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Constitutive modelling of abdominal organs
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Abstract

Abdominal organs are very susceptible to trauma. In order to protect them properly against car crash and other impact
consequences, we need to be able to simulate the abdominal organ deformation. Such simulation should account for proper
stress}strain relation as well as stress dependence on strain rate. As the step in this direction, this paper presents three-dimensional,
non-linear, viscoelastic constitutive models for liver and kidney tissue. The models have been constructed basing on in vivo
experiments conducted in Highway Safety Research Institute and the Medical Centre of The University of Michigan (Melvin et al.,
1973). The proposed models are valid for compressive nominal strains up to 35% and fast (impact) strain rates between 0.2 and
22.5 s~1. Similar models can "nd applications in computer and robot assisted surgery, e.g. the realistic simulation of surgical
procedures (including virtual reality) and non-rigid registration. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The increased requirements for automotive safety de-
mand closer examination of the mechanical properties of
abdominal tissues. The accurate tissue models are the
perquisites for realistic injury simulation and designing
methods for injury prevention. Moreover, recent devel-
opments in robotics technology, especially the emergence
of automatic surgical tools and robots (e.g. Brett et al.,
1995) as well as advances in virtual reality techniques
(Burdea, 1996), make the robotic surgery and virtual
reality surgeon training and operation planning systems
a goal within our reach. Such systems for rigid tissues (see
e.g. Journal of Computer Aided Surgery) already exist.
Their development for `verya soft tissues is very much
dependent on the knowledge of these tissues' mechanical
properties and the existence of the appropriate math-
ematical models.

The reported experimental data on the mechanical
properties of liver and kidney are limited. Most of the
papers appeared in the medical journals and discussed
the types of injuries without direct reference to the mech-
anics of the organs (e.g. Divicenti et al., 1968; Guerriero,
1993; Hossack, 1972; Huelke et al., 1980; Rouhana et al.,
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1985; Rutledge et al., 1991). Recently, Farshad et al.
(1998) presented in vitro experimental results and
a mathematical model of a pig kidney. Schmidlin et al.
(1996) proposed a two-dimensional "nite element model
of the kidney to investigate injury mechanisms in renal
trauma. However, a very simple hyperelastic constitutive
equation (based on Yamada, 1970) for the tissue was
assumed in that paper. As a result, important velocity
dependent phenomena (see e.g. `Viscous criteriona,
Viano et al., 1989a,b; Viano and Lau, 1988) could not be
accounted for.

The theoretical results of this paper* the "rst, to the
best of the author's knowledge, three-dimensional, non-
linear, viscoelastic constitutive models of liver and kid-
ney* are based on the results of in vivo experiments on
Rhesus monkeys (Melvin et al., 1973). We attempt to
prove that the non-linear viscoelastic model, based on
the strain energy function in polynomial form with time
dependent coe$cients, is suitable for description of liver
and kidney tissue deformation behaviour under compres-
sion, at high strain rates, typical for impact loading.

2. Stress}strain relationship for liver and kidney

Melvin et al. (1973) conducted in vivo constant velocity
compression tests on 17 livers and six kidneys of anaes-
thetised Rhesus monkeys. Results of these tests form, to
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Fig. 1. Lagrange stress}elongation (j) relations for Rhesus monkey liver tissue, experimental and theoretical results: (a) loading speed 5 cm s~1,
corresponding to the strain rate of about 0.225 s~1, (b) loading speed 250 cm s~1, corresponding to the strain rate of about 11.25 s~1, (c) loading speed
500 cm s~1, corresponding to the strain rate of about 22.50 s~1.

the best of author's knowledge, the only published data
on in vivo deformation behaviour of liver and kidney.
The experiments where designed so that the injury mech-
anisms could be observed. The organ was laid onto
a load cell while still being perfused by the living animal.
Load and impactor displacement were measured. In the
calculation of stresses Melvin et al. approximated the test
con"guration as that of an uniaxial compression.

From the perspective of this study, the most valuable
results are the stress}strain curves obtained for various
loading velocities (Figs. 1 and 2) and estimates of strain
energy densities (Table 3). The loading velocities were 5,
250 and 500 cm s~1 which corresponded to the nominal
strain rates of approximately 0.225, 11.25 and 22.5 1 s~1

for the liver, and 0.385, 19.24, 38.47 1 s~1 for the kidney.
Melvin's result should be understood as average across
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Fig. 2. Lagrange stress}elongation (j) relations for Rhesus monkey kidney tissue, experimental and theoretical results: (a) loading speed 5 cm s~1,
corresponding to the strain rate of about 0.385 s~1, (b) loading speed 250 cm s~1, corresponding to the strain rate of about 19.24 s~1, (c) loading speed
500 cm s~1, corresponding to the strain rate of about 38.47 s~1.

the organs, since the tests were performed on the organs
in vivo, not on tissue samples extracted from the speci"c
locations.

The stress}strain curves are convex for all compression
rates containing no linear portion from which a meaning-
ful elastic modulus could be determined. The tissue re-
sponse sti!ened with the increasing loading speed,
indicating a strong stress}strain rate dependence. The
results shown in Figs. 1 and 2 are in general agreement
with those published in (Farshad et al., 1998). It needs to

be pointed out here, that for slower strain rates there is
no other data available for comparisons.

3. Determination of material constants of
hyper-viscoelastic constitutive model for liver and kidney

To model the deformation behaviour of liver and kid-
ney, the hyper-viscoelastic constitutive equation de-
veloped originally for brain tissue (Miller and Chinzei,
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1997) was used. Therefore only a very brief description is
given below.

The model is based on a strain energy function with
time-dependent coe$cients, written in the form of convo-
lution integral:
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describe mechanical properties of the tissue, J
1

and J
2

are the "rst and second strain invariants, and q
k
are char-

acteristic times. N is the order of polynomial in strain
invariants, used for strain energy function description.

Based on our experiences with modelling brain tissue,
in this work the following simplifying assumptions were
adopted:

f the isotropy of the tissue in the unloaded state
f tissue incompressibility (see e.g. Farshad et al., 1998;

Schmidlin et al., 1996)

Since the test conditions approximated those of uniaxial
compression with the tissue being free to expand laterally
under load, additional assumption of orthogonality of
deformation was adopted. This assumption is crucial
because it allows the derivation of stress}elongation (j

z
)

dependency in analytical form
The above assumptions allow computation of the only

non-zero Lagrange stress components from the simple
formula (Miller and Chinzei, 1997):
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It is important to note that the expression for stresses (3)
is linear in material parameters C

ij=
and C

ijk
, see Eq. (2).

Eq. (3) served as a basis for the comparison of the theory
and experiment.

In order to identify material coe$cients in Eq. (3)
additional simpli"cations were necessary. The character
of the stress}strain curves for liver and kidney is very
similar to those of brain tissue, so the same assumptions
which lead to the estimation of material constants for
brain tissue (Miller and Chinzei, 1997) were adopted
here. The second-order polynomial strain function was
taken. The equality of the energy of reciprocal deforma-
tion to that of the original one (see Mooney, 1940; Miller
and Chinzei, 1997) was assumed: C

01
/C

10
"1 and

C
02

/C
20

"1. For simplicity C
11

was taken to be equal
to zero. For the range of loading strain rates considered,
it was su$cient to use only one time-dependent term in

the C
ij

expansion (n"1 in e.g. 2). Incorporation in the
model of a larger number of time-dependent terms would
result in the necessity of identifying considerably more
corresponding material coe$cients. The time constants
t
1
"0.002 s was chosen basing on the nominal strain

rates in experiments and the considerations for the brain
(Mendis et al., 1995). The estimated strain rates in experi-
ments of Melvin et al. (1973) were similar to those of
Estes and MacElhaney (1970) for brain sample tests. The
time constant used by Mendis et al. for brain modelling,
based on the experiments of Estes and MacElhaney was
0.008 s. However, due to the contribution of time depen-
dent terms to the stresses at the lowest strain rate con-
sidered, Mendis et al. had to decrease the values of
estimated equilibrium coe$cients. Therefore, in this
study the time constant is taken smaller than that used by
Mendis et al. As a result, the contribution of time depend-
ence to the model predictions for slowest experiments is
negligible.

The adoption of the above assumptions results in the
following equation for stress:
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with four material constants to be identi"ed: C
10=

"

C
01=

, C
20=

"C
02=

, C
101

"C
011

and C
201

"C
021

. In
the case of the compression with constant velocity,
the integral (4) can be evaluated analytically, see the
Appendix.

Function Regress, available in Mathematica software
package (Wolfram Research, 1996), was used to "nd
least square "t to the slow test data. The in#uence of
the exponentially decaying terms on the results of the
slow test is very small, so that during the procedure of
determining equilibrium coe$cients C

10=
" C

01=
,

C
20=

" C
02=

, the remaining coe$cients were set to
zero. This does not imply that the tissue exhibits elastic
behaviour at strain rates of 0.2}0.3 s~1 but that the
model proposed here is not capable of capturing vis-
coelastic behaviour at lower strain rates. It must be noted
here that there is no experimental data available on liver
and kidney tissue deformation behaviour at lower strain
rates.

After setting the values of C
10=

and C
20=

the remain-
ing coe$cients C

101
and C

201
were calculated through

a simultaneous least-squares "t to the medium and fast
speed experimental results.
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Table 1
Liver material coe$cients and multiple correlation coe$cients

Equilibrium
(slow test results used)

Characteristic time t
1
"0.002 s

(medium and fast speed test results
used)

C
10=

"C
01=

"6206 Pa;
R2"0.996

C
101

"C
011

"57413 Pa; R2"0.974

C
20=

"C
02=

"3492 Pa;
R2"0.996

C
201

"C
021

"9730 Pa; R2"0.974

Table 2
Kidney material coe$cients and multiple correlation coe$cients

Equilibrium
(slow test results used)

Characteristic time t
1
"0.002 s

(medium and fast speed test results
used)

C
10=

"C
01=

"898 Pa;
R2"0.9975

C
101

"C
011

"63278 Pa; R2"0.983

C
20=

"C
02=

"26368 Pa;
R2"0.9975

C
201

"C
021

"65662 Pa; R2"0.983

Table 3
Strain energy density: experimental versus theoretical results (Eq. (1))

Loading speed
(strain rate)

Maximum compressive
nominal strain

Strain energy density
(experiment) (J)

Strain energy density
(theoretical results) (J)

Kidney 5 cm s~1(0.385 s~1) 35% 23500 20 278
250 cm s~1(19.24 s~1) 43.25% 108500 141068
500 cm s~1(38.47 s~1) 37.5% 93000 97 183

Liver 5 cm s~1(0.225 l s~1) 53.5% 34500 57 290
250 cm s~1(11.25 l s~1) 49% 50750 69 342
500 cm s~1(22.5 l s~1) 48.88% 65000 66 336

4. Results

Table 1 contains the values of estimated material coef-
"cients for liver tissue together with multiple correlation
coe$cients characterising the quality of "t. The corre-
sponding values for the kidney are presented in Table 2.

The prediction of the constitutive model and the ex-
perimental results are shown in Figs. 1 and 2. The agree-
ment between the theoretical model and the experimental
results is good. As an additional test of the appropriate-
ness of the proposed model the values of the strain energy
density function (Eq. (1)) were calculated and compared
with those estimated by Melvin et al. (1973) for maximum
strains (see Table 3). The agreement is very good for all
but two cases. A weaker match for medium speed loading
for kidney and slow loading for liver results from very
low forces at small strains detected by Melvin et al.

5. Discussion and conclusions

In this study the mathematical models of liver and
kidney tissue deformation behaviour are presented. They

are based on in vivo compression experimental results.
The tissues exhibit non-linear, stress}strain relations as
well as strong dependence between stresses and strain
rates.

The use of the single-phase, hyper-viscoelastic
model based on the concept of the strain energy function,
in the form of convolution integral with coe$cient ex-
pressed in the form of exponential series is advocated.
Agreement between the proposed theoretical model and
experiment is good for compression levels reaching 35%
and for loading velocities varying over two orders of
magnitude.

It is well known that changes in impact velocity greatly
a!ect the injury level (Rouhana et al., 1985; Viano and
Lau, 1988). The inclusion of the stress}strain rate de-
pendence in the constitutive model provides means to
model such behaviour.

The mathematical models presented here are useful
in approximate modelling the behaviour of abdominal
organ tissues, which includes spatial averaging of
material properties. The strain rate range investigated
('0.2 s~1) ascertains that the model is meaningful in
car crash or other situations leading to impacts at
high speeds. At the same time, rather high estimated
values of equilibrium coe$cients C

ij=
make the model

unsuitable for applications to low strain rate deforma-
tions. Similar procedure can lead to constructing a con-
stitutive model for applications in surgical simulations.
However, the experimental results concerning the defor-
mation behaviour of abdominal organs at low strain
rates (say 0.01 s~1, typical for neurosurgery) are not
available yet.

Before the "nite element simulation of liver and kidney
deformation is conducted, further research is needed to
determine the way these organs are attached to the body.
Such knowledge is necessary to formulate properly the
boundary conditions for the mathematical formulation
of the problem.
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Appendix A

The expression for the Lagrange stress can be divided into two parts: time independent ¹
0
, and time dependent, with

characteristic time q
1
, ¹

1
. In case of uncon"ned compression with constant velocity the integral in Eq. (8) can be

evaluated analytically. The result was obtained using Mathematica (Wolfram, 1996) software package:
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where v is a loading velocity divided by the initial height. ExpIntegralEi denotes exponential integral function.
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