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SUMMARY

Recent developments in Computer–Integrated and Robot–Aided Surgery (in particular, the emergence of auto-
matic surgical tools and robots (as well as advances in Virtual Reality techniques, call for closer examination of
the mechanical properties of very soft tissues (such as brain, liver, kidney, etc.). Moreover, internal organs are
very susceptible to trauma. In order to protect them properly against car crash and other impact consequences
we need to be able to predict the organ deformation. Such prediction can be achieved by proper mathematical
modelling followed by a computer simulation. The ultimate goal of our research into the biomechanics of these
tissues is development of corresponding, realistic mathematical models. This paper contains experimental
results of in vitro, uniaxial, unconfined compression of swine brain tissue obtained by the author in Mechanical
Engineering Laboratory, Japan, and discusses liver and kidney in vivo compression experiments conducted in
Highway Safety Research Institute and the Medical Centre of The University of Michigan. The stress–strain
curves for investigated tissues are concave upward for all compression rates containing no linear portion from
which a meaningful elastic modulus might be determined. The tissue response stiffened as the loading speed
increased, indicating a strong stress (strain rate dependence. As the step in the direction towards realistic com-
puter simulation of injuries and surgical procedures, this paper presents two mathematical representations of
brain, liver and kidney tissue stiffness. Biphasic and single-phase models are discussed. The biphasic model is
shown to be inappropriate due to its inability to account for strong stress-strain relationship. Agreement between
the proposed single-phase models and experiment is good for compression levels reaching 30% and for loading
velocities varying over five orders of magnitude.
Presented mathematical models can find applications in computer and robot assisted surgery, e. g. the realistic
simulation of surgical procedures (including virtual reality), control systems of surgical robots, and non-rigid
registration, as well as ergonomic design for injury prevention
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INTRODUCTION

Mechanical properties of living tissues form a cen-
tral subject in Biomechanics. In particular, the
properties of the muscular–skeletal system, skin,
lungs, blood and blood vessels have attracted
much attention, for examples, see [1–5] and refer-
ences cited therein. The properties of 'very' soft tis-
sues, which do not bear mechanical loads (such as
brain, liver and kidney), have not been so thor-
oughly investigated.

However, recent developments in robotics technol-
ogy, especially the emergence of automatic surgical
tools and robots [6] as well as advances in virtual
reality techniques [7], call for closer examination of
the mechanical properties of these tissues.
Mathematical models of soft tissue mechanical
properties may find applications, for example, in a
surgical robot control system, where the prediction
of deformation is needed [8,9], surgical operation
planning and surgeon training systems based on the
virtual reality techniques ([7] and references cited
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therein), where force feedback is needed, and regis-
tration [10], where knowledge of local deformation
is required. Such systems for rigid tissues (see e.g.
Journal of Computer Aided Surgery) already exist.
Their development for 'very' soft tissues is very
much dependent on the knowledge of these tissues'
mechanical properties and the existence of the
appropriate mathematical models. Such models can
also help to identify modes of injury, and improve
injury prevention techniques [11].

The reported experimental data on the mechanical
properties of brain tissue are limited. Ommaya [12]
described mammalian brain as a 'soft, yielding
structure, not as stiff as a gel nor as plastic as a
paste'. Walsh and Schettini [13] and Sahay et al.
[14] tried to establish elastic parameters of brain
tissues by measuring induced changes in intra-cra-
nial pressure. The experimental data, which might
be used to determine mechanical properties of
brain tissue, was reported in [15] and [16]. The
objective of those papers was providing data for
head injury modelling (for discussion see [17]), so
that the investigated strain rates (loading velocities)
were much higher than those relevant for neuro-
surgical operation modelling. Based on these
experimental results, Pamidi and Advani [18], and
Mendis et al. [19] proposed non–linear constitutive
relations for human brain tissue. Recently,
Guillaume et al. [20] discussed brain response to
hypergravity and Donnelly and Medige [21] inves-
tigated human brain tissue properties in shear.

Another factor demanding closer examination of
the mechanical properties of soft tissues is the
increasing requirement for automotive safety. The
accurate tissue models are the perquisites for real-
istic injury simulation and designing methods for
injury prevention. Unfortunately, most of the
papers discussing types of injuries did so without
direct reference to the mechanics of the organs
(e.g. [11,22–26]). Some experimental data can be
extracted from [27] but, unfortunately, the crucial
information about strain rates (loading velocities)
applied is not provided in this otherwise helpful
book. Recently Farshad et al [28] presented in vitro
experimental results and a mathematical model of
a pig kidney. Schmidlin et al [29] proposed a two
dimensional finite element model of the kidney to
investigate injury mechanisms in renal trauma.
However, a very simple hyperelastic constitutive
equation (based on [27]) for the tissue was
assumed in that paper. As a result, important
velocity dependent phenomena (see e.g. 'Viscous
criterion' [30–32]) could not be accounted for.

The theoretical results of this paper are based on
the results of in vivo experiments on Rhesus mon-
keys (liver and kidney, [33]), and in vitro experi-
ments on swine brains. We attempt to prove that
currently popular biphasic model is not appropri-
ate for modelling soft tissue due to its inability to
account for strong stress – strain rate dependence.
We also show, that a single-phase mathematical
model developed here, based on the concept of
strain energy function with time dependent materi-
al coefficients, is suitable for description of brain,
liver and kidney tissue deformation behaviour
under compression, at high and medium strain
rates, typical for impact loading and surgical proce-
dures.

STRESS-STRAIN RELATIONSHIP FOR BRAIN,
LIVER AND KIDNEY

Unconfined compression experiment for swine
brain tissue

Specimen preparation

Twelve brains from six–month old swines were col-
lected from a slaughter house. Pigs were terminat-
ed according to standard slaughtering procedure
and the samples were taken as a by–product.
Specimens were not frozen at any time during the
procedure. Brain weights ranged between 92.5
and 101.5 grams, close to the weight of a healthy
adult swine [34]. After being removed from the
dura, each brain was stored in physiological solu-
tion at 5°C. Usually, transportation of brains and
sample preparation took eleven hours before
experiments could begin.

Cylindrical samples of diameter ~30 mm and
height ~13 mm were cut. Steel pipe (30 mm
diameter) with sharp edges was used to cut the
samples. The faces of the cylindrical brain speci-
mens were smoothed manually, using a surgical
scalpel. Four samples were taken from the frontal
and posterial portions of the Sylvian fissure of each
hemisphere for each swine brain. The ventricle
surface and the arachnoid membrane formed the
top and bottom faces of the sample cylinder. Thus
the arachnoid membrane and the structure of the
sulci remained as parts of each specimen.

Brain tissue is very soft and adheres upon contact-
ing almost any material. Consequently, it was very
difficult to obtain an exact cylindrical shape.
Usually, the diameters of opposite faces of the
sample differed by approximately 3–4 mm.



Experimental setting and protocol

Uniaxial unconfined compression of swine brain
tissue was performed in a testing stand shown in
Figure 1. This particular geometry was dictated by
the simplifying assumptions, underlying the devel-
opment of the analytical solution for stresses (see
Section 3), used to analyse the experimental data.

The main testing apparatus was a UTM-10T
(Orientec Co.) tensile stress machine. Its load cell
allowed measurement of compressive force in
the range 0.5–9.0 N for loading velocities
between 0.005 to 500 mm/min. The vertical dis-
placement (along z-axis in Fig. 1b) was measured
by a micrometer with electric analog output. An
important part of the experiment was the mea-
surement of the radial displacement by a laser
distance meter LB-02/LB-62 (Keyence Corp.).

This measurement was intended for determining
the level of tissue compressibility as well as the
beginning of the loading phase of the experi-
ment. The experiment was documented by auto-
matically taking CCD camera images. The images
were used to ensure that during the loading
phase samples had uniformly expanded in radial
direction as well as that upper or lower faces of
the specimen had not sticked to the moving plat-
en or support.

Cylindrical samples of tissue were axially com-
pressed between two impermeable platens. As a
result of brain tissue delicacy and adhesiveness, no
pre–conditioning was performed. Only one loading
cycle was executed on each sample.

To diminish the effects of friction between platens
and a sample, polytetrafluoroethylene (PTFE)
sheets were attached to the surfaces of the sup-
porting base and movable platen. During overnight
tests, to avoid drying of the specimen, the sample
was surrounded by wet lignin and covered by a
plastic shield. The tests were performed at room
temperature (~22°C). At the end of the procedure
no signs of dehydration were observed.

The movement of the platen began about one mil-
limetre above the sample. Care was taken to avoid
touching the specimen by the platen before start-
ing compression as the sample tended to adhere to
the platen and change shape. The start of the load-
ing phase was indicated by the first non–zero read-
ing of the radial displacement by laser distance
meter. This method appears to be more reliable
than previously used first non–zero readings of the
force sensor [15] because the forces at low com-
pression levels are very small. The end of the load-
ing phase was indicated by the point of equalising
of the reading of the micrometer measuring the
vertical displacement.

RESULTS

In the paper only the results obtained for the load-
ing phase are discussed. The measurements for the
following three loading velocities are presented:

• fast: 500 mm min–1 (the fastest loading speed
possible with our equipment (corresponding to
the strain rate of about 0.64 s–1,

• medium: 5 mm min–1, corresponding to the
strain rate of about 0.64´10–2s–1, and

• slow: 0.005 mm min–1, corresponding to the
strain rate of about 0. 64´10–5s–1.
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Figure 1. Experiment setting for brain tissue compression.

a) general view with components:

1 – brain tissue specimen and the loading platens,

2 – load cell to measure axial force,

3 – micrometer to measure axial displacement,

4 – laser to measure radial displacement.

b) layout with coordinate axes

A

B
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In each test the moving platen stopped after com-
pressing the specimen by about 4.5 mm. Twelve
fast, 13 medium speed and 6 slow tests were per-
formed. Each sample was tested once only. The
number of slow tests was limited because after
each tissue delivery (usually 2 brains) only one
overnight test could be performed.

To assess the repeatability of measurements, the
Lagrange stresses (vertical force divided by initial
cross–section area) versus time for each loading
velocity are presented in Figure 2. The coefficient of
variation (standard deviation divided by the mean)
for slow and medium speed tests was approximately
constant and equal to 0.2 and 0.3 respectively. The
coefficient of variation for fast test varied between
0.18 and 0.29. These values are significantly lower
than 0.5 (the value estimated from Figures 3–6 in
[15] (suggesting that the repeatability of experiments
is significantly better than that obtained by previous
researchers. The results are affected by variations
between tissue samples taken from 12 swines,
inherent for biological materials, and errors in esti-
mation of sample cross–section area, due to devia-
tions from cylindrical shape (up to 4%). The errors of
force and displacement measurements are insignifi-

cant (not more than 0.1% of maximum force and
displacement).

Figure 3 shows the relationship between the
Lagrange stress and true strain (e = ln lz, where lz is
a stretch in vertical direction, Fig. 1b) for three
loading velocities. The standard deviation of the
measurements and the theoretical predictions are
indicated. The stress-strain curves are concave
upward for all compression rates containing no lin-
ear portion from which a meaningful elastic modu-
lus could be determined. The tissue response stiff-
ened with the increasing loading speed, indicating
a strong stress-strain rate dependence. The results
shown in Figure 3 are in general agreement with
those published in [15]. The results obtained for
lU’=0.64 1/s are very close to those reported in
[15], for lU’=0.8 1/s . It needs to be pointed out
here, that for slower strain rates there is no other
data available for comparisons.

The measurement of the radial displacement was
not successful due to the laser distance meter sen-
sitivity to the reflection angle and sample colour
changes. The repeatability was not sufficient to
state with confidence the value of the finite defor-
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a) loading speed 500 mm/min, corresponding to the strain
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mation analog of the Poison's ratio of swine brain
tissue. As it was not possible to challenge the com-
mon assumption of tissue incompressibility (e.g.
[15,17–19,35]), in the theoretical part of the
paper, the incompressibility of bran tissue is
assumed. The laser distance meter was still very
useful in determination of the beginning of sample
lateral expansion, which was considered as the
start of the loading phase.

Unconfined compression of liver and kidney

Melvin et al [33] conducted in vivo constant veloci-
ty compression tests on livers and kidneys of anaes-
thetised Rhesus monkeys. The experiments where
designed so that the injury mechanisms could be
observed. From the perspective of this study, the
most valuable results are the stress-strain curves
obtained for various loading velocities (Figures 4

Figure 3. Lagrange stress – true strain relations for swine brain tissue.

Experimental versus theoretical results.

a) loading speed 500 mm/min, corresponding to the strain

rate of about 0.64 s–1,

b) loading speed 5 mm/min, corresponding to the strain rate

of about 0.64´10–2 s–1,

c) loading speed 0.005 mm/min, corresponding to the strain

rate of about 0.64´10–5s–1.

Figure 4. Lagrange stress – elongation (l) relations for Rhesus monkey

liver tissue, experimental and theoretical results.

a) loading speed 5 cm/s, corresponding to the strain rate of

about 0.225 s–1,

b) loading speed 250 cm/s, corresponding to the strain rate

of about 11.25 s–1,

c) loading speed 500 cm/s, corresponding to the strain rate

of about 22.50 s–1.
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and 5). The loading velocities were 5 cm/s, 250
cm/s and 500 cm/s which corresponded to the
strain rates of approximately 0.225 1/s, 11.25 1/s
and 22.5 1/s for the liver, and 0.385 1/s, 19.24 1/s,
38.47 1/s for the kidney. Larger strain rates for the
kidney are the consequence of smaller dimensions

of this organ. Melvin's result should be understood
as average across the organs, since the tests were
performed on the organs in vivo , not on tissue
samples extracted from the specific locations.

As for the brain, the stress-strain curves are con-
cave upward for all compression rates containing
no linear portion from which a meaningful elastic
modulus could be determined. The tissue response
stiffened with the increasing loading speed, indi-
cating a strong stress-strain rate dependence. The
results shown in Figures 4 and 5 are in general
agreement with those published in [28]. For slower
strain rates there is no other data available for
comparisons.

MATHEMATICAL MODELLING OF SOFT TISSUE
MECHANICAL PROPERTIES

Soft tissue as a biphasic mixture

The biphasic theory (see e.g. [36,37]) assumes the
tissue to be a mixture of two immiscible con-
stituents: a solid deformable porous matrix and a
penetrating fluid. The governing equations of
biphasic continuum, are:

• Equation of continuity,
• Condition of saturation of the mixture, and
• Equation of equilibrium.

Additionally it is assumed that the fluid is inviscid
and that the diffusive momentum exchange is pro-
portional to the relative velocity between phases.

The accepted way to relate the stresses to the
deformation (in a solid matrix) is by means of the
Helmholtz free energy (similar to the strain energy
– stresses depend on the current state of deforma-
tion only). The mathematical details can be found
e.g. in [38].

The major assumption in the constitutive modelling
of the mixture, is that the solid phase stress
depends only on the current deformation and that
the fluid is inviscid. Therefore, there is no energy
dissipation in the system other than that coming
from interactions between phases. The model
states that this dissipation is proportional to the rel-
ative velocity between phases. What about loading
conditions under which the relative velocity is very
small? Let us consider the unconfined compression
of soft tissue. Under unconfined conditions the
sample, when being compressed, can expand lat-
erally. Both phases are moving in a similar way, so
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Figure 5. Lagrange stress – elongation (l) relations for Rhesus monkey

kidney tissue, experimental and theoretical results.

a) loading speed 5 cm/s, corresponding to the strain rate of

about 0.385 s–1,

b) loading speed 250 cm/s, corresponding to the strain rate

of about 19.24 s–1,

c) loading speed 500 cm/s, corresponding to the strain rate

of about 38.47 s–1.

dashed line

 - experimental result




solid line - theoretical


result (Eq.A3)

-600000

-500000

-400000

-300000

-200000

-600000

-800000

-400000

-200000

-100000

-250000

-200000

-150000

-100000

-50000

0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.65 0.70 0.75 0.80 0.85 0.90 0.95

Lagrange stress (Pa)

Elongation l

A

B

C



164

Diagnostics and Medical Technology

that the relative velocity of the phases is close to
zero, therefore the dependence on loading veloci-
ty can not be reflected in the model. In fact, it was
shown analytically [39] for the linear biphasic
model and confirmed numerically for the non-lin-
ear case [40] that the ratio of the instantaneous
stress (after sudden movement of the upper platen)
to the equilibrium stress (after sufficiently long time
following load application), as predicted by the bipha-
sic theory, cannot be larger than

where n is the Poisson's ratio of the solid phase (or its
finite deformation equivalent). This poses a severe
limit on the stress dependence on loading velocity,
which is in obvious conflict with experimental results.
As apparent in Figure 3 Lagrange stresses in swine
brain tissue for the compressive strain rate of 0.64 s–1

are more than six times larger than that for the com-
pressive strain rate of 0.64¥10–5 s–1. Similarly (Figures
4 and 5), stresses in liver and kidney change much
more with the increase in loading speed than the
biphasic model can predict. The unconfined com-
pression experiment results prove that the tissue's
solid phase is inherently dissipative and the assump-
tion of its hyperelasticity, should be abandoned.

Tissue as a viscoelastic single–phase continuum

As shown in Section 2, soft tissues exhibit non-lin-
ear stress-strain and stress-strain rate (loading
velocity) mechanical behaviour. These two non-lin-
ear phenomena will be modelled separately.

Modelling of finite deformation non-linear tissue
behaviour

The accepted way of mathematical modelling of
isotropic, almost incompressible continua is based
on choosing an appropriate form of the strain ener-
gy function. For soft tissues we propose the energy
function in polynomial form successfully used
before for certain types of incompressible rubbers
[41]:

(1)

Where J1 and J2 are so called strain invariants (see
e.g. [42] for introduction to non-linear elasticity).

The energy dependence on strain invariants only
comes from the assumption that the tissue is initial-
ly isotropic. The first two terms in (1) form a well
known Mooney–Rivlin energy function, originally
developed for incompressible rubbers (for discus-
sion see [43]).

In experiments conducted the deformation was
close to orthogonal. In such case computation of
the only non–zero Lagrange stress components
(measured with respect to undeformed configura-
tion) is very simple:

(2)

where lz is a stretch in vertical direction.

Modelling of the loading velocity dependent tissue
behaviour

To model the loading speed dependent behaviour
of the tissue the coefficients in the formula for
energy function (1) can be written in the form of
exponential, time dependent series:

(3)

and the energy function can be presented in the
form of a convolution integral:

(4)

Substitution to (2) yields:

(5)

Equation (5) served as a basis for the comparison of
the theory and experiment. Mechanical parameters
requiring identification are: Cij0 – describing the
instantaneous elasticity of the tissue, tk – character-
istic times, and gk – relaxation coefficients, k=1,...,
n. N is the order of polynomial in strain invariants.
For infinitesimal strain conditions, the sum of con-
stants C100 and C010 has a physical meaning of
one half of the instantaneous shear modulus, i.e.:

(6)

Determination of material constants for swine
brain tissue

For the determination of material coefficients in
the model, the experimental results for the loading



phase of the unconfined compression of swine
brain described in Section 2 were used. To obtain
a good agreement between the theory and experi-
ment, it was necessary to retain second order terms
in the energy function (1). Then, for N=2:

(7)

In the case of the compression with constant veloc-
ity, the integral (7) can be evaluated analytically,
however, the result is long and not presented here.
It is important to note that after fixing the values of
parameters gk the expression for stress is linear in
material parameters Cij0. Similarly, after fixing con-
stants Cij0 the model becomes linear in parameters
gk. This important property was used to estimate
the values of material constants for swine brain tis-
sue.

Two time–dependent terms (n=2 in eg. 7) were
used. This was a minimal number of exponentially
decaying terms allowing for accurate modelling the
tissue behaviour for a wide range of loading veloci-
ties. It proved not possible with only one exponen-
tially decaying time dependent term to reproduce
the experimental results for strain rates ranging
over five orders of magnitude. To uniquely deter-
mine material coefficients Cij0 and gk (eq. 7) a few
additional assumptions were adopted. The equality
of the energy of reciprocal deformation to that of
the original one (see [44]) was assumed: 

was assumed to be equal 0. Two time constants,
t1= 5 [s]; t2=50 [s], were chosen to be approxi-
mately equal to the duration of the medium and
fast tests respectively. These assumptions left four
constants to be determined: C100, C200,  g1 and g2.

A simple iterative procedure was used to uniquely
determine the required four parameters. Maximum
likelihood method was employed to obtain the
best set of material coefficients to describe the
experimental data. The estimated material proper-
ties of swine brain at low strain rates are listed in
Table 1. Figure 3 presents the comparison of
experimental results and theoretical prediction of
the linear viscoelastic model.

The agreement for fast and medium loading speeds
is very good (Figure 3 a,b). Worse match for slow
loading speed results from a different character of
the stress-strain curve than that for medium and
fast loading speeds. In the hyperelastic, linear vis-
coelastic model the shape of stress – strain curve
does not depend on strain rate (see Figure 3).

Determination of material constants for liver and
kidney

The results of [33] were used for liver and kidney
model identification. To accurately account for the
tissue behaviour for our range of loading velocities, it
was sufficient to use only one time–dependent term
in the Cij expansion (n=1 in eg. 3). To uniquely
determine material coefficients Cij0 and gk the same
additional assumptions as for the brain were adopt-
ed. The time constants, t1=0.002 [s], was chosen
basing on the duration of the loading phase in exper-
iments and the considerations for the brain [19].

As for the brain, the maximum likelihood method
was used to identify the material parameters. Table
2 contains the values of estimated material coeffi-
cients for liver tissue together with multiple correla-
tion coefficients characterising the quality of fit.
Corresponding values for the kidney are presented
in Table 3. Figures 4 and 5 present the comparison
of experimental results and theoretical predictions
of the linear viscoelastic model.

It is worth noting that the instantaneous shear mod-
uli for liver and kidney are very close to each other.
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Instantaneous response characteristic time
t1=0.002 [s]

C100= C010=63619 [Pa];

C200= C020=13222 [Pa];

µ0=2(C100+ C010)=254476 [Pa]

R2=0.996

g1=0.9; 

R2=0.974

Table 2. Liver material coefficients and multiple correlation coeffi-

cients.

Instantaneous response characteristic time
t1=0.5 [s]

characteristic time
t2=50[s]

C100= C010=263 [Pa];

C200= C020=491 [Pa];

µ0=2(C100+ C010)=1052[Pa]

R2=0.996

g1=0.450;

R2=0.986

g2=0.365; 

R2=0.986

Table 1. Brain material coefficients and multiple correlation coeffi-

cients



DISCUSSION AND CONCLUSIONS

In this study a simple, linear viscoelastic model of
tissue deformation behaviour is presented. The
model accounts well for observed non-linear stress-
strain relations, as well as for strong dependence
between stresses and strain rate.

The use of the single-phase, linear, viscoelastic
model based on the concept of the strain energy
function, in the form of convolution integral with
coefficient expressed in the form of exponential
series, is described. The model requires, in the
case of brain, four, and in the cases of liver and
kidney only two material constants to be identified.
The main advantage, though, is that the large
deformation, linear viscoelastic model can be
immediately applied to larger scale finite element
computations [45] by directly using ABAQUS com-
mands HYPERELASTIC – to describe instantaneous
elasticity of the tissue, and VISCOELASTIC – to
account for time dependent tissue behaviour [46].

Characteristic times used in this study are consider-
ably larger than those used in hypergravity, impact
and injury modelling. The tissue stiffness resulting
from analysis of typical for surgical procedures,
slow strain rate experiments, is much lower than
that assumed in models intended to explain high
strain rate phenomena. Therefore one must be
very cautious in choosing the appropriate model
for one's anticipated strain rate range. The instanta-
neous brain stiffness governed by constants
C100=263Pa and C200=491Pa (equivalent to the
instantaneous shear modulus m0=1052Pa) will
not, obviously, be adequate for describing tissue
behaviour at strain rates larger than 0.7 1/s.

It is well known that changes in impact velocity
greatly affect the injury level [25,31]. The inclusion
of the stress – strain rate dependence in the consti-
tutive model provides means to model such behav-
iour.

The mathematical models presented here are use-
ful in approximate modelling the behaviour of
abdominal organ tissues. The presented approach
employs spatial averaging of material properties.
The strain rate range investigated ascertains that
the model is meaningful in car crash or other situa-
tions leading to impacts at high speeds. Similar
procedure can lead to constructing a constitutive
model for applications in surgical simulations.
However, the experimental results concerning the
deformation behaviour of abdominal organs at low
strain rates (say 0.01 1/s, typical for neurosurgery)
are not available yet.

Before the finite element simulation of liver and
kidney deformation is conducted, further research
is needed to determine the way these organs are
attached to the body. Such knowledge is necessary
to formulate properly the boundary conditions for
the mathematical formulation of the problem.

An alternative way of modelling brain tissue seems
to be a biphasic approach. However, as it was
shown in Section 3, biphasic models in their pre-
sent form can not account for strong stress – strain
rate dependence observed in the brain tissue.

Acknowledgments

The financial support of the Australian Research
Council and Japanese Science and Technology
Agency is gratefully acknowledged.

REFERENCES:

1. Borowski S, Dietrich M, Kedzior K et al: Modeling and Simulation of

Human Musculoskeletal System. In Proceedings of the Sixth

Biomechanics Seminar (Edited by Hogfors C and Andreasson G ),

Center for Biomechanics, Chalmers University of Technology,

Sweden, 1992; 116-134

2. Fung YC: Biomechanics. Mechanical properties of Living Tissues.

Springer-Verlag, New York, 1981

3. Gallagher RH, Simon BR, Johnson PC and Gross JF eds: Finite

Elements in Biomechanics. John Wiley & Sons. New York, 1982

4. Mow VC, Ateshian GA and Spilker RL: Biomechanics of

Diarthrodial Joints: A Review of Twenty Years of Progress. Trans.

ASME, J Biomech Eng, 1993; 115: 460-467

5. Schmid-Schonbein GW, Woo SL-Y and Zweifach BW eds: Frontiers

in Biomechanics. Springer, New York, 1986

6. Brett PN, Fraser CA, Henningan M et al: Automatic Surgical Tools

for Penetrating Flexible Tissues. IEEE Eng Med Biol, 1995; May/June:

264-270

7. Burdea G: Force and Touch feedback for Virtual Reality. Wiley. New

York, 1996

166

Diagnostics and Medical Technology

Instantaneous response characteristic time
t1=0.002 [s]

C100= C010=64176 [Pa];

C200= C020=92030 [Pa];

µ0=2(C100+ C010)=256704 [Pa]

R2=0.9975

g1=0.94;

R2=0.983

Table 3. Kidney material coefficients and multiple correlation coeffi-

cients.



167

Lebensztejn DM et al – Current knowledge on treatment of chronic hepatitis…

8. Miller K and Chinzei K: Modeling of Soft Tissues, Mechanical

Engineering Laboratory News, 1995; 12: 5-7 (in Japanese)

9. Miller K and Chinzei K: Modeling of Soft Tissues Deformation,

Journal Computer Aided Surgery, 1, Supl, Proc. of Second

International Symposium on Computer Aided Surgery, Tokyo

Women's Medical College, Shinjuku, Tokyo, 1995; 62-63

10. Lavallée S: Registration for Computer Integrated Surgery:

Methodology, State of the Art. Computer-Integrated Surgery, MIT

Press, Cambridge Massachusetts, 1995; 77-97

11. Huelke DF and Melvin JW: Anatomy, Injury Frequency,

Biomechanics, and Human Tolerances. SAE Transactions 800098,

1980; 633-651

12. Ommaya AK: Mechanical Properties of Tissues of the Nervous

System. J Biomech, 1968; 1: 127-138

13. Walsh EK and Schettini A: Calculation of brain elastic parameters in

vivo. Am J Physiol, 1984; 247: R637-R700

14. Sahay KB, Mehrotra R, Sachdeva U and Banerji AK:

Elastomechanical Characterization of Brain Tissues. J Biomech,

1992; 25: 319-326

15. Estes MS and McElhaney JH: Response of Brain Tissue of

Compressive Loading, ASME Paper No. 1970; 70-BHF-13

16. Galford JE and McElhaney JH: A Viscoelastic Study of Scalp, Brain

and Dura. J Biomech, 1970; 3: 211-221

17. Voo L, Kumaresan S, Pintar FA et al: Finite-element models of the

human head. Med Biol Eng Comp, 1996; 34: 375-381

18. Pamidi MR and Advani SH: Nonlinear Constitutive Relations for

Human Brain Tissue. Trans ASME, J Biomech Eng, 1978; 100: 44-48

19. Mendis KK, Stalnaker RL and Advani SH: A Constitutive

Relationship for Large Deformation Finite Element Modeling of Brain

Tissue. Trans. ASME, J Biomech Eng, 1995; 117: 279-285

20. Guillaume A, Osmont D, Gaffie D et al: Effects of Perfusion on the

Mechanical Behavior of the Brain Exposed to Hypergravity. J

Biomech, 1997; 30(No. 4): 383-389

21. Donnelly BR and Medige J: Shear Properties of Human Brain Tissue.

J Biomech Eng, 1997; 119: 423-432

22. Divicenti FC, Rives JD, Laborde EJ et al: Blunt Abdominal Trauma, J

Trauma, 1968; 8(6):  1004-1013

23. Guerriero G: Traumatic injury to the kidney and ureter, Current

Opinion in Urology, 1993; 3:  186-193

24. Hossak DW: The Pattern of Injuries Received by 500 Drivers and

Passengers Killed in Road Accidents, Medical Journal of Australia,

1972; 2: 193-195

25. Rouhana SW, Lau IV and Ridella SA: Influence of Velocity and

Forced Compression on the Severity of Abdominal Injury in Blunt,

Nonpenetrating Lateral Impact, J Trauma, 1985; 25: 490-500

26. Rutledge R, Thomason M, Oller D et al: The Spectrum of Abdominal

Injuries Associated with the Use of Seat Belts, J Trauma, 1991; 31:

820-826

27. Yamada H: Strength of Biological Materials, The Wiliams & Wilkins

Company, 1970

28. Farshad M, Barbezat M, Schmidlin F et al: Material Characterization

and Mathematical Modelling of the Pig Kidney in Relation with

Biomechanical Analysis of Renal Trauma, Proceedings of North

American Congress on Biomechanics. Waterloo, Ontario, Canada,

1998

29. Schmidlin FR, Schmid P, Kurtyka T et al: Force transmission and

stress distribution in a computer simulated model of the kidney: an

analysis of the injury mechanisms in renal trauma, J Trauma, 1996;

40: 791-796

30. Viano DC, King AI, Melvin JW and Weber K: Injury Biomechanics

Research: An Essential Element in the Prevention of Trauma, J

Biomech, 1989; 22(5): 403-417

31. Viano DC and Lau IV: A Viscous Tolerance Criterion for Soft Tissue

Injury Assessment, J Biomech, 1988; 21(5): 387-399

32. Viano DC, Lau IV and Asbury C: Biomechanics of the Human Chest,

Abdomen, and Pelvis in Lateral Impact, Accid Anal & Prev, 1989;

21(6): 553-574

33. Melvin JW, Stalnaker RL and Roberts VL: Impact Injury Mechanisms

in Abdominal Organs, SAE Transactions, 1973; 730968: 115-126

34. Kumagaya T and Namioka S (eds): 'Hyology and Hyoiatrics, ' Kindai

Press, Tokyo, 1987 (in Japanese)

35. Ruan JS, Khalil T and King AI: Dynamic Response of the Human

Head to Impact by Three-Dimensional Finite Element Analysis.

Trans. ASME, J Biomech Eng, 1994; 116: 44 -50

36. Nagashima T, Horowitz B, Rapoport SI: A Mathematical Model of

Vasogenic Brain Edema, Advances in Neurosurgery, 1990; 52: 317-

325

37. Almeida and RL Spilker: Mixed and Penalty Finite Element Models

for the Nonlinear Behaviour of Biphasic Soft Tissues in Finite

Deformation, Comp Meth Biomech Biomed Eng, 1997; 1: 25-46

38. Mow VC, Kuei SC, Lai WM and Armstrong CG: Biphasic Creep and

Stress Relaxation of Articular Cartilage in Compression: Theory and

Experiments, Trans. ASME, J Biomech Eng, 1980; 102: 73-84

39. Armstrong CG, Lai WM and Mow VC: An Analysis of the

Unconfined Compression of Articular Cartilage, Trans. ASME, J

Biomech Eng, 1984; 106: 165-173

40. Miller K: Modelling Soft Tissue Using Biphasic Theory - A Word of

Caution. Comp Meth Biomech Biomed Eng, 1998; 1: 261-263

41. Treloar LRG: The Physics of Rubber Elasticity. Calderon Press.

Oxford. UK, 1975

42. Green AE and Zerna W: Theoretical Elasticity. Calderon Press.

Oxford. UK, 1954

43. Rivlin RS: Forty Years of Nonlinear Continuum Mechanics. In

Proceedings of the IX Int. Congress on Rheology, Mexico, 1984; 1-29

44. Mooney M: A Theory of Large Elastic Deformation. J Appl Phys,

1940; 11: 582-592

45. Zienkiewicz OC and Taylor RL: The finite element method: McGraw-

Hill, London, New York, 1989

46. ABAQUS Theory Manual (1992) Version 5. 2, Hibbit, Karlsson &

Sorensen, Inc


