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How to test very soft biological tissues in extension?
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Abstract

Mechanical properties of very soft tissues, such as brain, liver and kidney, until recently have largely escaped the attention of

researchers because these tissues do not bear mechanical loads. However, developments in Computer–Integrated and Robot–Aided
Surgery } in particular, the emergence of automatic surgical tools and robots } as well as advances in Virtual Reality techniques,
require closer examination of the mechanical properties of very soft tissues and, ultimately, the construction of corresponding,

realistic mathematical models. A body of knowledge about mechanical properties of very soft tissues, assembled in recent years, has
been almost exclusively based on the results of compression, indentation and impact tests. There are no results of tensile tests
available. This state of affairs, in the author’s opinion, is caused by the lack of analytical solution relating a measured quantity }

machine head displacement } to strain in simple extension experiments of cylindrical samples with low aspect ratio. In the paper

this important solution is presented. The theoretical solution obtained is valid for isotropic, incompressible materials for moderate
deformations (530%) when it can be assumed that planes initially perpendicular to the direction of applied extension remain plane.
Two astonishing results are obtained: (i) deformed shape of a cylindrical sample subjected to uniaxial extension is independent on

the form of constitutive law, (ii) vertical extension in the plane of symmetry lz is proportional to the total change of height for
strains as large as 30%. The importance and relevance of these results to testing procedures in Biomechanics is highlighted.
# 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Mechanical properties of living tissues form a central
subject in Biomechanics. Recent developments in
robotics technology, especially the emergence of auto-
matic surgical tools and robots (e.g. Brett et al., 1995) as
well as advances in virtual reality techniques (Burdea,
1996) provide immediate and important applications to
research into the mechanical properties of very soft
tissues, such as brain, liver and kidney. These tissues
have been largely neglected before because they do not
bear mechanical loads. Mathematical models of brain
tissue mechanical properties may find application, for
example, in a surgical robot control system where the
prediction of deformation is needed (Miller and Chinzei,
1995, 2000); surgical operation planning and surgeon
training systems based on the virtual reality techniques

(Burdea, 1996 and references cited therein) where force
feedback is needed; and in registration (Lavallée, 1995)
where knowledge of local deformation is required.
There is a wealth of information available in the

literature about the mechanical properties of brain tissue
in-vitro (Ommaya, 1968; Estes and McElhaney, 1970;
Galford and McElhaney, 1970; Pamidi and Advani,
1978; Bilston et al., 1997; Donnelly and Medige, 1997;
Miller and Chinzei, 1997). Some information on liver
and kidney tissue mechanical properties has also been
published (e.g. Melvin et al., 1973; Farshad et al., 1998,
1999; Miller, 2000). However, the experimental results
available in literature are limited to compression,
indentation and impact tests and to a lesser extent,
torsional tests. To the best of the author’s knowledge,
there are no results in the literature concerning very soft
tissue properties in tension. Why is that? The author
believes that, besides technical problems with conduct-
ing extension tests on brain and other soft tissues, the
main reason is that the analytical relation between the
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tensile stress machine head displacement and strain is
not known for cylindrical samples with a low aspect
ratio.
In this paper I develop the rigorous mathematical

description of the deformation in the uniaxial extension
experiment and derive the relation between the machine
head displacement and strain needed for the constitutive
law identification. It is claimed that the results obtained
allow the analysis of uniaxial extension experiments
performed on low aspect ratio cylindrical samples of soft
biological tissues in an analogous way to that routinely
used in the unconfined compression.

2. Extension experiment set-up

Typically, in experiments on brain tissue cylindrical
samples of diameter �30mm and height �10mm are
used (Miller and Chinzei, 1997). Steel pipe (30mm
diameter) with sharp edges is used to cut the samples.
The faces of the cylindrical brain specimens are
smoothed manually, using a surgical scalpel.
Uniaxial tension of brain (or other very soft tissue)

can be performed in a testing stand sketched in Fig. 1.
This particular geometry is dictated by the difficulties in
attaching faces of cylindrical specimens to platens of the
stress–strain machine. Probably the best choice is to use
surgical glue. It is important to note here that it is very
difficult (if not impossible) to extract elongated samples
of very soft tissues to be tested in extension using
standard engineering procedures.

The testing apparatus should be able to move the
machine head within large range of velocities (to
simulate strain rates typical to impact, surgical or
quasi-static conditions) and measure accurately small
(fractions of a Newton) vertical forces.

3. Theoretical analysis of extension experiment

In extension experiment the kinematics of the
deformation is complex, prohibiting the existence of
the exact analytical solution for the deformation of the
sample for any realistic constitutive law chosen to
describe tissue mechanical properties. This, in the
author’ opinion, is one of the reasons why there are
no extension results for soft tissues published in the
biomechanics literature. However, with a few reasonable
assumptions an approximate solution can be found.
I consider a circular cylinder bonded between two

rigid end-plates (Fig. 2). The disc of radius R and height
2H in undeformed state is strained to the final height 2h
by uniform vertical motion of the end-plates. For the
coordinate system in the unstrained state Cartesian
coordinates {X ,Y ,Z} are taken. The Cartesian coordi-
nate system {x, y, z} for deformed body is chosen to
coincide with the system {X ,Y ,Z}.
In the theoretical derivation the following simplifying

assumptions are needed:
Material properties

(a) Material is incompressible,
(b) Material is isotropic.

Fig. 1. (a) Swine brain tissue sample subjected to extension. Zero-Time jelly (cyanoacrylate type), surgical glue from Cemedine (Japanese company)

was used to attach sample to the top and bottom platens of the stress machine. (b) Sketch of the experimental set-up. Dh and vertical force are

measured.
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Deformation

(c) Deformation is moderate (530%, as compared to
deformations exceeding 100%, common in rubber
research), so that any polynomial strain energy
function can be reasonably approximated by its
first-order terms,

(d) Planes perpendicular to the direction of the
applied force remain plane } common and
reasonable assumption following from allowing
only moderate deformation,

(e) Force and moment resultants vanish on every
portion of the free surface.

It is important to note that nothing is assumed about the
true form of the energy function.
Under the assumption that the planes perpendicular

to the direction of the applied force remain plane the
deformation of the specimen can be described as
follows:

z ¼ g½Z�; ð1Þ

r ¼ Rf ½Z� ) x ¼ Xf ½Z�; ð2Þ

y ¼ Yf ½Z�: ð3Þ

Eqs. (1)–(3) follow from symmetry.
Very soft tissues are most often assumed to be

incompressible (see e.g. Pamidi and Advani, 1978;
Walsh and Schettini, 1984; Sahay et al., 1992; Mendis
et al., 1995; Miller and Chinzei, 1997; Farshad et al.,
1998; Miller, 1999, 2000). The author tried to detect a
departure from incompressibility assumption for brain
tissue using laser measurement and image analysis
techniques } unsuccessfully (Chinzei and Miller,
1996). Also, during compression experiments (Miller
and Chinzei, 1997) the author did not notice any fluid
being squeezed out from brain tissue samples. There-
fore, I conclude that incompressibility assumption can
be confidently used. The incompressibility of the tissue
should not be confused with apparent compressibility of
an organ as a whole, observed e.g. by Guillaume et al.
(1997) for brain in hypergravity experiments.

The incompressibility condition gives

f 2½Z�*g’ ½Z� ¼ 1 ð4Þ

Deformation gradient is

F ¼
f ½Z� 0 Xf 0½Z�
0 f ½Z� Yf 0½Z�
0 0 g0½Z�

2
64

3
75: ð5Þ

In the plane of symmetry, Z ¼ 0, off-diagonal compo-
nents of the deformation gradient vanish. This is a very
important observation } the deformation in the plane
of symmetry is orthogonal.

FðX ;Y ; 0Þ ¼
l1=2z 0 0

0 l1=2z 0

0 0 lz

2
64

3
75; ð6Þ

where lz is a stretch in vertical direction (Fig. 2b):

lz ¼ g0ð0Þ ¼ f ð0Þ	2: ð7Þ

In such case, one can compute the only non	zero
Lagrange stress component from the simple formula:

Tzz ¼
qW
qlz

: ð8Þ

In practice, to evaluate the above equation one has to
relate extension in the plane of symmetry to the applied
movement of the end-plate (machine head). This can be,
in principle, achieved by examination of camera images
of the experiment. The relative change in specimen
radius in the plane of symmetry r=R can be measured for
a given relative displacement of the end-plate h=H.
Using the incompressibility condition (Eqs. (4) or (7))
extension in vertical direction can be uniquely deter-
mined. Unfortunately, basing on the extensive experi-
ence with brain tissue I conclude that this procedure is
difficult to reliably apply in practice mostly due to too
large pixel size and departures from exact cylindrical
shape of samples.
A different and more reliable method is proposed in

this study. In the reminder of this section I will show
that it is possible to relate the total change of height h=H
to the extension in the plane of symmetry lz without the
reference to the particular form of energy function W ,
which can be, in full generality, a function of deforma-
tion, history of deformation and time explicitly.
The problem of finding the deformation of the tissue

subject to the displacement of the machine head can be
described by equation of equilibrium, constitutive law
and boundary conditions. The equation of equilibrium,
using Einstein’s summation convention is

t
ij
j ¼ 0; ð9Þ

where t denotes Cauchy stress and coma indicates
covariant differentiation with respect to deformed
configuration.

Fig. 2. Description of deformation in extension experiment: unde-

formed (left) and deformed (right) configuration. The fixed radius of

cylindrical sample at the top and bottom is denoted as ‘‘a’’. In the

undeformed configuration it is equal to the radius of the sample.
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Very soft tissues do not bear mechanical loads and do
not exhibit directional structure. Therefore, they may be
assumed to be initially isotropic (see e.g. Pamidi and
Advani, 1978; Walsh and Schettini, 1984; Sahay et al.,
1992; Mendis et al., 1995; Miller and Chinzei, 1997;
Farshad et al., 1998; Miller, 1999, 2000). The most
general form of the constitutive law for incompressible,
isotropic materials (the most general isotropic tensor
function) is

t ¼ 2
qW
qI1

B 	 2
qW
qI2

B	1 	 pg; ð10Þ

where B=F FT is a Left Cauchy–Green strain tensor,
I1¼ Trace[B], I2 ¼ 1=2 (I21	Trace[B

2]) are first and
second strain invariants, p is a scalar hydrostatic
pressure and g is a metric tensor.
The boundary conditions are (see Fig. 2)


 glue : onZ ¼ þH or	H ) r ¼ R and z ¼ þh or	 h;

ð11Þ


 surface free from forces andmoments onR ¼ a: ð12Þ

It should be noted here that in derivation of the relation
between machine head displacement h=H and the stretch
in the plane of symmetry lz the force boundary
condition (12) is not used.
It can be immediately seen that when the energy

function W is allowed to take any functional form, the
coefficients qW=qI1; qW=qI2 in Eq. (10) will be func-
tions of position and possibly of deformation as well.
After the substitution to the equation of equilibrium (9)
the formulas, as a result of covariant differentiation,
would expand enormously leaving no hope of finding

analytical solutions whatsoever. However, any compli-
cated, non-linear energy function can be expanded in
polynomial series around the unloaded (unstrained)
configuration. The deformation encountered in very soft
tissue biomechanics never exeeds strain levels of about
30%. Beyond this limit tissues suffer permanent damage.
So that, for such a moderate range of deformations it is
reasonable to approximate the energy function by the

polynomial expansion truncated after the linear term:

W ¼ C1ðI1 	 3Þ þ C2ðI2 	 3Þ: ð13Þ
This, so called Mooney–Rivlin form of energy function
has been frequently used in rubber deformation model-
ling. The physical meaning of constants C1, C2 in the
limit of infinitesimal deformation is: m=2 ¼ C1 þ C2,
where m is the shear modulus. For such a choice of the
energy function, the coefficients qW=qI1 ¼ C1; qW=qI2
¼ C2 in Eq. (10) are just numbers and the substitution to
Eq. (9) yields a managable set of partial differential
equations (in cylindrical co-ordinates):

qp
qR

¼ 	2 qW
qI1

R * f * f 00 	 2
qW
qI2

R* f 2½ f * f 00 þ ð f 0Þ2�; ð14Þ

qp
qy

¼ 0; ð15Þ

qp
qZ

¼ 	 2
qW
qI1

R2* f * f 00 	 2f 0

f v

� �

	 2
qW
qI2

R2* f * f 0½ f * f 00 þ ð f 0Þ2� 	 2f 0

f 000

� �
: ð16Þ

4. Results

By differentiating Eq. (14) with respect to Z, Eq. (16)
with respect to R, and equating the results one obtains a
single ordinary differential equation for the shape of the
deformed sample f ðZÞ:
qW
qI1

d

dZ

f 00

f

	 

þ qW

qI2

d3

dZ3

1

2
f 2

	 

¼ 0: ð17Þ

Unfortunately, the solutions of Eq. (17) can be found
only in the implicit form:

In above equations EllipticE denotes the elliptic integral
of the second kind. Two different solutions correspond
to the compression and extension cases respectively. The
solutions contain only two integration constants Const1
and Const2 because the condition that the function f ½Z�
is even – f 0½Z ¼ 0� ¼ 0 – is already included. As can be
immediately seen, the task of incorporating the bound-
ary conditions (11) into the implicit solutions for the

zþ
EllipticE ArcSin

f ½z�
f ½0�

� �
;	C2 f ½0�2

C1

" #
f ½0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ½0�2 	 f ½z�2

f ½0�2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1 þ C2ÞConst 1ð	f ½0�2 þ f ½z�2

C1 þ C2 f ½z�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ C2 f ½z�2

C1

s ¼ Const2 ð18Þ

	zþ
EllipticE ArcSin

f ½z�
f ½0�

� �
;	C2 f ½0�2

C1

" #
f ½0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ½0�2 	 f ½z�2

f ½0�2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1 þ C2ÞConst 1 ð	f ½0�2 þ f ½z�2Þ

C1 þ C2 f ½z�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ C2 f ½z�2

C1

s ¼ Const2 ð19Þ
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function f ðZÞ is very difficult. It will not be attempted in
this paper. However, it is known from the long
experience of the rubber industry (see e.g. Rivlin,
1984; Treloar, 1975) that the following cases constitute
two extremes in material behaviour:

* Neo-Hookean material)W ¼ C1ðI1 	 3Þ, m=2 ¼ C1
* Extreme-Mooney material)W ¼ C2ðI2 	 3Þ, m=2 ¼

C2

For moderate deformations, real materials fall some-
where in between these two extremes. Klingbeil and
Shield (1966) found the solutions for these extreme
cases:
For Neo-Hookean material )W ¼ C1ðI1 	 3Þ; m=2

¼ C1

h

H
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 l	1z

q
l	1z ArcSechðl	1=2z Þ

; ð20Þ

f ðZÞ ¼ l	1=2z Cosh
ArcSech½l	1=2z �

H
Z

( )
ð21Þ

and for Extreme-Mooney material )W ¼ C2ðI2 	 3Þ;
m=2 ¼ C2,

h

H
¼ ArcCosðl	1=2z Þ

l	1=2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 l	1z

q ; ð22Þ

f ðZÞ ¼ l	1=2z 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 l	1z

q
Z

Hl	1=2z

2
4

3
5
2

8><
>:

9>=
>;

1=2

: ð23Þ

To plot the deformed shapes for both cases for a given
displacement of the machine head h=H one has to
compute numerically the vertical stretch in the plane of
symmetry lz from Eqs. (20) and (22), and substitute to
Eqs. (21) and (23), respectively. Fig. 3 shows the
comparison of the deformed shape for different exten-
sion levels for these two extreme cases.
It can be seen that despite apparent differences in the

form of equations the actual deformed shaped is almost
the same. The maximum difference in radius for h=H ¼
1:3 does not exceed 1%. From the perspective of testing
biological materials, which inherently exhibit large
variability of mechanical properties (see e.g. Estes and
McElhaney, 1970; Miller and Chinzei, 1997 for brain;
Melvin et al., 1973, Farshad et al., 1998, 1999, for liver
and kidney), this difference in shape, and the resulting
difference in the cross-section area are negligible.
For practical purposes it can be concluded that
the deformed shape of the cylindrical sample of
incompressible biological material is insensitive to the
form of the constitutive law defining its mechanical
properties.
To further strengthen the argument, the boundary

value problem consisting of Eqs. (4) and (17), subject to

boundary conditions f ðZ ¼ HÞ ¼ 1, f 0ðZ ¼ 0Þ ¼ 0,
gðZ ¼ 0Þ ¼ 0, gðZ ¼ HÞ ¼ h=H, was solved numerically
(by standard shooting method) for various ratios C1=C2.
As expected, results for the shape, f ðZÞ, fall between the
extremes of Fig. 3.
When the applied strain e ¼ h=H 	 1 is small, so that

the second and higher powers of e are negligible, the
displacements are

r

R
¼ f ðZÞ ¼ 1	 3

4
e 1	 Z2

H2

	 

; ð24Þ

z ¼ gðZÞ ¼ Z 1þ 3

2
e 1	 Z2

3H2

	 
	 

: ð25Þ

Fig. 4 presents, for the two extreme cases, the
relationship between the vertical stretch in the plane of

Fig. 3. Deformed shapes of samples made of Neo-Hookean (dashed

line) and Extreme-Mooney (solid line) materials for h=H ¼ 1:1, 1.2
and 1.3 } for practical purposes deformed shapes for the two extreme

cases are the same. Numerically calculated shapes for various ratios

C1=C2 (not shown) fall between the extremes shown.

Fig. 4. Linear (for practical purposes) relationship between the

measured machine head movement h=H and the vertical stretch in

the plane of symmetry lzðZ ¼ 0Þ for samples made of Neo-Hookean
and Extreme-Mooney materials.
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symmetry lz and the displacement of the machine head
h=H, Eqs. (20) and (22).
Even though Eqs. (20) and (22) look complicated they

really describe, to high accuracy, a linear relationship.
The vertical stretch in the plane of symmetry is
proportional to the change in total hight, at least for
h=H between 1 and 1.3.

lzðZ ¼ 0Þ ¼ K
h

H
	 1

	 

; K ¼ 1:583: ð26Þ

5. Discussion and conclusions

Two theoretical results presented in this paper have
important implications for testing in biomechanics of
very soft tissues. As shown above, in a uniaxial
extension experiment, in the plane of symmetry Z ¼
z ¼ 0 (see Fig. 2) the orthogonal state of deformation
can be assumed. This state of deformation can be
described, as in the case of the unconfined compression
experiment (Miller and Chinzei, 1997), by a diagonal
deformation gradient:

FðZ ¼ 0Þ ¼
f ð0Þ 0 0

0 f ð0Þ 0

0 0 g0ð0Þ

2
64

3
75

¼
l	1=2z 0 0

0 l	1=2z 0

0 0 lz

2
64

3
75 ð27Þ

Therefore, the results of the uniaxial extension of
cylindrical biological specimens can be analysed in
analogous way to that used in the unconfined compres-
sion:
Unconfined compression

) lzðZ ¼ ð0Þ ¼ h

H
: ð28Þ

Uniaxial extension (see Fig. 1)

) lzðZ ¼ ð0Þ 	 1 ¼ K
h

H
	 1

	 

; K ¼ 1:583: ð29Þ

To test how the properties of tissue change with
the speed of loading (strain rate) one would like to
conduct series of experiments for various, but
constant, nominal strain rates. Since lz is linearly
related to h=H, constant velocities of the machine
head h=H¼ constant translate to constant stretch rates
in the plane of symmetry _lzðZ ¼ 0Þ. This is an
important feature which allows Eq. (8) to be
resolved analytically even for complicated forms of
potential function W used, e.g. in hyper-viscoelastic
constitutive laws for brain tissue (Miller and Chinzei,

1997; Miller,1999):

W ¼
Z t

0

XN
iþj¼1

Cij0 1	
Xn
k¼1

gkð1	 e	ðt	t=tkÞÞ
 !" #(

d

dt
½ðI1 	 3Þi ðI2 	 3Þj�

)
dt ð30Þ

where tk are characteristic times, gk are relaxation
coefficients, N is the order of polynomial in strain
invariants (as a result of the assumption of the brain
tissue initial isotropy the energy depends on the
histories of strain invariants only) used for strain
energy function description and I1, I2 are strain
invariants.
Even for such a complicated form of the energy

function formula (8) for Lagrange stress, in the case
of the unconfined compression, can be evaluated
analytically (Miller, 1999). As shown in this paper,
due to the linear relationship between lz and h=H,
the same solution (with the correction by a con-
stant K ¼ 1:583) can be used in analysing extension
experiments.
When applying the results of this paper one must be

aware of the simplifying assumptions used in the
derivation. In particular, the solutions obtained are
valid only for isotropic, incompressible materials. Thus,
they cannot be used for load bearing tissues, which
usually exhibit directional properties. Also, in this paper
only moderate stretches were investigated and no
assurance can be given for the validity of results for
deformations (h=H) beyond 30%.
In constitutive modelling of brain and other soft

tissues the assumption of the equality of energies of the
deformation and the reciprocal deformation has
often been used (for discussion see Mooney, 1940;
Miller and Chinzei, 1997, Miller, 1999, 2000). This
assumption has never been tested. The results pre-
sented in this paper open the possibility of simple
testing of very soft tissues in extension and develop-
ing constitutive models with larger range of applic-
ability. The assumption of the equality of the energy
of the deformation and the energy of the reci-
procal deformation will be proved or disproved in the
process.
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