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Abstract 1. Introduction

The literature contains much information regarding various
bile mass than their serial counterparts, thus allowing much fast types of para!lel rob_ots (e.g..,' Merlet 2000; Tsai 1999). Paral-
and more precise manipulations. The main disadvantage of parjﬁl robots, unlike serial, traditional ohes, ha.ve the_ enq-eﬁector
lel robots is their small workspace in comparison to serial arms ofPNnected to the base by several kinematic chains in parallel.
similar size. Furthermore, the manipulability of parallel robots is of-Research into the field of parallel robots documented in the
ten poor in some regions of the (already small) workspace. Anothliterature dates back to 1938, when Pollard (1942) patented
problematic issue is effective modeling of parallel robot dynamicéis mechanism for car painting. In 1947 McGough proposed
often needed for control algorithms. Dynamic algorithms developeal six-degrees-of-freedom platform, which was later used by
for serial robots or general closed-loop mechanisms cannot be eas@tewart (1966) in his flight simulator. Parallel manipulators
applied to parallel robots when the objective is real-time, dynamicyre particularly suited to a number of typical industrial ap-
model-based control. Therefore, in this work we investigate ho""_ﬂications and have been investigated by various researchers

design parallel manipulators so that their workspace size and manipy o the years. In recent years, several new structures and

glf? ebélt'it\ile?;e maximized, and how to model parallel robot Olyn"Jlm'c?nechanisms have been proposed, developed for a variety of

We develop a new performance index that combines measuFe%tabliShed and novel applications, such as packaging, assem-

of manipulability and workspace size, and a kinematic optimizatiofly: haptic interfaces, etc. (Pierrot, Dauch_ez, and Fournie_r
process yielding a design that delivers the best compromise betwek?91; Badano et al. 1993; Herve 1994; Uchiyama 1994; Arai
manipulability and space utilization. Two examples are considere@nd Tanikawa 1996; Tsai 1997; Tsumaki et al. 1998). Most

the New University of Western Australia Robot (NUWAR) and thenportant here, however, is the development of the Delta, a
Linear Delta robot. Our experience in optimal design studies shovthree-degrees-of-freedom translational, spatial manipulator,
that the exhaustive search minimization algorithm is effective for agy Clavel at the EPFL in Lausanne (Clavel 1988; Miller and
many as four independent design variables and presents a vialfgave| 1992): see Figure 1.
alternative to advanced non-linear programming methods. Parallel manipulators possess a number of advantages
We develop amethod based on Hamilton's canonical equationsiihen compared to traditional serial arms. Generally they offer
solve both the inverse and direct problems of dynamics for parallgh,ch higher rigidity and smaller mobile mass than their se-
robots. The method uses carefully chosen dependent coordinalgs counterparts. These features allow much faster and more
called here the coordinates of the extended space. The approacrbi%cise manipulations. The main drawback of parallel manip-
shown to be computationally more efficient than the more commefiators is their small workspace, and often limited manipu-

Parallel manipulators offer much higher rigidity and smaller mo

acceleration-based methods. lability in certain regions of the workspace. Also, due to the
KEY WORDS—parallel robot, design, dynamics, manipulaPresence of closed kinematic chains in the manipulator struc-
bility, workspace ture, the dynamics modeling, often necessary for control of

high-speed manipulations, is not as straightforward as in the
case of serial manipulators.
Problematic issues related to optimal design and dynamic
_ _ modeling are amongst the most important research topics in
The International Journal of Robotics Research the area of parallel manipulators. This contribution summa-
Vol. 23, No. 2, February 2004, pp. 127-140, . .
DOI: 10.1177/0278364904041322 rizes work on these topics conducted at the School of Me-
©2004 Sage Publications chanical Engineering, The University of Western Australia.
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Fig. 1. Layout of Deltaraobot.

2. Optimal Design of Parallel Robots

2.1. Maximization of the Workspace Volume

After deciding on the kinematic structure of a manipulator
(type design), often a designer is confronted by the task of
maximizing the manipulator’s workspace volume for agiven
size of arobot. In this section, an optimal design method is
proposed suited for workspace maximization of spatial paral-
lel manipulators.

Like the Delta (Figure 1), the robots considered here con-
sist of three kinematic chains in paralel, which connect the
base to the end-effector. For the given dimensions of amanip-
ulator, it isof particular interest to determine how the size and
shape of the robot workspace vary with values of two angles
defining the orientation of the motor axes (Figure 2).

In addition to the dimensions of each component, two de-
sign variables (angles o and 8) were introduced; « measures
the inclination of each motor to the horizontal plane (for the
Deltarobot « = 0°) and 8 measures the rotation of each mo-
tor with respect to the vertical axis (for the Deltarobot 8=0°).
Asthe armisrigidly attached to its motor axis, the angles o
and g control the orientation of the three-arm/forearm assem-
blies. Varying « and 8 anglesleavesthe locations of the three
motors unchanged.

The choice of « and g8 resulting in maximum workspace
volume was decided by an exhaustive search; the volume was
calculated for 91 x 91 =8281 combinationsof design variable
valuesfromtheinterval (0°, 90°). The details of the algorithm
can befound in Miller (2002). The cal culations show that the

/

motor

base

forearm (paralld rods)

Delta configuration is not optimal in terms of the workspace
volume. Other feasible configurations occur in the range « >
30° and 8 > 50°. The optimal motor axis orientation is given
by « = 35.26° and 8 = 60°. It isworth noting that for such a
choice of the design variables the motor axes are orthogonal.
This configuration, known as the New University of Western
Australia Robot (NUWAR), see Figure 2, has a workspace
9.4% larger than the workspace of the Delta, assuming that
all dimensions are the same.

The results of the workspace volume maximization de-
scribed in this section lead to the construction of the proto-
type; seeFigure2 (Miller 1998). NUWAR is one of thefastest
robots in the world capable of achieving end-effector accel-
erations of 600 m s2.

2.2. Simultaneous Maximization of Workspace Volume and
Manipulability*

When designing parallel manipulatorsit is often necessary to
reach a compromise between two conflicting design goals:
manipulability and workspace size. Maximization of the
workspace volume aone tends to produce manipulators that
are singular in al configurations, whilst considering manip-
ulability inisolation may lead to architectures with relatively
small workspaces; a clear example of this phenomenon may
be found in the results of Stamper, Tsai, and Walsh (1997).
Accordingly, the objective function considered in this section
isaweighted sum of two performance indices, characterizing
manipulability and workspace size.

1. This subsection is based on Stock (2000) and Stock and Miller (2003).
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(b)

Fig. 2. (a) Layout of NUWAR and (b) NUWAR prototype. The design variables are the inclination of each motor to the
horizontal plane, o (= 35.26° for NUWAR and = 0° for Delta) and the rotation of each motor with respect to the vertical axis,

B (=60° for NUWAR and =0 for Delta).

2.2.1. Performance Indices
M anipulability

Thefirst performanceindex, »,, measurestheaveragevaue
of theinverse of the condition number of the Jacobian matrix
1/k; over the workspace, normalized by the workspace vol-
ume, Vi

f ide i ide
Vi Vw

= = . 1
n f d VW VW ( )
Vw

Adapted from Gosselin and Angeles (1989), this index pos-
sesses severa favorable characteristics. The index is nor-
malized by the workspace size, and therefore gives a mea-
sure of kinematic performance independent of the differing
workspace sizes of design candidates. Furthermore, the re-
ciprocal of «; is bounded between 0 and 1, and is more con-
venient to handle than «,, which tends to infinity at singu-
larities. Hence, during numerical integration, the number of
sample pointsnear singularities hasareduced effect on there-
sult, since 1/x; approaches zero (rather than infinity) at these
points. Finally, the (dimensionless) value of theindex lies be-
tween zero, for a manipulator singular in all configurations,
and unity, for amanipulator perfectly kinematically isotropic
inall configurations.

Space Utilization

This performance index was developed in order to over-
come the problems involved in applying simple performance
indices in isolation. For example, attempts to optimize the
structure by maximizing n, alone usually lead to architectures
with alarge structural space requirement but aworkspace size

tending to zero, whilst the maximization of the workspace
volume often produces manipulators that are singular in al
configurations. Clearly apractical optimizationwould require
a utility function comprising multiple performance indices.
The space utilization performance index is defined as

Workspace Volume
Bounding Box Volume

Vi
Bounding Box Volume

where the bounding box is defined as the smallest rectangu-
lar prism, whose sides are parallel to the global coordinate
axes, containing all fixed actuators and every point within
the workspace. The space utilization value reflects the ratio
of workspace size to the physical size of the robot’s struc-
ture. Theindex is dimensionless, bounded by the range [0 1],
its calculation is simple and inexpensive (cf. numerical inte-
gration of the Jacobian condition number), and its vaue is
independent of the overall scale of each design that it is ap-
plied to. Most importantly, designs requiring large volumes
of space, but yielding small workspaces, are penalized. The
utility function for maximization is therefore defined as

N2 =

@)

f %dVW
n=w |
1 Vo
Vi
- 3
e <Bound| ng Box Vol ume) 3

= WiN1 + Wan2.

Thefunctionisbounded by therange[0 (w,+w,)], andis
independent of both the overall scale of the design candidate
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Linear Actuator Position

Fig. 3. Render MATLAB representation of the Linear Delta.

End Effector (xy.z)

Travelling Plate (End Effector)

Rail 1

Rail2 ———us,

Fig. 4. Wireframe representation of the Linear Delta showing nomenclature.

to which it is applied and the limits chosen for the design
variables (since neither performance index is normalized by
its maximum observed value).

2.2.2. Application Example: Linear Delta Robot

The method was applied to the Linear DeltaRobot (Figures 3,
4 and 5).

In order to reduce the number of variables and render the
resultsindependent of the scal e of each design candidate, sev-
eral non-dimensional ratios were chosen as the design vari-
ables. These variables, shown in Table 1, were selected to
reflect intuitive measures of the relative proportions of the
Linear Deltarobot.

When considering regions away from the limits of travel
of the actuators, the Linear Delta’s workspace cross-section
inthe y—z plane, A, is constant, with its boundaries defined
by the following.

Three circles, each centered on one actuator’s position,

with aradius equal to the length of the corresponding paral-
lelogram arms (L4 or L,).

The plane z = 0, through which the end-effector cannot
pass.

If Zz < 0, the position of the central actuator restricts the
inward motion of the outer arms.

In practice, therailsof theLinear Deltaarelong, and there-
fore it is reasonable to assume that, from the perspective of
workspace calculations, the rails are infinite. This alows the
ratio of the workspace volume to the bounding box volume
to be replaced by the ratio of the YZ cross-sectional area of
the workspace to the YZ cross-sectional area of the bounding
box.

2.2.3. Computational Issues

An exhaustive (brute force) search method was used to solve
the optimization problem. Whilst computationally expensive,
an exhaustive search is simple, reduces the probability of any
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Variable Description Restrictions
L . ,
- Ratio of outer arm length to actuator separation >1
5—2 Ratio of center actuator horizontal eccentricity to actuator separation 0-1
i—)’; Ratio of center actuator vertical eccentricity to actuator separation
L2 Ratio of center arm length to outer arm length >0

Ly

T

End Effector (x.y.z)

Fig. 5. End view (y—z plane) of wireframe representation
showing nomenclature.

local maximabeing overlooked, and providesinformation re-
garding the behavior of the utility function over the entire
range of allowable values for each of the design variables.

Thelimitsselected for thedesign variableswereasfollows:
14<Ly/Yr <27;0<Y,/Yz <0.7;-05< Zp/Yz <0.5
0.6 < L,/L, < 1.8. Several of these limits are necessary to
ensure that the resulting structure is practical. The remaining
limits were chosen heuristically, with alterations made on a
trial-and-error basis to yield a reasonably large range, and to
ensure the inclusion of any local maxima of the utility func-
tion. A notable exception isthe case where the manipul ability
index, n,, was considered in isolation (i.e., w, = 0); in this
situation L,/L, was allowed to approach zero.

Since there is no analytical means of calculating the Ja
cobian condition number (x,), and therefore no closed-form
expression for the manipul ability index, numerical integration
isrequired to determine the value of the utility function. The

integral of eg. (1) may be approximated by a discrete sum

[ion >
= il % 2w s 4
M A, N, 4)

where each a isone of N, integration pointsin the y—z plane
workspace cross-section. These points were generated by ex-
amining the boundaries of the cross-section and forming a
uniformly distributed grid inside it.

In the majority of cases, closed-form methods may be
utilized to calculate the exact cross-sectional area of the
workspace (Ay ). However, in some instances the choice of
design variables precludes the application of the closed-form
solutions, and it was necessary to approximate Ay,. The fol-
lowing approximation was used

Ay ~ dAyN, ©)

wheredA ,, isthe small areaassociated with each of the N, in-
tegration points. The accuracy of the approximationin eg. (5)
increasesas N, increases. Application of thisequation to sev-
eral situationsin which aclosed-form solutionfor A, existed
reveaed that if dA,, was sufficiently small such that N, >
5000, then therelative error in Ay, for these cases was gener-
aly less than 0.1%.

Thecompletefour-dimensional optimization, programmed
inMATLAB 5.3 (MATLAB 1999) required about three hours
of computations using Pentium 11 200 MHz PC.

2.2.4. Optimization Results

Since the weights of the utility function, w, and w, in eq. (3),
are necessarily subjective, resultsfor several combinations of
values are presented in Table 2. The tendency for the solu-
tion to converge on zero workspace size architecture when
mani pul ability was optimized al one was the reason for devel-
oping the second performance index, space utilization. Other
behaviors of the manipulability index that were noted in-
clude the confirmation that the optimal value of Y, is zero
(a symmetrical architecture), and that for an arbitrary cross-
section through the four-dimensional data set manipulabil-
ity generally exhibits little variation when compared to space
utilization.
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Weights Description

Ly Y4 Zp L2
Y’ YR’ Yg’ Ly

wi=1,w,=0

wi=1,w,=0

w=0,w,=1
w;=1lw,=1

Manipulability alone

Space utilization alone

Manipulability alone, with Z, =0

Equally weighted utility function

(155, 0, -0.75, —0)
(1.48, 0, 0, 0.56)
(2.00, 0, 0, 0.60)
(2.00, 0, 0, 0.63)

Visualization via several surface plots greatly aids thein-
terpretation of these results. Figure 6 shows the values of (a)
n = 0y + 0, (b) n1, and (c) n,. In order to present the four-
dimensional data set, two planes are displayed, each of which
passes through the optimum point highlighted in Table 2.

The optimum architecture is relatively insensitive to in-
creasing w.; large increases in the weighting of manipulabil-
ity (w, > 3) are necessary before a considerable change in
geometry is noted. Whilst small increasesin w, affect the re-
sults of the optimization, the change islimited to the variable
L,/L,, with the greatest possible variation being a decrease
of 0.03.

Currently, a Linear Delta prototype intended for cutting
the shape of surfboardsis under construction.

3. Parallel Robot Dynamics Using Hamilton’s
Equationsin Extended Space

Fast and precise robot manipulation requires control algo-
rithmsthat makethe best use of theinformation extracted from
the dynamic analysis of the robot: feedforward, computed
torque (An et al. 1989); resolved acceleration (Luh, Walker,
and Paul 1980), model-reference adaptive control (Liegois,
Fournier, and Aldom 1980, and references therein). Common
toall these control approaches, except thelast, isthe difficulty
of solving theinverse dynamicsproblemfor manipulators, and
the challenge of doing so in real time. This has necessitated
an adapted numerical representation and a high computing
efficiency. Theintrinsic nature of the NUWAR parallel robot
(Miller 1998) is representative of most of the complexities
and difficulties commonly encountered in the dynamic mod-
eling of parallel structures. These include problematic issues
such as the complicated, spatial kinematic structure, which
includes many passive joints, the dominance of inertial forces
over the frictional and gravitational components, and rapidly
changing dynamics, which places restrictions on the length
of the sampling interval and hence limits controller sophisti-
cation (i.e., the available inverse dynamics calcul ation time),
etc.

3.1. Coordinate Choice for the Description of a Parallel
Robot: Concept of the Extended Space

A number of approachesto the task of developing models of
parallel robot dynamics have been proposed (e.g., Luh and

Zheng 1985; Nakamura and Ghodoussi 1989; Lin and Song
1990; Miller and Clavel 1992; Zhang and Song 1993; Miller
1995; Baiges and Duffy 1996; Etemadi et al. 1997; Nenchev,
Bhattacharya, and Uchiyama1997; Wang and Gosselin 1998).
These methods assume the mani pul ator to be asystem of rigid
bodies connected by ideal kinematic pairs without friction.
Most often the closed kinematic chains are “temporarily cut”

(artificially separated), and well-known efficient algorithms
are utilized for the solution of the dynamics problem for the
resulting tree structure. Asthe model is devel oped further, the
cuts are removed by the introduction of closure conditions
(holonomic constraints). This allows the results obtained for
the tree structure to be transformed into those of the original
closed-loop mechanism.

Such approaches fail in many cases with more complex
spatial kinematic structures (such as that of the NUWAR),
when the intended purpose of the devel opment is that of real-
time control. The reason for failure is alarge number of pas-
sive degrees of freedom, which in the tree-structure approach
require description; one differential equation of motion for
each passive degree of freedom, often resulting in too large
a number of equations for real-time applications. The com-
putational complexity of such algorithms grows linearly with
the number of relative coordinates (degrees of freedom) of the
tree structure. NUWAR possesses 21 rotational joints, and the
number of relative coordinates of its tree structureis 15. The
number of independent coordinates is three.

When applying energy-based methods for non-redundant
mechanisms, there is a strong temptation to select a minimal
set of (independent) coordinatesinjoint space. SinceNUWAR
hasthree degreesof freedom, oneisnaturally inclined to select
three generalized coordinates, e.g., angles in actuated joints
©:,i =1,...,3),andthentoevaluate aset of three Lagrange
equations of the second kind for these coordinates. Such equa-
tionswould be the formulae for the unknown control torques.
However, due to the complexity of the geometrical model, the
evaluation of the Lagrangian (or Hamiltonian) and especially
its derivatives (which would have to include also the deriva-
tives of the solutions of equations of the model of geometry)
with only three coordinates, isfound to be extremely involved
and tedious.

Another way of formulating equations of motion in inde-
pendent coordinates is based on the concept of projection to
the space tangent to constraints (Blgjer 1992). Thevariation of
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Fig. 6. Optimization results.
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this method, leading to the formulation of the Kane equations
has been recently applied in Tsai (2000) to a Gough—Stewart
platform.

The formulation in dependent coordinates leads to more
efficient algorithms. However, it would be expected that it
is possible to devise better approaches than those using all
dependent coordinates of the robot’s tree structure (15 for
NUWAR). My approachisto choose smartly such coordinates
describing the manipulator that would be suitable for evalua-
tion of the Lagrangian of the robot, and simultaneously their
number would be smaller than the number of relative coordi-
nates of the corresponding tree structure (equivalent single-
degree-of-freedom joints). Themodeling method presentedin
this section is not valid for general closed-loop mechanisms.
However, it is effective for mechanismsthat have amaximum
of two links in each kinematic chain linking a base and an
end-effector. To the best of my knowledge, there are no par-
allel robots described in the literature that would not satisfy
this condition.

Of principal interest in the case of the non-redundant paral -
lel robot analysisand control arethe behaviorsof thetraveling
plate and the actuated joints. Therefore, for the robot descrip-
tion, | propose the use of al coordinates belonging to the
sum of the task and joint spaces of the robot. In the case of a
three-degrees-of -freedom spatial manipulator they are

{q[}z{xayvzvgl’92763}ai =17‘-' 767

where{x, y, z} describe the position of the center of the trav-
eling plate, and {#6,, 6,, 65} denote the anglesin the actuated
joints. For such a set of coordinates{¢;} | propose the name
“extended space” (see aso Miller and Clavel 1992; Gugliel-
metti 1994).

In the case of the three-degrees-of-freedom NUWAR
robot, which possesses 21 rotational joints, the number of co-
ordinates in the extended space is six, which is considerably
fewer than the number of relative coordinates of NUWAR's
tree structure.

Derivation of the Lagrange function for NUWAR in the
extended spaceisrelatively straightforward. Positions, veloc-
ities, and potential and kinetic energy of thearmsare described
using coordinates belonging to thejoint space{ 6., 6., 65} . Po-
sition, velocity, and potential and kinetic energy of the trav-
eling plate are described using coordinates belonging to the
task space {x, y, z}. Positions and velocities of the top ends
of forearms are described using coordinates belonging to the
joint space {6,, 6,, 65}, and those of the bottom ends using
coordinates belonging to the task space {x, y, z}. Knowing
the positions and velocities of the ends of the forearmsit is
easy to derive equations for their kinetic and potential ener-
gies (Miller and Clavel 1992). The calculation of constraint
derivatives (manipul ator geometrical model equations, which
relate controlled joint angles and the traveling plate position)
is aso simple. The constraint derivatives are of much sim-
pler form than the derivatives of the solution of the inverse
kinematics problem (inverse Jacobian) of the robot.

3.2. Application of Hamilton's Canonical Equationsto
Parallel Robot Dynamics Modeling

The method described in this section uses Hamilton's equa-
tions (for anintroduction to Hamilton’smethod, seefor exam-
pleLanczos1962). The method isapplicableto any multibody
system constrained by geometric (holonomic) and/or veloc-
ity (non-holonomic) constraints. However, when considering
dynamics of parallel robots we deal with scleronomous (not
dependent explicitly on time) geometric constraints result-
ing from closed-chain architecture, so that to simplify deriva-
tions velocity (non-holonomic) and rheonomous (explicitly
dependent on time) constraints are not considered below (for
the derivation of the general case, see for example Gutowski
1971).

The method's effectiveness is amplified when the system
under consideration is described by coordinates of the ex-
tended space.

Generalized momentap can be presented in the following
form

oL 3G -M-g)
g el
where L isthe Lagrangian, q isthe vector of dependent coor-
dinatesand M is the mass matrix. Similarly

=M -q (6)

OH _a(g—L) _ _iL

=—L,
aq aq aq

= —Lg=Q.—®lA—p = (7)

ﬁ szq+Qe¥_q);)\,

where H is the Hamiltonian, Q,, is the vector of external
forces, ®, isthe Jacobian of the constraint equationsand 1 is
the vector of unknown Lagrange multipliers.

Equations (6) and (7) form the following canonical
equations:

p=M-q (®)

P=Lqg+ Q. — -1 9)

The formulation presented here is general enough to in-
clude any external forces, provided they act in (or can be pro-
jected onto) directions described by coordinates of extended
space; these include actuator forces (directions belonging to
the joint space) and forces acting on the end-effector (direc-
tions belonging to the task space). Other external forces (e.g.,
point forces acting on arms or forearms) cannot be included
in the proposed formulation. In practice Delta-type parallel
robots (e.g., NUWAR) are most often used as ultra-fast pick
and place robots, so that it is reasonable to explicitly consider
the case with zero external forces acting on the end-effector.
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Equations(8) and (9) and themodel of therobot’sgeometry
were used to derive the equations of motion for NUWAR.
M, L, and @, were evaluated using Mathematica (Wolfram
1999), using similar amethod to that described in Miller and
Clavel (1992) for the Deltarobot.

The final forms of the equations governing the motion of
NUWAR are

P=M.J3.q={x,y, 2z 016,05} (10)
pr=Le— Df - A, (12)
in the directions belonging to the task space{x, y, z},
Pj=Lq+Qu— g2, (12
in the directions belonging to the joint space {6:, 6,, 05},
;=0 i=1...,3 (13)

wherep, and p; denote generalized momentain the directions
belonging to task and joint spaces, respectively: p = {p,, p;}.
There are no Q,., terms in the first three equations for p,
(eg. (11)) because these equations correspond to the x, y and
z coordinates. The only external forces acting on NUWAR
are torques corresponding to the 6,, 6,, and 6; coordinates

(eg. (12)).

3.3. Solution of the I nverse Problem of Dynamics

In the case of the inverse problem of dynamics, i.e., trgjec-
tory known, external forces (desired motor torques) unknown,
three steps are required to arrive at the solution of egs. (10)—
(12).

1. Inthefirst step, the generalized momenta are eval uated
indirectionsx, y, z, 61, 6,, s fromegs. (10) for thetime
instant ¢. Only generalized positions and velocities are
required asinput. Accelerations are not needed. For the
trajectory start point with theinitial conditions of zero
velocities, these terms can safely be initiated to zero.

2. In the second step, it is possible to substitute the nu-
merically calculated derivatives of momenta (using, for
example, atwo-point formula) p,, p,, p, into eq. (11)
for the directions x, y, z belonging to the task space of
the robot. These three equations for any given position
(onthedesired tragjectory) congtitute aset of threelinear
equations from which the required multipliers 1, j =
1,2,3 can be easily obtained.

3. After the substitution of the derivatives of genera-
ized momenta in directions 6., 6,, 6; belonging to the
joint space of the robot, and the multipliers A, A, s,
egs. (12) becomethe explicit formulae for torques Q,.,;,
i =456.
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Oftenthetrajectory of very fast parallel robots(e.g., NUWAR)
iscommanded as a sequence of pointswith asampling period
of 1 msor lower. Velocities and accelerations are calculated
numerically. Thisallowsfor the flexibility of not knowing the
trajectory beforehand. An important feature of the model ob-
tained by the Hamilton-based approach is that the solution of
theinverse problem does not require accel eration information
(measurements or estimates) as an input state to the model.
Only the positions x, y, z, 6y, 6,, 63 and the corresponding
velocities are necessary. Instead of accelerationsit is neces-
sary to provide derivatives of momenta obtained numerically.
This approach removes usually long terms of the form % (%)
fromthe equationsand simplifiescal culations. Thisadvantage
can save time in the calculation of kinematics and simultane-
ously improve model accuracy. The presence of accelerations
in dynamic models obtained by Newton—Euler and Lagrange
based approaches is inherent. The application of Hamilton's
canonical equations eliminates this requirement.

In the case of commanding exact values of acceleration,
the formulation presented here has no advantage as far as
accuracy of the solution of the inverse problem is concerned
(nodisadvantageeither if the sampling periodissmall enough,
as it indeed isin practice), but the computational efficiency
advantage remains.

The Hamilton-based method was compared to the La-
grange formulation (Miller and Clavel 1992). Both formu-
lations use the coordinates of the extended space. Calcula-
tions showed that the inverse dynamics model based on the
method of Hamilton required 28% fewer floating-point oper-
ations than the more traditional Lagrange based one, due to
not having to eval uate lengthy terms of % (%) . Computational
results obtained using both methods were aimost identical
(within 0.01 N).

3.4. Solution of the Forward Problem of Dynamics

In the case of the forward problem of dynamics, the dynam-
ical equations (10)—(12) and constraint equations (13) form
asystem of differential-algebraic equations (DAES). Usually,
solving DAES is considerably more difficult than integrat-
ing systems of ordinary differential equations (ODES). See,
for example, Bayo and Garcia de Jalon (1994) and Blgjer
(1998) and references therein; the second reference is partic-
ularly worth recommending because it contains a large bib-
liography of Russian language multibody systems literature.
Even though anumber of multibody systemsresearchers sug-
gest that obtaining solutions to DAES can cause serious trou-
ble, | obtained accurate simulation results using a straightfor-
ward method, based on transforming DAESs into the system
of ODEs by differentiating (once) equations of geometrical
constraints and using a standard fourth/fifth-order stepping
procedure (ODE45 in MATLAB 1999) with Baumgarte sta-
bilization (Baumgarte 1972).
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The solution algorithm used in this work was proposed
by Lankarani and Nikravesh (1988). In order to avoid mixed
differential and algebraic equations the L agrangian needed to
be modified to include the kinematic velocity constraints.

L*=L+®"0 (14)
where o is a new set of Lagrange multipliers. It is easy to
demonstrate that the Lagrange multipliers A used in egs. (7),
(8), (11), and (12) are simply the time derivatives of the in-
troduced multipliers o. The resulting modified Hamiltonian
is

H =p'q-L" (15)
Substitution to egs. (8) and (9) gives
p=Mg-dlo (16)
and
p=Lq+ Q. —dlo (17)

The above set of differential equations needs to be supple-
mented by equations of kinematic constraints:

b = d,q=0. (18)
Equations (16)—(18) constitute a system of 2n + m (where
n is the number of dependent coordinates, m is the number
of constraints, n —m = number of degrees of freedom; for
NUWAR, described by coordinates of the extended space,
n =6, m = 3) ODEs, with p, g and o as unknowns.

Only n + m equations must be solved at each time step in
thenumerical implementation of thealgorithm. Thefollowing
three steps are required to arrive at the solution of the forward
problem of dynamics.

1. Equations (16) and (18) are solved for g and o at
time ¢ (when the values of p and q are known; initia
condition):

Moo 1[g |_|[p
o —0 o[
2. Formula (17) is used to compute p explicitly. No solu-
tion of equations is required here.

(19)

3. Vectorsp and q at time (z + At) are obtained by numer-
ical integration. Upon convergence, thetimevariableis
updated and the next step initiated.

The method was verified by feeding the solution for time
histories of control torques obtained from the inverse dynam-
ics algorithm into the forward dynamics agorithm. The tra-
jectory initially used astheinput to theinverse dynamicsalgo-
rithmwasreproduced almost exactly. Thisvalidatesthe appro-

priateness and accuracy of methods used. As the Hamilton-
based inverse dynamics algorithm gave almost identical re-
sultsto the L agrange-based one, and the Hamilton-based for-
ward dynamicsalgorithm produced expected results, the pres-
ence of a symmetrical error in both inverse and forward dy-
namics algorithm implementation is highly unlikely. The re-
sults of computer simulations are presented in Section 3.5.

It should be noted here that the formulation of equations
of motion based on Hamilton's equations possesses an in-
herent advantage over acceleration-based formulations. The
system of Hamilton's equations with multipliers is of in-
dex two; acceleration based formulations result in systems
of DAEs of index three; for discussion, see Blger (1998)
and Brenan, Campbell, and Petzold (1989). The Hamilton-
based algorithm was compared to the accel eration-based (La-
grange in extended space) formulation. An identical ODE in-
tegration method with Baumgarte stabilization was used, see
Frame (1999). This confirmed the observation of Lankarani
and Nikravesh (1988) that, since only one time derivative of
the constraintsis used (eg. (18)), the integration of egs. (16)—
(18) is more efficient and stable than the integration of equa-
tions resulting from acceleration-based formulations. When
using acceleration-based formulations, the geometric con-
straints have to be differentiated twice to avoid theintegration
of the mixed differential-algebraic system. Thisleadsto larger
constraint violations.

3.5. Results of Computer Simulations

Computer simulations were performed for the prototype of
NUWAR (Miller 1998):

* length, mass and moment of inertia of the arm are
0.26 m, 0.977 kg, and 0.01822 kg m?;

 length and mass of the forearm are 0.48 m and
0.0296 kg;

« radial distance of each motor from the centerline is
0.194 m;

« displacement in theradial direction of the mid-point of
each pair of spherica joints on the traveling plate is
0.03m;

* gpacing of the forearmsis 0.05 m;
* traveling plate massis 0.2807 kg;

« paralelogram-control arm joint massis 0.0099 kg.

A vast range of trgjectory types was generated. The geo-
metric shapes included straight line, ellipse, sheared dllipse,
and clothoid. Thetime—motion programs used were parabolic
(“bang-bang”), cycloidal (“sine on ramp”) and fifth-order
polynomial (LePage 1999). The trajectories served as input
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Y<

Start point [0, -0.2, -0.9] [m]

Fig. 7. Elliptical trajectory used as input for simulations.

to inverse kinematics and inverse dynamics problems. Cal-
culated motor torque time histories were used as input to
forward dynamics cal culations. Equation derivation was per-
formed with Mathematica (Wolfram 1999). Numerical cal cu-
lations and animation of results were performed with MAT-
LAB (1999).

Here | present results for atypical, symmetrical, elliptical
pick-and-place trajectory (Figure 7):

start point -> [0, —0.2,-0.9] (m), corresponding to joint
angles 9, = 70.95°, 6, = 87.13°, ; = 51.65°;

mid-point -> [0, 0, —0.5] (m);
end point -> [0, +0.2, =0.9] (m);
timeto traverse the éllipse -> 0.5 (9);

and back to the start point, followed by the traveling
plate according to the “3—4-5 polynomial” motion pro-
gram. Thisresultsin continuous accel erationsand finite
jerks. The maximum accel erations of thetraveling plate
were 294.82 ms2,

Figure 8 shows time histories of motor torques required
to execute the tragjectory; the solution of the inverse dynam-
ics problem. The maximum torques required are 33.14 Nm,
which is close to the maximum torque from NUWAR's mo-
tors (41.76 Nm), so that the trgjectory under discussion is
close to the limit of the capabilities of the robot. It is worth
noting that the maximum motor torques required by NUWAR
are dlightly less than those required by the Deltato follow the
same trgjectory (36.30 Nm).

Figure 9 presents the comparison of the trgjectory calcu-
lated with a forward dynamics agorithm described in Sec-
tion 3.4, using the motor torque histories of Figure 7, with the
original trajectory used as the input to the inverse dynamics.

Mid point [0, 0, -0.5] [m]

End point [0, +0.2, -0.9] [m]

torque 1 [Nm]

i / \ / \ time
/1A A
. / a1 \ 4.2 0.3/ 0.4\ 7.5

-20

torque 2 [Nm]

4 T A

torque 3 [Nm]

a4y

SU

1 In
19 \ / time

/[N [ s
/ a1 o.zA a3 0.4\ /0.5

-10

-20

Fig. 8. Resultsof inversedynamicscal culations:. timehistories
of motor torques required to produce the elliptical trajectory
described above.
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Fig. 9. Results of forward dynamics calculations:. the difference between the trgjectory serving as input to inverse dynamics
and the result of forward dynamics cal culations using torque histories of Figure 8.

The two tragjectories match (almost) exactly proving the ap-
propriateness and accuracy of methods proposed inthispaper.

4. Conclusions and Discussion

A method of multidimensional kinematic optimization of
the parallel robot’'s geometry was developed. For some ar-
chitectures, like that of the NUWAR, the maximization of
workspace volume alone gives satisfactory results. However,
the maximization of the workspace volume without consider-
ing other issues often produces manipulators with very poor
manipulability. To overcome this difficulty a utility func-
tion incorporating two performance indices was formulated
in order to determine those architectures that yield an opti-
mum compromise between manipulability and a new perfor-
mance index, space utilization. Space utilization is a concept
designed to overcome the problems of small, non-singular
workspaces often encountered when a parallel manipulator is
optimized with only manipulability in mind. The exhaustive
search algorithm was used to reliably find all prospective de-
sign candidatesin parameter space. The method was shownto
work well for as many asfour design variables and, therefore,
is a viable competitor to advanced non-linear programming
methods.

“Optimum” configuration could have different meanings
in different contexts, e.g., in some applications a large
workspace without necessarily high manipulability might be
desired, in other cases mani pul ability needsto be emphasized.

Thiscan be achieved by asuitable choice of weighting factors
in the cost function (3). The results presented here, and the
suite of MATLAB programs created to perform the optimiza-
tion, form a framework, which may be utilized to create and
analyze designs that result from selecting weighting factors
that are appropriate to a specific application.

An efficient method of solving dynamics of parallel robots
was developed and applied to the NUWAR. The method was
based on Hamilton’s canonical equations in the extended
space defined as a union of task and joint spaces of a robot.
The use of coordinates of the extended space resultsin much
fewer equationsthan in the case of using relative coordinates,
and in asimple Lagrangian.

The use of Hamilton's equations is advantageous in ap-
plication to the inverse problem of dynamics. This method
is numerically more efficient than the more traditional La
grange and Newton—Euler methods because Hamilton's equa-
tions do not require accelerations as input data to the inverse
dynamics algorithm, and terms of the form 5(%) involving
accelerations are absent. Thisresultsin better accuracy of the
algorithm.

The solution of the forward problem of dynamics was ob-
tained without any difficulties by transforming the origina
system of DAEs to ODEs, and using a standard stepping a-
gorithm with Baumgardte stabilization. The inherent advan-
tage of using Hamilton's equations for the direct problem of
dynamics is that, together with algebraic equations of con-
straints, they form the system of DAESs of index 2, not of
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index 3 asis the case in the accel eration-based formulations.
Numerical integration of index 2 systemsisknown to be more
stable than solution of index 3 systems.
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