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Abstract

This paper presents results from a finite element study of the biomechanics of hydrocephalus, with special emphasis on a

reassessment of the parenchyma elastic modulus. A two-dimensional finite element model of the human brain/ventricular system is

developed and analysed under hydrocephalic loading conditions. It is shown that the Young’s modulus of the brain parenchyma

used in previous studies (3000–10000Pa) corresponds to strain rates much higher than those present in hydrocephalic brains.

Consideration of the brain’s viscoelasticity leads to the derivation of a considerably lower modulus value of approximately 584Pa.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Hydrocephalus is a disorder of the brain associated
with disruption to the flow of cerebrospinal fluid (CSF).
CSF is produced by the choroid plexus, within the
lateral ventricles of the brain, and under normal
conditions is then circulated through the third and
fourth ventricles and the spinal cord, and finally
absorbed within the sub-arachnoid space (SAS) (Nolte,
1993). In a hydrocephalic brain, an obstruction may
block this flow and prevent extrusion of CSF from the
lateral ventricles. Consequently, ventricular fluid pres-
sure increases and forces expansion of the ventricle
walls. Being confined by the rigid skull (except in
infantile cases) the periventricular brain parenchyma is
compressed, and in acute cases, destroyed. Additionally,
significant oedema is observed in the periventricular
material, particularly in the regions of the frontal and
occipital horns, as the increased ventricular pressure
forces elevated permeation of the CSF through the
surrounding tissue. Full development time for the
disease is seen to be around 4 days (Nagashima et al.,
1987) (Fig. 1).
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There has been significant work directed at formulat-
ing mathematical descriptions of the biomechanisms
involved (e.g. Hakim, 1971; Nagashima et al., 1987;
Kaczmarek et al., 1997), and simulating the deformation
and diffusion behaviour of affected brains. Of central
importance to any such efforts is the incorporation of a
realistic constitutive model for the brain material itself.
Most work in this area has relied on variations of the
biphasic description introduced by Hakim (1971). The
material is assumed to consist of an elastic solid skeleton
(neurons and neuroglia), permeated by a fluid, inter-
preted as interstitial fluid and CSF seeping from
ventricles to SAS. The fluid phase is allowed to flow
within the solid under an imposed pressure gradient, and
frictional interaction with the solid results in deforma-
tion of this phase.
Whilst Kaczmarek et al. (1997) obtained an analytical

solution to a simplified geometric configuration, it is
generally necessary to implement numerical approxima-
tions for the generation of more realistic hydrocephalus
simulations. Specifically, the flexibility of the finite
element method has made it the focus of great attention
in the area. Nagashima et al. (1987) produced the first
example of such an analysis, utilising a linear elastic
approximation for the solid phase. Further work was
carried out by Tada et al. (1990) and Peña et al. (1999),
with both being based heavily on the original principles
set out by Nagashima et al. It is worth noting that the
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Fig. 1. CT scans of (a) normal ventricular configuration, and (b)

dilated ventricles in a hydrocephalic brain. Source: Wang et al. (1999).

Arrows indicate the frontal (top) and occipital (bottom) horns.
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known inability of the biphasic approach to account for
strong stress–strain rate-dependence (Miller, 1998) does
not affect the applicability of the method in the study of
hydrocephalus because the considered strain rates are
very close to zero.
This work develops further the investigations men-

tioned above, and incorporates revised material para-
meters based on results from the hyper-viscoelastic
material model developed by Miller (1999). As a result
of the high strain-rate dependence of the brain material,
and the extremely slow loading characteristic of the
disease, it is shown that brain parenchyma elastic
modulus values typically quoted in the literature are
not applicable to the study of hydrocephalus.
2. Mathematical model of biphasic continuum

2.1. General principles of the biphasic theory

Following the work of Nagashima et al. (1987) and
Peña et al. (1999), the biphasic nature of the brain tissue
may be modelled using the principles of Biot’s con-
solidation theory (Biot, 1941), as set out below.
(i)
 Terzaghi’s effective stress principle;

(ii)
 Darcy’s law for fluid flow through a porous

medium;

(iii)
 Conservation of mass of wetting fluid;

(iv)
 Equilibrium of the medium;

(v)
 A constitutive relation for the solid phase.
Details of the theory are not elaborated here.
Relevant equations for effective stress, Darcy’s law,
fluid mass conservation, and equilibrium may be found
in Bowen (1976). The constitutive modelling of the solid
phase is discussed in more detail in Section 2.2.
2.2. Constitutive modelling of biphasic continuum

2.2.1. Solid phase elasticity

Studies have shown brain material properties to be
clearly non-linear and strain rate-dependent (Miller,
1999; Miller and Chinzei, 1997). It is important to
consider what range of strains and strain rates is
important for modelling brain structural diseases, such
as hydrocephalus.
The strain rates produced during the development of

hydrocephalus are so low that in this study we assume
that the strain rate-dependency of the mechanical
properties of the brain tissue can be omitted and a
limiting hyperelastic response to quasi-static loading
(strain rate approaching zero) assumed. Also the non-
linear stress–strain relationship is, in our opinion, not
critical for the validity of conclusions of this study.
Computer simulations discussed later show that the
great majority of hydrocephalic brain volume is in the
state of compressive strain of just under �3%. For
strain of �3% the difference between stress predicted by
a non-linear model (Miller, 1999) and a linear model
applied in this study is about 1.5% (�29.62 Pa given by
non-linear hyperelastic model versus �30.06 Pa given by
the linear model). In view of the fact that strain rate-
dependence effects are the main focus of the study, and
incorporation of non-linear stress–strain characteristics
would complicate the results unnecessarily, in this paper
we approximate the behaviour of the solid phase with
a linear constitutive model with constant Young’s
modulus, E:

seff ¼ Deeff ; ð1Þ

where eeff is the effective (Almansi) strain, reff is the
effective (Cauchy) stress, and D is given by

D ¼
E
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where E is the Young’s modulus and n the Poisson’s
ratio.
This is a valid modelling technique even when finite

deformations are considered. In such case one should
choose carefully appropriate, energetically conjugate,
stress and strain measures (Bathe, 1996). In this study
we chose to measure stress and strain with respect to the
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deformed (current) configuration, using Cauchy stress
and Almansi strain.
For an essentially strain rate-dependent material such

as brain parenchyma, selection of the elastic modulus
should be representative of the particular strain rate
condition present in the system.

2.2.2. Hyper-viscoelastic model of brain tissue

Several efforts have been made to establish an
analysis framework allowing for both finite strains in
brain material, and the time-dependence of the material
(Mendis et al., 1995; Miller and Chinzei, 1997; Miller,
1999). Miller (1999) proposed a hyperelastic, linear
viscoelastic single-phase model, suitable for application
in finite element procedures, in the form of a polynomial
strain energy function with time-dependent coefficients:

W ¼
Z t

0

XN

iþj¼1

Cij0 1�
Xn

k¼1

gkð1� e�ðt�tÞ=tk Þ

 !" #(

�
d

dt
½ðJ1 � 3ÞiðJ2 � 3Þj�

)
dt; ð3Þ

where Cij0 are material parameters, J1 and J2 are strain
invariants, tk are characteristic times, gk are relaxation
coefficients and N is taken to be 2 in this case. An
important result from the hyperelastic component of
Eq. (3) is that the instantaneous shear modulus, m0; is
related to the first-order polynomial coefficients, C100

and C010:

m0 ¼ 2ðC100 þ C010Þ: ð4Þ

The shear modulus relates to the Young’s modulus of
the material as follows:

m0 ¼
E0

2ð1þ nhyperÞ
; ð5Þ

where nhyper is Poisson’s ratio for the hyperelastic
continuum. Assuming incompressibility of the medium
as a whole (nhyperE0:5), a relation between instanta-
neous tissue elasticity (which may be used as an estimate
of elastic modulus for the linear model) and the
polynomial strain energy coefficients is produced:

E0 ¼ 6ðC100 þ C010Þ: ð6Þ

Using the values obtained by Miller (1999), we obtain
E0 ¼ 3156 Pa. This is around the same order of
magnitude as values generally quoted in the literature
(Nagashima et al., 1987; Kaczmarek et al., 1997; Peña
et al., 1999).
It is based, however, on the assumption of a strain

rate of around 0.64 s�1 (Miller and Chinzei, 1997).
Therefore, the value of 3156 Pa as an estimate of solid
phase elasticity is not valid for situations where strain
rates are very low.
2.2.3. Revised elastic material parameters

Biphasic materials can exhibit highly transient re-
sponses to mechanical loading, i.e. apparent elastic
modulus may be both time- and load rate-dependent.
Initial loading of the material will be supported by an
immediate increase in pore pressure, but if redistribution
of fluid within the material skeleton is allowed to occur
(over time), the loading must progressively be supported
through deformation of the solid phase. Clearly, then,
the apparent elastic modulus will not remain constant.
As indicated in Section 2.2.2, a value for the elastic

modulus may be obtained from the first-order hyper-
elastic polynomial coefficients, C100 and C010; via
Eq. (6). These values represent the instantaneous elasti-
city and hence are realistically only valid for relatively
high strain rates, e.g. the ones encountered during
neurosurgery (B10	 s�1), (Miller, 1999). The brain
material loading under hydrocephalic conditions, how-
ever, is extremely slow, typically progressing to full
development over a period of days. Consequently, we
may consider the limiting case for the relaxation
component of Eq. (3):

lim
t-N

gkð1� e�ðt�tÞ=tk Þ ¼ gk: ð7Þ

Hence, the relaxed hyperelastic coefficients are given
by

CijN ¼ Cij0 1�
Xn

k¼1

gk

 !
: ð8Þ

Using n ¼ 2; Miller (1999) quotes values of
C010 ¼ C100 ¼ 263 Pa, g1 ¼ 0:450; and g2 ¼ 0:365:
Eq. (8) then gives the relaxed hyperelastic coefficients
C10N ¼ C01N ¼ 48:7 Pa. Incorporating these revised
parameters, Eq. (6) yields the modified elastic modulus:

EN ¼ 6ðC10N þ C01NÞ ¼ 584:4 Pa:

The above value is now suitable for use in the
simulation of hydrocephalus. This represents a significant
reduction in stiffness and demonstrates the importance of
understanding and accounting for the essential strain rate
dependency of brain material properties.
Permeability, k ¼ 1:59� 10�7 m/s, and Poisson’s ra-

tio, nsolid ¼ 0:35; are obtained from Kaczmarek et al.
(1997), and the initial void ratio for the material is taken
as 0.2 (Nagashima et al., 1987). It is worth noting that
the Poisson ratio, nhyper; defined in Section 2.2.2. above
is different to the ratio, nsolid; defined here. This arises
from the fact that two different modelling approaches
have been employed. In the first instance, the material
was treated as a single phase hyperelastic continuum, so
that nhyper ¼ 0:5 reflects the fact that as a whole, the
material is essentially incompressible. When in the
second case the material is treated as a biphasic
continuum, the Poisson ratio of nsolid ¼ 0:35 reflects
the relative compressibility of the material’s solid phase,
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which allows fluid to be absorbed or exuded from the
solid matrix. The first ratio, then, refers to the entire
fluid saturated material, while the second refers to the
material’s drained condition.
The fluid phase is considered to be an incompressible,

inviscid fluid with mechanical properties as for water.
Recent work by Ozawa et al. (2001) showed no

significant difference between white and grey matter
elasticity, and so homogeneity and isotropy are assumed
for the entire brain. The presented mathematical
formulation is more general than those used in the
studies by Nagashima et al. (1987) and Kaczmarek et al.
(1997) whose formulations are essentially linear. Kacz-
marek’s finite deformation results were obtained by
superposition of the small-strain solutions.
3. Finite element simulation

A two-dimensional finite element model (FEM) of the
brain/ventricle system was developed to assess the elastic
modulus revision presented. The model used a linear
elastic material formulation for the solid phase of the
brain, and incorporated the revised elastic parameter,
EN ¼ 584:4 Pa.

3.1. Geometry and meshing

Construction and meshing of the geometry was
performed using MSC/PATRAN pre-processor soft-
ware (MSC/PATRAN, 2000). The model consisted of
344 8-node quadrilateral elements of type CPE8RP
(ABAQUS/Standard, 2001), and 1126 nodes. Fig. 2(a)
shows the undeformed mesh used in the model.
Model geometry was obtained from a horizontal

cross-section presented in the anatomic atlas of Talair-
ach and Tournoux (1988). The section was taken at
Fig. 2. Comparison of (a) undeformed mesh with (b) deformed mesh

using EN ¼ 584:4 Pa, and (c) deformed mesh using E ¼ 10 kPa.
20mm above a reference defined by the anterior and
posterior commissures (refer to Talairach and Tour-
noux, 1988). Macroscopic undulations of the brain
surface were ignored for simplicity, and only a gross
outline of the ventricular and surface boundaries were
used. Considering the symmetry about the midline, only
the right hemisphere was analysed.

3.2. Boundary conditions

Pore pressure was fixed at zero at the skull boundary
to ensure outward radial CSF flow and drainage in the
SAS. As mentioned, CSF is produced in the lateral
ventricles, and absorbed almost entirely in the SAS
(Nolte, 1993). A pressure gradient then exists between
these two regions such that resulting fluid flow is from
ventricles to SAS, i.e. maximum pressure is found in the
ventricles, and minimum pressure in the SAS. In the case
of a hydrocephalic brain, some obstruction inhibits this
fluid flow, leading to an increase in the pressure
gradient. A reasonable estimate for this elevated
gradient is approx. 3000 Pa (Peña et al., 1999). This is
then implemented by setting ventricular fluid pressure to
3 kPa and SAS fluid pressure to 0 kPa.
The outer brain surface was assumed fixed to the skull

and so surface nodes are constrained in all directions.
Along the midline boundary, nodes are constrained in
the horizontal direction (due to the presence of the left
hemisphere), but are allowed to displace vertically.

3.3. Loading

Loading of the ventricular wall was in the form of a
distributed fluid pressure over the surface. As indicated
above, the pressure magnitude was set to 3 kPa, in line
with other work by Peña et al. (1999) and Nagashima
et al. (1987).

3.4. Analysis

Model solutions were obtained using ABAQUS/
Standard finite element software (ABAQUS/Standard,
2001). Consolidation analyses may be performed using
ABAQUS’ SOILS procedure. This procedure is capable
of solving fully non-linear, finite deformation, poroe-
lastic problems, and has been shown to perform well in
hydrated soft tissue simulations (Wu et al., 1998). As
mentioned, the total development time for hydrocepha-
lus was taken as 4 days (345600 s).

3.5. Mesh convergence study

An h-refinement technique was used to assess the
mesh convergence of the model. The model was re-
meshed using (i) 641 elements and 2057 nodes, and (ii)
2324 elements and 7232 nodes and reanalysed under the
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Fig. 3. Von Mises stress distribution (MPa) in the model using

EN ¼ 584:4 Pa.

Fig. 4. Von Mises stress distribution (MPa) in the model using

E ¼ 10 kPa.

Fig. 5. Void ratio distribution in the deformed model with

EN ¼ 584:4Pa.

Fig. 6. Void ratio distribution in the deformed model with

E ¼ 10 kPa.
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same conditions. Deformation results for the three
meshes (original, plus two refined) differed by less
than 1%, thus confirming the convergence of the
solution.
4. Results

Fig. 2(b) shows the deformed mesh compared with the
original configuration. A second simulation was per-
formed using an elastic modulus of 10 kPa in order to
compare with the work of Peña et al. The resulting
deformation is shown in Fig. 2(c). The pressure across
the surface of the ventricle produces an overall expan-
sion of the ventricular space. In particular, there is a
pronounced lateral displacement of the right wall of the
ventricle, and a dilation of the ventricle tips (frontal and
occipital horns). Using the revised modulus, maximal
displacement midway along the ventricle right wall is
obtained as 4.79mm. Using E ¼ 10 kPa produces an
equivalent displacement of 1.57mm.
Figs. 3 and 4 show the Von Mises stress distributions

for the revised modulus model, and for the 10 kPa model
respectively. Relatively high tensile stresses are focused
around the frontal and occipital horns with peak stress
in these regions around 282 Pa for the former, and
1574 Pa for the latter.
Figs. 5 and 6 show the void ratio distributions in the

model after loading—the unloaded void ratio through-
out the medium is 0.2. Significant increases around the
ventricular horns are apparent in both cases. Void ratios
in these regions rise to as much as 0.363 using the revised
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modulus—a rise of 0.163 (81.5%), and 0.252 using
E ¼ 10 kPa—a rise of 0.052 (26%).
5. Discussion and conclusions

It is interesting to note that the deformation produced
using E ¼ 10 kPa appears to be somewhat less than that
observed in clinical cases (e.g. Fig. 1). Two explanations
seem plausible: the hydrocephalic ventricular pressure
was underestimated, or the Young’s modulus was
overestimated. The significantly larger deformation
observed with the revised modulus would seem to imply
the latter. It should be noted however, that it is generally
difficult to make quantitative comparisons between
simulated deformations and clinical cases. There are
three reasons for this:

1. Degrees of deformation vary considerably from case
to case.

2. The true magnitude of the ventricular loading is not
well known.

3. There is significant variation in the values of material
parameters quoted in the literature, which are further
complicated by load rate-dependency.

In spite of this, many qualitative characteristics
produced by the model may still be linked to clinical
observations.
The dilations of the frontal and occipital horns

referred to above are frequently observed in clinical
cases (see Fig. 1), and additionally, are usually
accompanied by CSF oedema, as evidenced by periven-
tricular lucency (PVL) in the region.
The similarity in the deformation pattern produced

with both moduli points to observations by Peña et al.
(1999) and Nagashima et al. (1987) that fields of this
type are strongly dependent on the geometric arrange-
ment of the ventricles. This is particularly demonstrated
here where two geometrically identical models with
elasticity differing over an order of magnitude exhibit
essentially the same deformation pattern.
Of significant interest in the stress distribution results

are the relatively high tensile stresses focused around the
ventricular horns. These are a result of the dilation
referred to above. As observed by Peña et al. (1999), the
concavity of these regions means ventricular fluid
pressure acts to stretch the local material. A conse-
quence of this stretching is that the ependymal cells,
which line the ventricle, are disrupted. Under normal
conditions, these closely packed cells exhibit a substan-
tially lower permeability than the surrounding material
(Peña et al., 1999). This prevents extensive diffusion of
CSF into the brain material. When this material is
stretched however, its pores will distend and perme-
ability should increase, thus promoting fluid oedema in
these regions. This is in line with observations of PVL in
MRI scans of hydrocephalic brains.
A further result that points to the development of

PVL is the distribution of void ratio in the material. A
comparison of Figs. 3,5 and 4,6 shows that the tensile
stress concentrations in the horns are reflected as
increases in the void ratio of these regions. This tends
to confirm the statement above that tensile stress is
accompanied by distension of the extra-cellular space.
As the medium remains fully saturated, any increase in
void ratio corresponds to an increase in the fluid content
in that region. Literally, the areas with increased void
ratio around the ventricle horns may be identified as
areas of fluid oedema.
It is observed, then, that the distribution of solution

fields such as displacement, stress, and void ratio
produced by this model may be seen to reflect some of
the clinical attributes of the disease. Comparison of the
results produced using the revised elastic modulus with
those of an existing value used in similar simulations
shows that significant variations in field magnitudes are
generated when consideration of the material’s viscoe-
lastic properties is made. The degree of magnitude
variation involved highlights the importance of using a
modulus value appropriate to the specific analysis.
Furthermore, in light of the relatively larger deforma-
tions produced with the revised modulus—in line with
large clinically observed ventricular expansions,
EN ¼ 584:4 Pa is presented as a more appropriate value
for low strain rate simulations of this kind.
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