as the complicated, spatial kinematic structure, which
includes many passive joints, the dominance of inertial forces
over the frictional and gravitational components, and rapidly
changing dynamics, which places restrictions on the length
of the sampling interval and hence limits controller sophisti-
cation (i.e., the available inverse dynamics calculation time),
etc.

3.1. Coordinate Choice for the Description of a Parallel
Robot: Concept of the Extended Space

A number of approaches to the task of developing models of
parallel robot dynamics have been proposed (e.g., Luh and

Zheng 1985; Nakamura and Ghodoussi 1989; Lin and Song
1990; Miller and Clavel 1992; Zhang and Song 1993; Miller
1995; Baiges and Duffy 1996; Etemadi et al. 1997; Nenchev,
Bhattacharya, and Uchiyama 1997; Wang and Gosselin 1998).
These methods assume the manipulator to be a system of rigid
bodies connected by ideal kinematic pairs without friction.
Most often the closed kinematic chains are “temporarily cut”
(artificially separated), and well-known efficient algorithms
are utilized for the solution of the dynamics problem for the
resulting tree structure. As the model is developed further, the
cuts are removed by the introduction of closure conditions
(holonomic constraints). This allows the results obtained for
the tree structure to be transformed into those of the original
closed-loop mechanism.

Such approaches fail in many cases with more complex
spatial kinematic structures (such as that of the NUWAR),
when the intended purpose of the development is that of real-
time control. The reason for failure is a large number of pas-
sive degrees of freedom, which in the tree-structure approach
require description; one differential equation of motion for
each passive degree of freedom, often resulting in too large
a number of equations for real-time applications. The com-
putational complexity of such algorithms grows linearly with
the number of relative coordinates (degrees of freedom) of the
tree structure. NUWAR possesses 21 rotational joints, and the
number of relative coordinates of its tree structure is 15. The
number of independent coordinates is three.

When applying energy-based methods for non-redundant
mechanisms, there is a strong temptation to select a minimal
set of (independent) coordinates in joint space. Since NUWAR
has three degrees of freedom, one is naturally inclined to select
three generalized coordinates, e.g., angles in actuated joints
(θi , i = 1, . . . , 3), and then to evaluate a set of three Lagrange
equations of the second kind for these coordinates. Such equa-
tions would be the formulae for the unknown control torques.
However, due to the complexity of the geometrical model, the
evaluation of the Lagrangian (or Hamiltonian) and especially
its derivatives (which would have to include also the deriva-
tives of the solutions of equations of the model of geometry)
with only three coordinates, is found to be extremely involved
and tedious.

Another way of formulating equations of motion in inde-
pendent coordinates is based on the concept of projection to
the space tangent to constraints (Blajer 1992). The variation of
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Fig. 6. Optimization results.
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this method, leading to the formulation of the Kane equations
has been recently applied in Tsai (2000) to a Gough–Stewart
platform.

The formulation in dependent coordinates leads to more
efficient algorithms. However, it would be expected that it
is possible to devise better approaches than those using all
dependent coordinates of the robot’s tree structure (15 for
NUWAR). My approach is to choose smartly such coordinates
describing the manipulator that would be suitable for evalua-
tion of the Lagrangian of the robot, and simultaneously their
number would be smaller than the number of relative coordi-
nates of the corresponding tree structure (equivalent single-
degree-of-freedom joints). The modeling method presented in
this section is not valid for general closed-loop mechanisms.
However, it is effective for mechanisms that have a maximum
of two links in each kinematic chain linking a base and an
end-effector. To the best of my knowledge, there are no par-
allel robots described in the literature that would not satisfy
this condition.

Of principal interest in the case of the non-redundant paral-
lel robot analysis and control are the behaviors of the traveling
plate and the actuated joints. Therefore, for the robot descrip-
tion, I propose the use of all coordinates belonging to the
sum of the task and joint spaces of the robot. In the case of a
three-degrees-of-freedom spatial manipulator they are

{qi} = {x, y, z, θ1, θ2, θ3}, i = 1, . . . , 6,

where {x, y, z} describe the position of the center of the trav-
eling plate, and {θ1, θ2, θ3} denote the angles in the actuated
joints. For such a set of coordinates {qi} I propose the name
“extended space” (see also Miller and Clavel 1992; Gugliel-
metti 1994).

In the case of the three-degrees-of-freedom NUWAR
robot, which possesses 21 rotational joints, the number of co-
ordinates in the extended space is six, which is considerably
fewer than the number of relative coordinates of NUWAR’s
tree structure.

Derivation of the Lagrange function for NUWAR in the
extended space is relatively straightforward. Positions, veloc-
ities, and potential and kinetic energy of the arms are described
using coordinates belonging to the joint space {θ1, θ2, θ3}. Po-
sition, velocity, and potential and kinetic energy of the trav-
eling plate are described using coordinates belonging to the
task space {x, y, z}. Positions and velocities of the top ends
of forearms are described using coordinates belonging to the
joint space {θ1, θ2, θ3}, and those of the bottom ends using
coordinates belonging to the task space {x, y, z}. Knowing
the positions and velocities of the ends of the forearms it is
easy to derive equations for their kinetic and potential ener-
gies (Miller and Clavel 1992). The calculation of constraint
derivatives (manipulator geometrical model equations, which
relate controlled joint angles and the traveling plate position)
is also simple. The constraint derivatives are of much sim-
pler form than the derivatives of the solution of the inverse
kinematics problem (inverse Jacobian) of the robot.

3.2. Application of Hamilton’s Canonical Equations to
Parallel Robot Dynamics Modeling

The method described in this section uses Hamilton’s equa-
tions (for an introduction to Hamilton’s method, see for exam-
ple Lanczos 1962). The method is applicable to any multibody
system constrained by geometric (holonomic) and/or veloc-
ity (non-holonomic) constraints. However, when considering
dynamics of parallel robots we deal with scleronomous (not
dependent explicitly on time) geometric constraints result-
ing from closed-chain architecture, so that to simplify deriva-
tions velocity (non-holonomic) and rheonomous (explicitly
dependent on time) constraints are not considered below (for
the derivation of the general case, see for example Gutowski
1971).

The method’s effectiveness is amplified when the system
under consideration is described by coordinates of the ex-
tended space.

Generalized momenta p can be presented in the following
form

p = ∂L

∂q̇
= ∂( 1

2
q̇T · M · q̇)

∂q̇
= M · q̇ (6)

where L is the Lagrangian, q is the vector of dependent coor-
dinates and M is the mass matrix. Similarly

∂H

∂q
= ∂(pTq̇ − L)

∂q
= −∂L

∂q
= −Lq

⇒ − Lq = Qex − T
qλ− ṗ ⇒

⇒ ṗ = Lq + Qex − T
qλ

(7)

where H is the Hamiltonian, Qex is the vector of external
forces,   q is the Jacobian of the constraint equations and λ is
the vector of unknown Lagrange multipliers.

Equations (6) and (7) form the following canonical
equations:

p = M · q̇ (8)

ṗ = Lq + Qex − T
q · λ. (9)

The formulation presented here is general enough to in-
clude any external forces, provided they act in (or can be pro-
jected onto) directions described by coordinates of extended
space; these include actuator forces (directions belonging to
the joint space) and forces acting on the end-effector (direc-
tions belonging to the task space). Other external forces (e.g.,
point forces acting on arms or forearms) cannot be included
in the proposed formulation. In practice Delta-type parallel
robots (e.g., NUWAR) are most often used as ultra-fast pick
and place robots, so that it is reasonable to explicitly consider
the case with zero external forces acting on the end-effector.
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Equations (8) and (9) and the model of the robot’s geometry
were used to derive the equations of motion for NUWAR.
M, Lq and    q were evaluated using Mathematica (Wolfram
1999), using similar a method to that described in Miller and
Clavel (1992) for the Delta robot.

The final forms of the equations governing the motion of
NUWAR are

p = M·q̇,q = {x, y, z, θ1, θ2, θ3} (10)

ṗt = Lq − T
q · λ, (11)

in the directions belonging to the task space {x, y, z},

ṗj = Lq + Qex − T
q · λ, (12)

in the directions belonging to the joint space {θ1, θ2, θ3},

 i = 0, i = 1, . . . , 3. (13)

where pt and pj denote generalized momenta in the directions
belonging to task and joint spaces, respectively: p = {pt ,pj }.
There are no Qex terms in the first three equations for ṗt
(eq. (11)) because these equations correspond to the x, y and
z coordinates. The only external forces acting on NUWAR
are torques corresponding to the θ1, θ2, and θ3 coordinates
(eq. (12)).

3.3. Solution of the Inverse Problem of Dynamics

In the case of the inverse problem of dynamics, i.e., trajec-
tory known, external forces (desired motor torques) unknown,
three steps are required to arrive at the solution of eqs. (10)–
(12).

1. In the first step, the generalized momenta are evaluated
in directions x, y, z, θ1, θ2, θ3 from eqs. (10) for the time
instant t . Only generalized positions and velocities are
required as input. Accelerations are not needed. For the
trajectory start point with the initial conditions of zero
velocities, these terms can safely be initiated to zero.

2. In the second step, it is possible to substitute the nu-
merically calculated derivatives of momenta (using, for
example, a two-point formula) ṗx, ṗy, ṗz into eq. (11)
for the directions x, y, z belonging to the task space of
the robot. These three equations for any given position
(on the desired trajectory) constitute a set of three linear
equations from which the required multipliers λj , j =
1,2,3 can be easily obtained.

3. After the substitution of the derivatives of general-
ized momenta in directions θ1, θ2, θ3 belonging to the
joint space of the robot, and the multipliers λ1, λ2, λ3,
eqs. (12) become the explicit formulae for torques Qexi ,
i = 4,5,6.

Often the trajectory of very fast parallel robots (e.g., NUWAR)
is commanded as a sequence of points with a sampling period
of 1 ms or lower. Velocities and accelerations are calculated
numerically. This allows for the flexibility of not knowing the
trajectory beforehand. An important feature of the model ob-
tained by the Hamilton-based approach is that the solution of
the inverse problem does not require acceleration information
(measurements or estimates) as an input state to the model.
Only the positions x, y, z, θ1, θ2, θ3 and the corresponding
velocities are necessary. Instead of accelerations it is neces-
sary to provide derivatives of momenta obtained numerically.
This approach removes usually long terms of the form d

dt
( ∂L
∂q̇
)

from the equations and simplifies calculations. This advantage
can save time in the calculation of kinematics and simultane-
ously improve model accuracy. The presence of accelerations
in dynamic models obtained by Newton–Euler and Lagrange
based approaches is inherent. The application of Hamilton’s
canonical equations eliminates this requirement.

In the case of commanding exact values of acceleration,
the formulation presented here has no advantage as far as
accuracy of the solution of the inverse problem is concerned
(no disadvantage either if the sampling period is small enough,
as it indeed is in practice), but the computational efficiency
advantage remains.

The Hamilton-based method was compared to the La-
grange formulation (Miller and Clavel 1992). Both formu-
lations use the coordinates of the extended space. Calcula-
tions showed that the inverse dynamics model based on the
method of Hamilton required 28% fewer floating-point oper-
ations than the more traditional Lagrange based one, due to
not having to evaluate lengthy terms of d

dt
( ∂L
∂q̇
). Computational

results obtained using both methods were almost identical
(within 0.01 N).

3.4. Solution of the Forward Problem of Dynamics

In the case of the forward problem of dynamics, the dynam-
ical equations (10)–(12) and constraint equations (13) form
a system of differential-algebraic equations (DAEs). Usually,
solving DAEs is considerably more difficult than integrat-
ing systems of ordinary differential equations (ODEs). See,
for example, Bayo and Garcia de Jalon (1994) and Blajer
(1998) and references therein; the second reference is partic-
ularly worth recommending because it contains a large bib-
liography of Russian language multibody systems literature.
Even though a number of multibody systems researchers sug-
gest that obtaining solutions to DAEs can cause serious trou-
ble, I obtained accurate simulation results using a straightfor-
ward method, based on transforming DAEs into the system
of ODEs by differentiating (once) equations of geometrical
constraints and using a standard fourth/fifth-order stepping
procedure (ODE45 in MATLAB 1999) with Baumgarte sta-
bilization (Baumgarte 1972).
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The solution algorithm used in this work was proposed
by Lankarani and Nikravesh (1988). In order to avoid mixed
differential and algebraic equations the Lagrangian needed to
be modified to include the kinematic velocity constraints.

L∗ = L+  ̇Tσ (14)

where σ is a new set of Lagrange multipliers. It is easy to
demonstrate that the Lagrange multipliers λ used in eqs. (7),
(8), (11), and (12) are simply the time derivatives of the in-
troduced multipliers σ . The resulting modified Hamiltonian
is

H ∗ = pTq̇ − L∗. (15)

Substitution to eqs. (8) and (9) gives

p = Mq̇ − T
qσ (16)

and

ṗ = Lq + Qex −  ̇T
qσ. (17)

The above set of differential equations needs to be supple-
mented by equations of kinematic constraints:

 ̇ =  qq̇ = 0. (18)

Equations (16)–(18) constitute a system of 2n + m (where
n is the number of dependent coordinates, m is the number
of constraints, n – m = number of degrees of freedom; for
NUWAR, described by coordinates of the extended space,
n = 6, m = 3) ODEs, with p, q and σ as unknowns.

Only n+m equations must be solved at each time step in
the numerical implementation of the algorithm. The following
three steps are required to arrive at the solution of the forward
problem of dynamics.

1. Equations (16) and (18) are solved for q̇ and σ at
time t (when the values of p and q are known; initial
condition):

[
M T

q

 0
q

] {
q̇
−σ

}
=

{
p
0

}
. (19)

2. Formula (17) is used to compute ṗ explicitly. No solu-
tion of equations is required here.

3. Vectors p and q at time (t+(t) are obtained by numer-
ical integration. Upon convergence, the time variable is
updated and the next step initiated.

The method was verified by feeding the solution for time
histories of control torques obtained from the inverse dynam-
ics algorithm into the forward dynamics algorithm. The tra-
jectory initially used as the input to the inverse dynamics algo-
rithm was reproduced almost exactly. This validates the appro-

priateness and accuracy of methods used. As the Hamilton-
based inverse dynamics algorithm gave almost identical re-
sults to the Lagrange-based one, and the Hamilton-based for-
ward dynamics algorithm produced expected results, the pres-
ence of a symmetrical error in both inverse and forward dy-
namics algorithm implementation is highly unlikely. The re-
sults of computer simulations are presented in Section 3.5.

It should be noted here that the formulation of equations
of motion based on Hamilton’s equations possesses an in-
herent advantage over acceleration-based formulations. The
system of Hamilton’s equations with multipliers is of in-
dex two; acceleration based formulations result in systems
of DAEs of index three; for discussion, see Blajer (1998)
and Brenan, Campbell, and Petzold (1989). The Hamilton-
based algorithm was compared to the acceleration-based (La-
grange in extended space) formulation. An identical ODE in-
tegration method with Baumgarte stabilization was used, see
Frame (1999). This confirmed the observation of Lankarani
and Nikravesh (1988) that, since only one time derivative of
the constraints is used (eq. (18)), the integration of eqs. (16)–
(18) is more efficient and stable than the integration of equa-
tions resulting from acceleration-based formulations. When
using acceleration-based formulations, the geometric con-
straints have to be differentiated twice to avoid the integration
of the mixed differential-algebraic system. This leads to larger
constraint violations.

3.5. Results of Computer Simulations

Computer simulations were performed for the prototype of
NUWAR (Miller 1998):

• length, mass and moment of inertia of the arm are
0.26 m, 0.977 kg, and 0.01822 kg m2;

• length and mass of the forearm are 0.48 m and
0.0296 kg;

• radial distance of each motor from the centerline is
0.194 m;

• displacement in the radial direction of the mid-point of
each pair of spherical joints on the traveling plate is
0.03 m;

• spacing of the forearms is 0.05 m;

• traveling plate mass is 0.2807 kg;

• parallelogram-control arm joint mass is 0.0099 kg.

A vast range of trajectory types was generated. The geo-
metric shapes included straight line, ellipse, sheared ellipse,
and clothoid. The time–motion programs used were parabolic
(“bang-bang”), cycloidal (“sine on ramp”) and fifth-order
polynomial (LePage 1999). The trajectories served as input
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Start point [0, -0.2, -0.9] [m] End point [0, +0.2, -0.9] [m]

Mid point [0, 0, -0.5] [m]

z

y

Start point [0, -0.2, -0.9] [m] End point [0, +0.2, -0.9] [m]

Mid point [0, 0, -0.5] [m]

Fig. 7. Elliptical trajectory used as input for simulations.

to inverse kinematics and inverse dynamics problems. Cal-
culated motor torque time histories were used as input to
forward dynamics calculations. Equation derivation was per-
formed with Mathematica (Wolfram 1999). Numerical calcu-
lations and animation of results were performed with MAT-
LAB (1999).

Here I present results for a typical, symmetrical, elliptical
pick-and-place trajectory (Figure 7):

start point -> [0, –0.2, –0.9] (m), corresponding to joint
angles θ1 = 70.95◦, θ2 = 87.13◦, θ3 = 51.65◦;

mid-point -> [0, 0, –0.5] (m);

end point -> [0, +0.2, –0.9] (m);

time to traverse the ellipse -> 0.5 (s);

and back to the start point, followed by the traveling
plate according to the “3–4–5 polynomial” motion pro-
gram. This results in continuous accelerations and finite
jerks. The maximum accelerations of the traveling plate
were 294.82 m s−2.

Figure 8 shows time histories of motor torques required
to execute the trajectory; the solution of the inverse dynam-
ics problem. The maximum torques required are 33.14 Nm,
which is close to the maximum torque from NUWAR’s mo-
tors (41.76 Nm), so that the trajectory under discussion is
close to the limit of the capabilities of the robot. It is worth
noting that the maximum motor torques required by NUWAR
are slightly less than those required by the Delta to follow the
same trajectory (36.30 Nm).

Figure 9 presents the comparison of the trajectory calcu-
lated with a forward dynamics algorithm described in Sec-
tion 3.4, using the motor torque histories of Figure 7, with the
original trajectory used as the input to the inverse dynamics.
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Fig. 8. Results of inverse dynamics calculations: time histories
of motor torques required to produce the elliptical trajectory
described above.
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Fig. 9. Results of forward dynamics calculations: the difference between the trajectory serving as input to inverse dynamics
and the result of forward dynamics calculations using torque histories of Figure 8.

The two trajectories match (almost) exactly proving the ap-
propriateness and accuracy of methods proposed in this paper.

4. Conclusions and Discussion

A method of multidimensional kinematic optimization of
the parallel robot’s geometry was developed. For some ar-
chitectures, like that of the NUWAR, the maximization of
workspace volume alone gives satisfactory results. However,
the maximization of the workspace volume without consider-
ing other issues often produces manipulators with very poor
manipulability. To overcome this difficulty a utility func-
tion incorporating two performance indices was formulated
in order to determine those architectures that yield an opti-
mum compromise between manipulability and a new perfor-
mance index, space utilization. Space utilization is a concept
designed to overcome the problems of small, non-singular
workspaces often encountered when a parallel manipulator is
optimized with only manipulability in mind. The exhaustive
search algorithm was used to reliably find all prospective de-
sign candidates in parameter space. The method was shown to
work well for as many as four design variables and, therefore,
is a viable competitor to advanced non-linear programming
methods.

“Optimum” configuration could have different meanings
in different contexts; e.g., in some applications a large
workspace without necessarily high manipulability might be
desired, in other cases manipulability needs to be emphasized.

This can be achieved by a suitable choice of weighting factors
in the cost function (3). The results presented here, and the
suite of MATLAB programs created to perform the optimiza-
tion, form a framework, which may be utilized to create and
analyze designs that result from selecting weighting factors
that are appropriate to a specific application.

An efficient method of solving dynamics of parallel robots
was developed and applied to the NUWAR. The method was
based on Hamilton’s canonical equations in the extended
space defined as a union of task and joint spaces of a robot.
The use of coordinates of the extended space results in much
fewer equations than in the case of using relative coordinates,
and in a simple Lagrangian.

The use of Hamilton’s equations is advantageous in ap-
plication to the inverse problem of dynamics. This method
is numerically more efficient than the more traditional La-
grange and Newton–Euler methods because Hamilton’s equa-
tions do not require accelerations as input data to the inverse
dynamics algorithm, and terms of the form d

dt
( ∂L
∂q̇
) involving

accelerations are absent. This results in better accuracy of the
algorithm.

The solution of the forward problem of dynamics was ob-
tained without any difficulties by transforming the original
system of DAEs to ODEs, and using a standard stepping al-
gorithm with Baumgardte stabilization. The inherent advan-
tage of using Hamilton’s equations for the direct problem of
dynamics is that, together with algebraic equations of con-
straints, they form the system of DAEs of index 2, not of
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index 3 as is the case in the acceleration-based formulations.
Numerical integration of index 2 systems is known to be more
stable than solution of index 3 systems.
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