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Abstract: This paper describes the application of an 
evolutionary algorithm for optimization of robot physical 
parameters. Preliminary tests were conducted with the algorithm 
to determine the optimum set of algorithm parameters. The 
kinematics of laproscopic surgery are discussed and used to 
generate a set of operating points called a task space. Optimal 
sets of link lengths are found using the sample mean and 
standard deviation of each of the actuator values as a 
performance rating. 
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1   Introduction  
In this paper, a specific implementation of an evolutionary 
algorithm, programmed in MATLAB, is used to optimize 
the physical parameters for a surgical assist manipulator 
(SAM). The use of different parameters for the 
evolutionary algorithm will be discussed and the optimal 
set of parameters, for this implementation, is given. 
 
2   Evolutionary Algorithm 
2.1 Description 
 
Neo-Darwinism states that four processes act upon a 
species: reproduction, mutation, competition, and 
selection [1]. These processes can be expressed, 
algorithmically, as operations on members of the 
population, or a finite set. 
 
 
 
Each member in X can be described by a set of attributes 
 
 
 
which can be evaluated by a fitness function, a linear or 
non-linear function of the attribute vector, that usually 
evaluates to a scalar quantity, or the performance of the 
population member. 

 
  
The general view on the effect of natural evolution is the 
continuing improvement of population fitness in a 
dynamic landscape (i.e. the fitness function is changing). 
This is in contrast to most engineering optimization 
problems where the fitness function is static throughout 
the computation of the algorithm and the goal of the 
optimization is to find the best solution, or the set of 
attributes that minimize or maximize the value of the 
fitness function. Note that the choice of maximizing or 

minimizing is dependant on the nature of the fitness 
function. 

The algorithm presented has the following properties 
 

• Uniform random distribution of initial population 
• Uniform random selection of tournament 

opponents 
• Tournament selection of dominant parent 
• Roulette selection of passive parent 
• Crossover follows uniform distribution 
• Mutation follows normal distribution 
• Elitist approach for selection of next generation 

 
Uniform random distribution of the initial population 

over the entire state space is important to ensure that at 
least one individual is close to the maximum value of the 
performance function. 

Competition among members of a species, especially 
among male members, is a fundamental mechanism by 
which the weak members of the population are culled.  
The results of these competitions are usually not death, 
but result in little chance to mate and produce offspring 
[1]. The algorithm presented here, although does not 
include the aspect of sexuality of specific members, does 
incorporate competition among members. To choose a 
dominant parent, two distinct members are randomly 
chosen from the population with uniform likelihood of 
being chosen. The member with the higher performance is 
chosen as the dominant parent. 

X = {x1, x2, …, xn} (1) The choice of passive parent is either by uniform 
random selection or the roulette wheel approach, where 
the fitness of the entire population is summed and denoted 
as S.  A uniform random variable, s, is generated over 
[0,S].  The population member whose fitness plus the 
fitness of all lower population members is greater or equal 
to s is chosen as the passive parent.  This approach is 
described in [1]. 

xi = [a1, a2, …, am] (2)

During the mating portion of the algorithm, the 
attributes of each parent are combined to create the child 
attributes. The crossover operation is achieved by pi = F(xi) (3)  

 a = α · a1 + (1-α) · a2 
(4)

 
where α is a uniform random variable between zero and 
unity. Because the evolutionary algorithm works with the 
phenotype, each attribute only influences the 
corresponding attribute of the child.  This approach is 
easily implemented and is desirable because the result is a 
real number guaranteed to lie between a1 and a2. 

After crossover of the attributes, a mutation of each 
attribute is introduced.  The mutation is a random variable 



from a normal distribution with mean zero and a small 
value for the standard deviation.  It is interesting to note at 
this point, that the advantages of using crossover and 
mutation, or exclusively one of the operations is shown in 
the results of this experiment. It was determined that a 
mutation parameter is necessary for the algorithm to find 
solutions on the extreme edges of the search space. 

After each child member is created, it is placed into a 
new population. The dominant and passive parents may 
also pass onto the new population according to the 
persistence of the algorithm.  If the persistence is zero, 
then neither parent passes on, if the persistence is unity, 
then the dominant parent is allowed to join the new 
population.  If the persistence is two, then both parents 
join the new population.  The persistence parameter of the 
algorithm is important because it allows the population to 
retain members with high performance values. 

Finally, the new population is ordered according to 
performance of the members and the top Np members are 
kept, and the others discarded, where Np is the number of 
population members.  This operation is called elitist 
selection and is important to keep population size constant 
during algorithm execution.  

 
2.2 Benchmark Testing 
 
An evolutionary algorithm has many parameters, which 
may or may not affect the overall performance of the 
algorithm.  Therefore, before conducting an optimization 
of a real system, the algorithm was tested on four test 
performance surfaces to determine the best combination of 
parameters. The following four functions that were tested 
are shown with the corresponding surface plots.  
 
 
 

 
Figure 1 – Test Performance Surface 

 
 
 

 
Figure 2 – Test Performance Surface 

 

 

z = x2 + 2y2 – 0.3cos(3πx + 4πy) + 0.3 (7)

Figure 3 – Test Performance Surface 

 
 

 

z = x + y + 2 (8)

Figure 4 – Test Performance Surface 

Notice that each function is a function of two 
variables, x and y, and each has one unique global 
minimum in the range of [-1,1]. The global minimum for 
the first three functions is located at [0,0], but the 
minimum value for the fourth function is at [-1,-1].  This 
is an important case because it will test the ability of the 
algorithm to find a minimum that lies at a boundary. 

z = x2 + 2y2 – 0.3cos(3πx) – 0.4cos(4πy) + 0.7 (5)

To test the effects of parameter variation, a set of 
parameters was chosen, then the values of x and y were 
‘optimized’ for each function 100 times and the sample 
mean and standard deviation of the performances were 
calculated. For an optimization algorithm, one would 
desire the return value to be consistent, if not the same, 
each time the algorithm is executed. Obviously, one 
would also desire the algorithm to return the global 
minimum, or a close approximation, for the function. This 
leads to two null independent hypotheses for each test set.   
 

The mean return value for parameter set A is less 
than the mean return value for parameter set B. 
 

z = x2 + 2y2 – 0.3cos(3πx)cos(4πy) + 0.3 (6) The standard deviation of the return value for 
parameter set A is less than standard deviation of the 
return value for parameter set B. 

 
Table 1 shows the parameter sets that were tested.  The 
parameters were varied according to each row in the table, 
and the effects tested on each of the four test functions. 

The effects of three other parameters were also 
observed for each parameter set; these are population size, 
number of epochs and random mutation.  The number of 
epochs is equivalent to the number of generations, or 
iterations, for which the algorithm calculates.   
 
 



Table 1 – Optimization Test Parameter Sets 
Competition Selection Elitism Persistence 

1 Random No 0 
2 Random No 0 
2 Random No 1 
2 Random Yes 1 
2 Roulette Yes 1 
2 Roulette Yes 2 
3 Roulette Yes 2 
2 Roulette No 1 

 
During an actual optimization problem, the evaluation 
time of the performance function is large compared to the 
execution time of the algorithm. Therefore, when 
comparing the effects of population size versus number of 
epochs it is important to keep the number of performance 
evaluations equal. In this specific implementation of the 
algorithm, the performance of each member of the 
population is only evaluated once, when the member is 
created. Because the member’s attributes are not modified 
during algorithm execution, the performance of the 
member is constant.  For every test, a pair of parents 
produced only one child.  Thus, the number of 
performance evaluations can be calculated as 
 
 
 
 
2.3 Benchmark Test Results 
 
 The optimal set of algorithm parameters were 
 
Competition Selection Elitism Persistence 

2 Roulette Yes 1 
 
Figures 5 and 6 show the mean performance value for the 
optimal set of parameters when optimizing equation (2).  
Equations (1) and (3) exhibit the same characteristics, 
probably because the minimum value of the function 
occurs within the search boundaries. 

Figure 8 illustrates the mean performance value for the 
optimal set of parameters when optimizing equation (4).  
Notice that this graph shows a heavy dependence on the 
mutation rate in order to find the optimal solution.  

 
Figure 5 – Mean performance versus population size and 
mutation rate for equation (2) with optimum parameters 

 
Figure 6 – Mean performance vs. population size for 

equation (2) with optimal parameters 

 

N = population × (1+ epochs × children) (9)

Figure 7 – Standard deviation of performance for equation 
(2) with optimal parameters  

 

 
Figure 8 – Mean performance versus population size and 
mutation rate for equation (4) with optimum parameters 

 

 
Figure 9 – Standard deviation of performance for equation 

(4) with optimum parameters 



3 Optimal Design 
Many researchers have examined optimal design of 
mechanisms. Usually the approach taken is the minimi-
zation of an objective, or cost function, using linear or 
nonlinear optimization techniques. Miller and Stock [2][3] 
use a combinatorial approach for optimizing the 
workspace volume of the DELTA and Linear DELTA 
style parallel robots, respectively. The performance of the 
workspace is quantified in the first case as the total 
working volume of the manipulator.  In the second case, 
the inverse of the condition number of the Jacobian matrix 
for the manipulator kinematics is used to quantify the 
manipulator performance. 
 The drawback to the approach taken above is the 
accuracy of the solution versus the time taken to compute 
the performance. 
 
3.1 Task-Driven Optimization 
The workspace of a generic manipulator has often been 
the prime target of optimization techniques, to which there 
are many approaches [2][3].  However, these procedures 
are either analytical or take a long to compute because of 
combinatorial explosion.  Therefore, an alternative 
method will be proposed here called “task-driven 
optimization”.  The focus behind task driven optimization 
is not to create the entire workspace of the manipulator, 
but to only analyze points in the vicinity of a critical 
operating point, or set of operating points.  This allows for 
more points to be evaluated in the vicinity of the precision 
location(s). 

This approach was taken by [4] in optimizing the link 
lengths of a planar four-bar linkage for traveling through 
precision points.  In the six-dimensional case, it is 
assumed that the approach vector of the tool is directly 
toward the center of the precision area. Thus, only four 
search dimensions are needed, three for position and one 
for the final orientation. 
 
3.2 Laproscopic Surgery 
Laproscopic surgery, also called ‘keyhole’ surgery, is a 
surgical procedure whereby the surgeon operates on the 
patient through a set of small incisions, typically three 
total, one for the laproscope and two for operating ports. 
The tools that are used for the operation are long (~30 
cm), slender devices with specialized tips for specific 
functions. A laproscope, a long, slender viewing device is 
also inserted into the patient to allow the surgeon to see 
the operation area. Advanced imaging techniques, such as 
magnetic resonance imaging, can replace the need for the 
laproscope, but the operation is still performed with 
similar tools. The unwieldy nature of the tools makes the 
job of the surgeon difficult and results in a lack of 
dexterity and sensory feedback, which is the main 
drawback to the procedure, from the surgeon’s perspective 
[5][6]. The insertion of the tool through the incision also 
reduces the degrees of freedom of the tool tip from six to 
four.  

To overcome the problem of positioning the surgical 
instruments, the introduction of a robotic manipulator into 
the operating theatre has been a proposed solution. 
Chenzei and Miller [7] have developed a five degree-of-
freedom SAM that is compatible with a magnetic 
resonance environment. Other researchers have also 

developed designs for SAMs [8][9][10], based on serial, 
hybrid and parallel structures. 
 
3.2.1 Manipulator kinematics 
The manipulator that is optimized is a six degree-of-
freedom fully parallel manipulator.  The actuators are 
prismatic and are joined to the connecting links by 
spherical joints.  The traveling plate is attached to the 
connecting links by universal joints. Figure 10 is a 
diagram of the design.  The manipulator connecting links 
are the focus of the optimization, and the optimal set of 
lengths for a given task is desired. 
  

 
Figure 10 – Diagram of a six DOF parallel linear robot 

The inverse kinematic constraint equations can be 
derived as follows:  Let the traveling plate coordinate 
system be defined by a point p and a [3x3] rotation matrix, 
R.  Let s represent a displacement from p to the 
connection point between the connecting link and the 
traveling plate.  Now let each actuator be represented by a 
point d and a direction vector u.  Let the distance d to the 
traveling plate connection point be denoted by r, which 
can be calculated by equation (10).  Knowing r allows L’ 
to derived, thus the distance, q, along u which the connect 
link lies. 
 p + Rs
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Note that the inverse kinematic equation yields two 
solutions for the actuator values.  These solutions 
correspond to the two assembly modes for the manipulator.  
 
3.2.2 Performance function 
In constructing a performance function for the 
manipulator, two considerations were made.  First, it is 
desirable that the physical actuators are as small as 
possible, thus the stroke length of the actuator should be 
minimized.  Second, in order to minimize the length of the 
connecting links, the actuators should operate close to the 
maximum value.  Therefore, using these two criteria, the 
following performance function is defined 
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where iX is the sample mean value and is the sample 
variance of the ith actuator values during task execution.   
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Conclusions 
Figure 11 shows the optimized plots of the actuator values 
for the laproscopic task space.  To optimize the actuator 
lengths, the algorithm was set to use 120 points to define 
the precision location, a population size of 30 members, 4 
epochs, and mutation parameter of 0.5 and the algorithm 
attempted to maximize the value of the performance.  One 
will note that the maximum value of each of the links is 
approximately 1, which is the maximum travel of the 
actuator.   
 

 
Figure 11 – Actuator output values for the laproscopic 

task space 

The algorithm took approximately 19 seconds to calculate 
the optimal length lengths for the task.  This is clearly an 
acceptable execution time, which promotes an iterative 
design process. Using an optimization technique based 
upon the workspace, depending on the accuracy, can take 
hours or days because of the sheer number of points that 
are evaluated.  This limits the designer in flexibility 
because the majority of the time is spent on computation 
and not on design.   
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