
Proceedings of the 11th World Congress in Mechanism and Machine Science
August 18–21, 2003, Tianjin, China

 China Machinery Press, edited by Tian Huang

Evolutionary Algorithm for Robot Task Space Optimization

Joshua D. Petitt and Karol Miller
School of Mechanical Engineering, The University of Western Australia, Perth 6009, Australia

e-mail:petitj01@mech.uwa.edu.au

Abstract: This paper describes the application of an
evolutionary algorithm for optimization of robot physical
parameters. Preliminary tests were conducted with the algorithm
to determine the optimum set of algorithm parameters. The
kinematics of laproscopic surgery are discussed and used to
generate a set of operating points called a task space. Optimal
sets of link lengths are found using the sample mean and
standard deviation of each of the actuator values as a
performance rating.

Keywords: Evolutionary algorithm, task space

1 Introduction
In this paper, a specific implementation of an evolutionary
algorithm, programmed in MATLAB, is used to optimize
the physical parameters for a surgical assist manipulator
(SAM). The use of different parameters for the
evolutionary algorithm will be discussed and the optimal
set of parameters, for this implementation, is given.

2 Evolutionary Algorithm
2.1 Description

Neo-Darwinism states that four processes act upon a
species: reproduction, mutation, competition, and
selection [1]. These processes can be expressed,
algorithmically, as operations on members of the
population, or a finite set.

Each member in X can be described by a set of attributes

which can be evaluated by a fitness function, a linear or
non-linear function of the attribute vector, that usually
evaluates to a scalar quantity, or the performance of the
population member.

The general view on the effect of natural evolution is the
continuing improvement of population fitness in a
dynamic landscape (i.e. the fitness function is changing).
This is in contrast to most engineering optimization
problems where the fitness function is static throughout
the computation of the algorithm and the goal of the
optimization is to find the best solution, or the set of
attributes that minimize or maximize the value of the
fitness function. Note that the choice of maximizing or

minimizing is dependant on the nature of the fitness
function.

The algorithm presented has the following properties

• Uniform random distribution of initial population
• Uniform random selection of tournament

opponents
• Tournament selection of dominant parent
• Roulette selection of passive parent
• Crossover follows uniform distribution
• Mutation follows normal distribution
• Elitist approach for selection of next generation

Uniform random distribution of the initial population

over the entire state space is important to ensure that at
least one individual is close to the maximum value of the
performance function.

Competition among members of a species, especially
among male members, is a fundamental mechanism by
which the weak members of the population are culled.
The results of these competitions are usually not death,
but result in little chance to mate and produce offspring
[1]. The algorithm presented here, although does not
include the aspect of sexuality of specific members, does
incorporate competition among members. To choose a
dominant parent, two distinct members are randomly
chosen from the population with uniform likelihood of
being chosen. The member with the higher performance is
chosen as the dominant parent.

X = {x1, x2, …, xn} (1) The choice of passive parent is either by uniform
random selection or the roulette wheel approach, where
the fitness of the entire population is summed and denoted
as S. A uniform random variable, s, is generated over
[0,S]. The population member whose fitness plus the
fitness of all lower population members is greater or equal
to s is chosen as the passive parent. This approach is
described in [1].

xi = [a1, a2, …, am] (2)

During the mating portion of the algorithm, the
attributes of each parent are combined to create the child
attributes. The crossover operation is achieved by pi = F(xi) (3)

 a = α · a1 + (1-α) · a2
(4)

where α is a uniform random variable between zero and
unity. Because the evolutionary algorithm works with the
phenotype, each attribute only influences the
corresponding attribute of the child. This approach is
easily implemented and is desirable because the result is a
real number guaranteed to lie between a1 and a2.

After crossover of the attributes, a mutation of each
attribute is introduced. The mutation is a random variable

from a normal distribution with mean zero and a small
value for the standard deviation. It is interesting to note at
this point, that the advantages of using crossover and
mutation, or exclusively one of the operations is shown in
the results of this experiment. It was determined that a
mutation parameter is necessary for the algorithm to find
solutions on the extreme edges of the search space.

After each child member is created, it is placed into a
new population. The dominant and passive parents may
also pass onto the new population according to the
persistence of the algorithm. If the persistence is zero,
then neither parent passes on, if the persistence is unity,
then the dominant parent is allowed to join the new
population. If the persistence is two, then both parents
join the new population. The persistence parameter of the
algorithm is important because it allows the population to
retain members with high performance values.

Finally, the new population is ordered according to
performance of the members and the top Np members are
kept, and the others discarded, where Np is the number of
population members. This operation is called elitist
selection and is important to keep population size constant
during algorithm execution.

2.2 Benchmark Testing

An evolutionary algorithm has many parameters, which
may or may not affect the overall performance of the
algorithm. Therefore, before conducting an optimization
of a real system, the algorithm was tested on four test
performance surfaces to determine the best combination of
parameters. The following four functions that were tested
are shown with the corresponding surface plots.

Figure 1 – Test Performance Surface

Figure 2 – Test Performance Surface

z = x2 + 2y2 – 0.3cos(3πx + 4πy) + 0.3 (7)

Figure 3 – Test Performance Surface

z = x + y + 2 (8)

Figure 4 – Test Performance Surface

Notice that each function is a function of two
variables, x and y, and each has one unique global
minimum in the range of [-1,1]. The global minimum for
the first three functions is located at [0,0], but the
minimum value for the fourth function is at [-1,-1]. This
is an important case because it will test the ability of the
algorithm to find a minimum that lies at a boundary.

z = x2 + 2y2 – 0.3cos(3πx) – 0.4cos(4πy) + 0.7 (5)

To test the effects of parameter variation, a set of
parameters was chosen, then the values of x and y were
‘optimized’ for each function 100 times and the sample
mean and standard deviation of the performances were
calculated. For an optimization algorithm, one would
desire the return value to be consistent, if not the same,
each time the algorithm is executed. Obviously, one
would also desire the algorithm to return the global
minimum, or a close approximation, for the function. This
leads to two null independent hypotheses for each test set.

The mean return value for parameter set A is less
than the mean return value for parameter set B.

z = x2 + 2y2 – 0.3cos(3πx)cos(4πy) + 0.3 (6) The standard deviation of the return value for
parameter set A is less than standard deviation of the
return value for parameter set B.

Table 1 shows the parameter sets that were tested. The
parameters were varied according to each row in the table,
and the effects tested on each of the four test functions.

The effects of three other parameters were also
observed for each parameter set; these are population size,
number of epochs and random mutation. The number of
epochs is equivalent to the number of generations, or
iterations, for which the algorithm calculates.

Table 1 – Optimization Test Parameter Sets
Competition Selection Elitism Persistence

1 Random No 0
2 Random No 0
2 Random No 1
2 Random Yes 1
2 Roulette Yes 1
2 Roulette Yes 2
3 Roulette Yes 2
2 Roulette No 1

During an actual optimization problem, the evaluation
time of the performance function is large compared to the
execution time of the algorithm. Therefore, when
comparing the effects of population size versus number of
epochs it is important to keep the number of performance
evaluations equal. In this specific implementation of the
algorithm, the performance of each member of the
population is only evaluated once, when the member is
created. Because the member’s attributes are not modified
during algorithm execution, the performance of the
member is constant. For every test, a pair of parents
produced only one child. Thus, the number of
performance evaluations can be calculated as

2.3 Benchmark Test Results

 The optimal set of algorithm parameters were

Competition Selection Elitism Persistence

2 Roulette Yes 1

Figures 5 and 6 show the mean performance value for the
optimal set of parameters when optimizing equation (2).
Equations (1) and (3) exhibit the same characteristics,
probably because the minimum value of the function
occurs within the search boundaries.

Figure 8 illustrates the mean performance value for the
optimal set of parameters when optimizing equation (4).
Notice that this graph shows a heavy dependence on the
mutation rate in order to find the optimal solution.

Figure 5 – Mean performance versus population size and
mutation rate for equation (2) with optimum parameters

Figure 6 – Mean performance vs. population size for

equation (2) with optimal parameters

N = population × (1+ epochs × children) (9)

Figure 7 – Standard deviation of performance for equation
(2) with optimal parameters

Figure 8 – Mean performance versus population size and
mutation rate for equation (4) with optimum parameters

Figure 9 – Standard deviation of performance for equation

(4) with optimum parameters

3 Optimal Design
Many researchers have examined optimal design of
mechanisms. Usually the approach taken is the minimi-
zation of an objective, or cost function, using linear or
nonlinear optimization techniques. Miller and Stock [2][3]
use a combinatorial approach for optimizing the
workspace volume of the DELTA and Linear DELTA
style parallel robots, respectively. The performance of the
workspace is quantified in the first case as the total
working volume of the manipulator. In the second case,
the inverse of the condition number of the Jacobian matrix
for the manipulator kinematics is used to quantify the
manipulator performance.
 The drawback to the approach taken above is the
accuracy of the solution versus the time taken to compute
the performance.

3.1 Task-Driven Optimization
The workspace of a generic manipulator has often been
the prime target of optimization techniques, to which there
are many approaches [2][3]. However, these procedures
are either analytical or take a long to compute because of
combinatorial explosion. Therefore, an alternative
method will be proposed here called “task-driven
optimization”. The focus behind task driven optimization
is not to create the entire workspace of the manipulator,
but to only analyze points in the vicinity of a critical
operating point, or set of operating points. This allows for
more points to be evaluated in the vicinity of the precision
location(s).

This approach was taken by [4] in optimizing the link
lengths of a planar four-bar linkage for traveling through
precision points. In the six-dimensional case, it is
assumed that the approach vector of the tool is directly
toward the center of the precision area. Thus, only four
search dimensions are needed, three for position and one
for the final orientation.

3.2 Laproscopic Surgery
Laproscopic surgery, also called ‘keyhole’ surgery, is a
surgical procedure whereby the surgeon operates on the
patient through a set of small incisions, typically three
total, one for the laproscope and two for operating ports.
The tools that are used for the operation are long (~30
cm), slender devices with specialized tips for specific
functions. A laproscope, a long, slender viewing device is
also inserted into the patient to allow the surgeon to see
the operation area. Advanced imaging techniques, such as
magnetic resonance imaging, can replace the need for the
laproscope, but the operation is still performed with
similar tools. The unwieldy nature of the tools makes the
job of the surgeon difficult and results in a lack of
dexterity and sensory feedback, which is the main
drawback to the procedure, from the surgeon’s perspective
[5][6]. The insertion of the tool through the incision also
reduces the degrees of freedom of the tool tip from six to
four.

To overcome the problem of positioning the surgical
instruments, the introduction of a robotic manipulator into
the operating theatre has been a proposed solution.
Chenzei and Miller [7] have developed a five degree-of-
freedom SAM that is compatible with a magnetic
resonance environment. Other researchers have also

developed designs for SAMs [8][9][10], based on serial,
hybrid and parallel structures.

3.2.1 Manipulator kinematics
The manipulator that is optimized is a six degree-of-
freedom fully parallel manipulator. The actuators are
prismatic and are joined to the connecting links by
spherical joints. The traveling plate is attached to the
connecting links by universal joints. Figure 10 is a
diagram of the design. The manipulator connecting links
are the focus of the optimization, and the optimal set of
lengths for a given task is desired.

Figure 10 – Diagram of a six DOF parallel linear robot

The inverse kinematic constraint equations can be
derived as follows: Let the traveling plate coordinate
system be defined by a point p and a [3x3] rotation matrix,
R. Let s represent a displacement from p to the
connection point between the connecting link and the
traveling plate. Now let each actuator be represented by a
point d and a direction vector u. Let the distance d to the
traveling plate connection point be denoted by r, which
can be calculated by equation (10). Knowing r allows L’
to derived, thus the distance, q, along u which the connect
link lies.
 p + Rs

iii dRspr −+=

2)(' iiiiiL urrr •−•=

iiiiiiii Lq rrurur •−•+±•= 22)(

(10)

q
d

L
r

L’

(11)

(12)

Note that the inverse kinematic equation yields two
solutions for the actuator values. These solutions
correspond to the two assembly modes for the manipulator.

3.2.2 Performance function
In constructing a performance function for the
manipulator, two considerations were made. First, it is
desirable that the physical actuators are as small as
possible, thus the stroke length of the actuator should be
minimized. Second, in order to minimize the length of the
connecting links, the actuators should operate close to the
maximum value. Therefore, using these two criteria, the
following performance function is defined

∑
=

−=
6

1

2)(
i

ii SXp

where iX is the sample mean value and is the sample
variance of the ith actuator values during task execution.

2
iS

Conclusions
Figure 11 shows the optimized plots of the actuator values
for the laproscopic task space. To optimize the actuator
lengths, the algorithm was set to use 120 points to define
the precision location, a population size of 30 members, 4
epochs, and mutation parameter of 0.5 and the algorithm
attempted to maximize the value of the performance. One
will note that the maximum value of each of the links is
approximately 1, which is the maximum travel of the
actuator.

Figure 11 – Actuator output values for the laproscopic

task space

The algorithm took approximately 19 seconds to calculate
the optimal length lengths for the task. This is clearly an
acceptable execution time, which promotes an iterative
design process. Using an optimization technique based
upon the workspace, depending on the accuracy, can take
hours or days because of the sheer number of points that
are evaluated. This limits the designer in flexibility
because the majority of the time is spent on computation
and not on design.

Acknowledgment
The author would like to thank Dr. Kiyoyuki Chenzei and
the members of the Surgical Planning Laboratory at
Brigham and Women’s Hospital in Boston, Mass. USA,
for the invaluable information concerning MRI surgery.

(12) I would also like to thank Stéphane Muguet for
providing the illustration of the six degree-of-freedom
robot. Finally, thank you to Kevin Hayward of the School
of Mechanical Engineering at The University of Western
Australia for the stimulating discussion concerning
evolutionary algorithms.

References
[1] Fogel, D. B. (1995). Evolutionary Computation. New York,

The Institute of Electrical and Electronic Engineers, Inc.

[2] Miller, K. (2002). "Maximization of Workspace Volume of

3-DOF Spatial Parallel Manipulators." ASME Journal of
Mechanical Design 124: 1-4.

[3] Stock, K., Miller, K. (2002). "Optimal Kinematic Design of

Spatial Parallel Manipulators: Application to Linear Delta
Robot." ASME Journal of Mechanical Design. accepted
July 2002

[4] Roston, G. P. and R. H. Sturges (1996). "Genetic algorithm

synthesis of four-bar mechanisms." Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 10:
371-390.

[5] Treat, M. R. (1996). A Surgeon's Perspective on the

Difficulties of Laparoscopic Surgery. Computer-Integrated
Surgery. R. H. Taylor, S. Lavallée, G. C. Burdea and R.
Mösges. Cambridge, The MIT Press: 736.

[6] Tendrick, F., R. W. Jennings, et al. (1996). Perception and

Manipulation Problems in Endoscopic Surgery. Computer-
Integrated Surgery. R. H. Taylor, S. Lavallée, G. C. Burdea
and R. Mösges. Cambridge, The MIT Press: 736.

[7] Chinzei, K. and K. Miller (2001). "Towards MRI Guided

Surgical Manipulator." Med. Sci Monit. 7(1): 153-163.

[8] Taylor, R. H., J. Funda, et al. (1996). A Telerobotic

Assistant for Laparoscopic Surgery. Computer-Integrated
Surgery. R. H. Taylor, S. Lavallée, G. C. Burdea and R.
Mösges. Cambridge, The MIT Press: 736.

[9] Khodabandehloo, K., P. N. Brett, et al. (1996). Special-

Purpose Actuators and Architectures for Surgery Robots.
Computer-Integrated Surgery. R. H. Taylor, S. Lavallée, G.
C. Burdea and R. Mösges. Cambridge, The MIT Press: 736.

[10] Grace, K. W. (1995). Kinematic Design of an Ophthalmic

Surgery Robot and Feature Extracting Bilateral
Manipulation. Mechanical Engineering. Evanston, Illinois,
Northwestern University: 85.

	1 Introduction
	2 Evolutionary Algorithm
	Table 1 – Optimization Test Parameter Sets
	Optimal Design
	Task-Driven Optimization
	Laproscopic Surgery
	Manipulator kinematics
	Performance function

