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Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biome-
chanical models have been regarded as one of the key factors preventing application of such models in
predicting organ deformation forimage-guided surgery. This contribution presents real-time patient-specific
computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e.
surgical opening of the skull) using specialised non-linear finite element procedures implemented on
a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated
Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures
utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-
specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with
realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The
loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of
the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated
that the models very accurately predict the intraoperative deformations within the brain. For each case,
computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders
of magnitude reduction in computation time in comparison to our previous study in which the brain
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deformation was predicted using a commercial finite element solver executed on a personal computer.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Surgery planning is typically conducted using high-quality
preoperative radiographic images. Craniotomy (i.e. surgical opening
of the skull) and other surgical procedures result in brain deforma-
tions that lead to misalignment between the actual position of
pathology and critical healthy tissues and their positions determined
from the preoperative images (Warfield et al., 2002). Therefore,
predicting the intraoperative brain tissue deformations to align the
high-quality preoperative images to the intraoperative geometry (in
a process known as non-rigid registration) is recognised as a critical
tool in image-guided neurosurgery (Fedorov et al., 2008).

In the past non-rigid registration relied solely on image processing
methods that predict the deformation field within the brain without
taking into account the brain tissue mechanics (Beauchemin and

* Corresponding author. Tel.: +61 8 6488 7362; fax: +61 8 6488 1024.
E-mail address: adam.wittek@uwa.edu.au (A. Wittek).
! Study conducted during the internship at the Intelligent Systems for Medicine
Laboratory, The University of Western Australia.

0079-6107/$ — see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.pbiomolbio.2010.09.001

Barron, 1995; Viola and Wells III, 1997; Warfield et al., 2001). As
such methods do not ensure plausibility of the predicted deforma-
tions, biomechanical models, in which predicting the brain defor-
mations is treated as a computational problem of solid mechanics,
have been introduced (Archip et al., 2007; Edwards et al., 1998; Hu
et al,, 2007; Kyriacou and Davatzikos, 1998; Kyriacou et al., 1999;
Miga et al., 1998, 2000, 2001; Skrinjar et al., 1998, 2001; Warfield
et al., 2002). In most practical cases, such models utilise the finite
element method (Bathe, 1996) to solve sets of partial differential
equations of solid mechanics governing the behaviour of the analysed
continuum. The finite element method has been verified in numerous
applications in computer-aided engineering and biomechanics.
However, its application in neurosurgery poses new challenges as the
deformation field within the brain must be computed within the real-
time constraints of image-guided neurosurgery. A precise definition
of such constraints is still lacking, and values varying from tens of
seconds (Grimson et al., 1998; Platenik et al., 2002; Warfield et al.,
2002) to tens of minutes, for slowly occurring brain deformations,
(Miga et al., 1999; Skrinjar et al., 2002) have been suggested. In this
study, we follow a definition of real-time constraints of image-guided
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neurosurgery suggested by Chrisochoides et al. (2006) who stated
that the computation time of the registration application should
not exceed the time of acquisition of the intraoperative magnetic
resonance images and less time the computation takes the better.
Similar opinion has been expressed by Jalote-Parmar and Badke-
Schaub (2008) who listed timely providing the surgeons with the
intraoperative organ position among the key factors influencing
intraoperative surgical decision making. Thus, the studies by
Chrisochoides et al. (2006) and Jalote-Parmar and Badke-Schaub
(2008) place the real-time constraints of image-guided neurosur-
gery within an order of seconds or tens of seconds rather than tens of
minutes and highlight the importance of reducing the computation
time of the registration algorithms.

So far, real-time prediction of the brain deformation has relied
on linear finite element procedures in which the deformation is
assumed to be infinitesimally small (i.e. the equations of solid
mechanics are integrated over the undeformed preoperative
brain geometry) and the brain tissue is treated as a continuum
exhibiting linear stress—strain relationship (Archip et al., 2007;
Clatz et al., 2005; Ferrant et al., 2001; Skrinjar et al., 2002;
Warfield et al., 2002). However, the brain surface deformations
due to craniotomy can exceed 20 mm (Roberts et al., 1998) and
tend to be above 10 mm for around 30% of patients (Hill et al.,
1998). These values are inconsistent with the infinitesimally
small deformation assumption that implies that geometry
changes of the analysed continuum are negligible and equations
of continuum mechanics can be solved over the initial (unde-
formed) geometry. Therefore, in several studies (Hu et al., 2007;

Wittek et al., 2007, 2009; Xu and Nowinski, 2001) finite element
models utilising geometrically non-linear (i.e. finite deforma-
tions) formulation of solid mechanics have been applied to
compute deformation field within the brain for neuroimage
registration. Despite facilitating accurate predictions of the brain
deformations, the non-linear biomechanical models have been,
so far, of little practical importance as the algorithms used in
such models led to computation times greatly exceeding the real-
time constraints of neurosurgery. For instance, Wittek et al.
(2009) reported the computation time of over 1700 s on a stan-
dard personal computer when predicting the brain deformations
using a model with around 50,000 degrees of freedom imple-
mented in the commercial non-linear finite element solver
LS-DYNA™,

Recently our group developed and implemented specialised
non-linear finite element algorithms and solvers for real-time
computation of soft tissue deformation. Verification of the
numerical accuracy and numerical performance of these algo-
rithms have been previously reported in the literature (Miller et al.,
2007; Joldes et al., 2009a, 2009b, 2010a). In this study, following
our recent work (Joldes et al., 2009c¢), we evaluate their accuracy
and performance in a practical context through application in
predicting deformation fields within the brain for six cases of
craniotomy-induced brain shift. In the accuracy evaluation, the
preoperative image data warped using the deformations predicted
by means of our models and algorithms are compared with the
intraoperative images. The results demonstrate that biomechanical
models using specialised non-linear finite element algorithms

Fig. 1. Preoperative T1 magnetic resonance images showing tumour location in the craniotomy cases analysed in this study. White lines indicate the tumour segmentations. (A) Case
1; (B) Case 2; (C) Case 3; (D) Case 4; (E) Case 5; and (F) Case 6. Case 6 was used in our previous studies (Joldes et al., 2009a, 2009b; Wittek et al., 2007, 2009).
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facilitate accurate prediction of deformation field within the brain
for computation times below 40 s on a standard personal computer
and below 4 s on a graphics processing unit (GPU).

2. Material and methods
2.1. Medical context

We analysed six cases of craniotomy-induced brain shift that
represent different situations that may occur during neurosurgery
as characterised by tumours located in different parts of the brain:
anteriorly (for Cases 1, 2 and 6), laterally (for Case 3) and posteriorly
(for Cases 4 and 5) (Fig. 1). Case 6 was investigated in our previous
studies (Joldes et al., 2009a, 2009b; Wittek et al., 2007; Wittek
et al, 2009). In this paper, the previously obtained results for
Case 6 are presented in a format consistent with a new analysis we
conduct here for Cases 1-5.

2.2. Biomechanical models for computing brain deformation

2.2.1. Brain tissue constitutive modelling for biomechanical models

Despite continuous efforts (Sinkus et al., 2005; Turgay et al,,
2006), commonly accepted non-invasive methods for deter-
mining patient-specific constitutive properties of the brain and
other soft organs’ tissues have not been developed yet. Constitutive
models of the brain tissue applied for computing the brain defor-
mation for non-rigid registration vary from simple linear-elastic
model (Warfield et al., 2000) to Ogden-type hyperviscoelasticity
(Wittek et al., 2007) and bi-phasic models relying on consolidation
theory (Miga et al., 2000, 2001). However, as explained in more
detail in section Loading and Boundary Conditions, the strength of
the modelling approach used in this study is that the calculated
brain deformations depend very weakly on the constitutive model
and mechanical properties of the brain tissues. Therefore, following
Joldes et al. (2009a), we used the simplest hyperelastic model, the
neo-Hookean (Yeoh, 1993). The rationale for selecting the hypere-
lastic constitutive model was that it has been indicated in the
literature (Miller and Chinzei, 1997) that such models very well
represent the behaviour of the brain tissues undergoing large
deformations.

Based on the experimental data by Miller et al. (2000) and Miller
and Chinzei (2002), the Young’s modulus of 3000 Pa was assigned
for the brain parenchyma tissue. For tumour, we used the Young’s
modulus two times larger than for the parenchyma, which is
consistent with the experimental data of Sinkus et al. (2005). There
is strong experimental evidence that the brain tissue is (almost)
incompressible (Pamidi and Advani, 1978; Sahay et al., 1992; Walsh
and Schettini, 1984) so that we used the Poisson’s ratio of 0.49 for
the parenchyma and tumour. Following Wittek et al. (2007), the
ventricles were assigned the properties of a very soft compressible
elastic solid with Young’s modulus of 10 Pa and Poisson’s ratio of 0.1
to account for possibility of leakage of the cerebrospinal fluid from
the ventricles during surgery.

2.2.2. Loading and boundary conditions

As explained in the previous section, there are always uncer-
tainties regarding the patient-specific properties of the living
tissues. To reduce the effects of such uncertainties, we loaded the
models by prescribing displacements on the exposed (due to
craniotomy) part of the brain surface (Fig. 2). It has been suggested
by Skrinjar et al. (2002) and shown by Wittek et al. (2009) that for
this type of loading, the unknown deformation field within the
brain depends very weakly on the mechanical properties of the
brain tissues. The displacements for loading the models were
determined from distances between the preoperative and

Fig. 2. Model (Case 1) loading through prescribed nodal displacements on the part of
the brain surface exposed during the craniotomy. White circles indicate the nodes
where the displacements were applied.

intraoperative cortical surfaces segmented in the T1 MRIs. The
correspondences between the preoperative and intraoperative
surfaces were determined by applying the vector-spline regular-
isation algorithm to the surface curvature maps (Arganda-Carreras
et al.,, 2006; Joldes et al., 2009d).

To define the boundary conditions for the remaining nodes on
the brain model surface, a contact interface was defined between
the rigid skull model and areas of the brain surface where the nodal
displacements were not prescribed. The contact formulation
described in Joldes et al. (2009a) was used. This formulation
prevents the brain surface from penetrating the skull while
allowing for frictionless sliding and separation between the brain
and skull. Although modelling of the brain—skull interactions
through a sliding contact with separation may be viewed as over-
simplification since the anatomical structures forming the interface
between the brain and skull are not directly represented, such
modelling has been widely used in the literature when computing
the brain deformations during brain shift (Hu et al., 2007; Skrinjar
et al., 2002; Wittek et al., 2007).

2.2.3. Computational grids; construction of patient-specific finite
element meshes

Three-dimensional patient-specific brain meshes were con-
structed from the segmented preoperative magnetic resonance
images (MRIs) obtained from the anonymised retrospective data-
base of Computational Radiology Laboratory (Children’s Hospital,
Boston, MA). The parenchyma, ventricles and tumour were distin-
guished in the segmentation process.

Because of the stringent computation time requirements, the
meshes had to be constructed using low order elements that are
not computationally expensive. The under-integrated hexahedron
with linear shape functions is the preferred choice due to its
superior convergence and accuracy characteristics (Shepherd and
Johnson, 2009). Many algorithms are now available for fast and
accurate automatic mesh generation using tetrahedral elements,
but not for automatic generation of hexahedral meshes (Viceconti
and Taddei, 2003). Template based meshing algorithms could not
be used here because of the presence of irregularly placed and
shaped tumours. Our previous experience (Wittek et al., 2007)
indicated that it can take several weeks of work of an experienced
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analyst to manually build a patient-specific hexahedral mesh of
the brain with a tumour. Therefore, to partly automate the
meshing, we used mixed meshes consisting of both hexahedral
and tetrahedral elements with linear shape functions (Fig. 3,
Table 1). The meshes were built using IA-FEMesh (a freely avail-
able software toolkit for hexahedral mesh generation developed at
the University of lowa) (Grosland et al., 2009) and HyperMesh™
(a high-performance commercial finite element mesh generator
by Altair, Ltd. of Troy, MI, USA). Following the literature (Ito et al.,
2009; Shepherd et al., 2007), hexahedral elements with Jacobian
of below 0.2 were regarded as of unacceptably poor quality and
replaced with tetrahedral elements. Because of irregular geometry
of ventricles and tumour, vast majority of tetrahedral elements
were located in the ventricles and tumour as well as in the adja-
cent parenchyma areas. It took between one and two working
days for a graduate student (assisted by an experienced finite
element analyst) to generate the brain mesh for each of the
craniotomy cases analysed in this study.

As the parenchyma was modelled as an incompressible
continuum, average nodal pressure (ANP) formulation by Joldes
et al. (2009a) was applied to prevent volumetric locking (i.e. arti-
ficial stiffening due to incompressibility) in the tetrahedral
elements. We refer to these elements as non-locking ones.

To eliminate instabilities (known as zero-energy modes or
hourglassing) that arise from one-point integration, the stiffness-
based hourglass control method by Joldes et al. (2009a) was used
for under-integrated hexahedral elements.

2.3. Algorithms for integration of equations of solid mechanics for
computing soft tissue deformation

The details (including verification and validation) of the applied
algorithms have been previously described in the literature (Joldes
etal., 2009a, 2009b, 2010a; Miller et al., 2007, 2010). Therefore, only
a brief summary is given here. Computational efficiency of the
algorithms for integrating the equations of solid mechanics used in
this study has been achieved through the following two means:

1) Total Lagrangian (TL) formulation for updating the calculated
variables (Miller et al., 2007);

2) Explicit integration in the time domain combined with the
algorithm employing transient terms that optimise conver-
gence to steady state (Joldes et al., 2009b, 2010a).

2.3.1. Total Lagrangian formulation

In the total Lagrangian formulation, all the calculated variables
(such as displacements and strains) are referred to the original
configuration of the analysed continuum. The decisive advantage of
this formulation is that all derivatives with respect to spatial coor-
dinates can be precomputed. As indicated in Miller et al. (2007), this
greatly reduces the computation time in comparison to the updated
Lagrangian formulation used in vast majority of commercial finite
element solvers (such as e.g. LS-DYNA™, ABAQUS™). An additional
advantage is that application of the total Lagrangian formulation
simplifies the material law implementation since the hyperelastic
material models, such as the neo-Hookean model we used here, can
be easily described using the deformation gradient.

2.3.2. Explicit integration in time domain with mass proportional
damping

In explicit time integration, such as the central difference
method applied in this study, the treatment of non-linearities is
very straightforward as even for non-linear problems, no iterations
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Fig. 3. Patient-specific brain meshes built in this study. (A) Case 1; (B) Case 2; (C) Case
3; (D) Case 4; (E) Case 5. Because of the complex geometry of ventricles and tumours,
tetrahedral elements were mainly used for discretisation of the ventricles and tumours
as well as the adjacent parenchyma areas.
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Table 1

Summary of the patient-specific brain meshes used in this study. Every node in the
mesh has three degrees of freedom. Case 6 was used in our previous studies (Joldes
et al. 2009a; Wittek et al., 2007, 2009).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Number of Hexahedral Elements 14,447 10,258 10,127 9032 8944 15,032
Number of Tetrahedral Elements 13,563 20,316 23,275 23,688 21,160 54
Number of Nodes 18,806 15,433 15,804 14,732 14,069 16,710

are required for a solution during a time step. The displacement and
velocity at a given time step n + 1 are calculated by incrementing
the solution at the previous step n:

U, = Uy + Attty + 1/2A¢%0, and (1)

iy = it + 1/2At(i1n+l +i'1n), 2)

where u is the nodal displacement, i is the nodal velocity, it is the
nodal acceleration, and At is the time step. Using Eq. (1) and Eq. (2),
time stepping scheme for solving the equations of motion of the
analysed continuum can be expressed as

U1 = M (Ry — Fo)At? + (2uy — uy_q), 3)

where R is the vector of externally applied nodal forces, F is the
vector of internal nodal forces, and F = K(u) u (where K is the
stiffness matrix). For non-linear problems, such as the one analysed
in this study, the stiffness matrix K depends on deformation u,
which is indicated by notation K(u).

For the lumped (diagonal) mass matrix M we used in this study,
the time stepping scheme given in Eq. (3) can be decoupled and
solution is done at the nodal level (Belytschko, 1976). Therefore, no
system of equations must be solved and the global stiffness matrix
of the entire model does not have to be built.

In consequence, application of explicit integration alone can
reduce by an order of magnitude the time required to compute the
brain deformations in comparison to implicit integration typically
used in commercial finite element codes (such as e.g. LS-DYNA™,
ABAQUS™) for steady state solutions (Wittek et al., 2007).

In dynamic relaxation, a mass proportional damping component
is added to the equations of motion (Joldes et al., 2009b) and Eq. (3)
becomes

Upyq = Un+ &(Un —Uy_1) +BM " (Ry — Fp), (4)
where

o = (2 —cAt)/(2 + cAt) (5)
B = (2At2)/(2 + cAt) (6)

In Egs. (4)—(6), c is the damping coefficient. We use the lumped
(i.e. diagonal) mass matrix for which the algorithm defined in Eq. (4)
is explicit. The mass matrix M does not affect the steady state solu-
tion. Therefore, the damping coefficient c, integration time step At
and mass matrix M are computed to maximise the convergence rate
to steady state and improve the computational efficiency without
compromising the solution accuracy (Joldes et al., 2009b, 2010a).

2.4. Implementation of algorithms for computing soft tissue
deformation on Graphics Processing Unit (GPU)

Recent examples of implementation of non-linear finite element
algorithms for computing soft tissue deformation for non-rigid
registration on Graphics Processing Unit (GPU) include Noe and

Serensen (2010) and Joldes et al. (2010b). The first implementa-
tion of our basic total Lagrangian explicit dynamics algorithm on
GPU has been presented by Taylor et al. (2008). The implementa-
tion by Taylor et al. (2008) proved that the algorithm is very well
suited to execution on GPUs and other parallel hardware and
shown 16 times computational speed gain compared with the
corresponding implementation on a Central Processing Unit (CPU)
from a typical personal computer. However, it exhibits several key
limitations: it can handle only linear locking tetrahedral elements
and a single material type, contains no features for modelling
contact interaction, has no integration step control, and cannot
compute steady state solution. In this study, we use the GPU
implementation of our finite element algorithms summarised in
Joldes et al. (2010b) who utilised the NVIDIA Compute Unified
Device Architecture (CUDA), see reference NVIDIA (2008). This
implementation does not suffer from the limitations of the study by
Taylor et al. (2008) as it includes dynamic relaxation that facilitates
fast convergence to steady state solution, brain — skull contact
model, several non-linear materials, and supports hexahedral and
non-locking tetrahedral elements that are very efficient and robust
in modelling of incompressible continua such as the brain and
other soft tissues. As the details have been given in Joldes et al.
(2010Db), only a brief summary is presented here.

As explained in Section 2.3.1, we employ total Lagrangian
formulation that allows precomputation of all derivatives with
respect to spatial coordinates in our finite element algorithms.
Therefore, we focused on applying the GPU to increase the
computation speed of the algorithms’ iterative component (see Eq.
(4)) that cannot be precomputed and has to be performed intra-
operatively. As GPUs offer high computation efficiency through
their parallel architecture, at first we identified data-parallel parts
of this component. Since each element and/or node can be seen as
a data structure on which computations are made, we identified the
following iterative parts of our algorithms for implementation as
GPU kernels (i.e. separated codes executed on GPU):

1) Computation of the element pressure for non-locking tetra-
hedral elements;

2) Computation of the nodal pressure for non-locking tetrahedral
elements;

3) Computation of nodal forces for hexahedral and non-locking
tetrahedral elements (considered separately in GPU imple-
mentation as different integration formulae are used for hex-
ahedral and tetrahedral elements);

4) Computation of new displacements (Eq. (4)) for all nodes in the
brain mesh;

Table 2

95-, 75-, 50- and 25-percentile Hausdorff distance between surface of the ventricles
obtained by registration (i.e. warping using the predicted deformation field) of the
preoperative segmentation and intraoperative surface of the ventricles determined
from the intraoperative image segmentation. The 95-percentile Hausdorff distance
(numbers in bold font) was used as the registration error measure. Case 6 was
analysed in our previous studies (Joldes et al., 2009a, 2009b; Wittek et al., 2007,
2009). The results are presented to one decimal place as we previously deter-
mined (Wittek et al., 2007) that this is approximately the accuracy of computations
using finite element algorithms of the type applied in this study (i.e. explicit inte-
gration in the time domain and elements with linear shape functions).

95-percentile
distance [mm]

75-percentile
distance [mm]

50-percentile
distance [mm]

25-percentile
distance [mm]

Case 1 13 0.6 0.4 03
Case 2 2.8 1.2 0.8 0.4
Case 3 19 1.1 0.6 0.4
Case 4 0.9 0.5 04 0.2
Case 5 1.5 0.8 0.5 0.3
Case 6 2.0 1.2 0.8 0.6
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5) Enforcing contact conditions with the rigid skull for the nodes
located on the brain surface.

In order to obtain high computation performance, strict guide-
lines must be followed when programming a GPU using CUDA
(NVIDIA, 2008). One of the most critical guidelines refers to data
transfers between the CPU (that runs a program from which a GPU
kernel is launched) and GPU. Such transfers are relatively slow and in
order to minimise them, in the GPU implementation of our finite
element algorithms, all the information needed for the computations

is transferred to the GPU in the initialisation stage (i.e. the transfer
occurs only once).

Complete GPU implementation of the finite element algorithm
used in this study for computing the steady state deformations can
be summarised as follows:

1) Initialisation:
a) Compute the damping coefficient c, the time step 4t and
mass matrix M that facilitate the fastest convergence to the
steady state.

5
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Fig. 4. Registration results for Case 2. (A) Surface of the ventricles obtained by registration (i.e. warping using the predicted deformation field) of the preoperative segmentation
with distance distribution (magnitude in millimetres in a colour code) to surface of the ventricles determined by segmentation of the intraoperative images. This is the distance h
(A,B) as defined by Eq. (8). (B) Surface of the ventricles determined by segmentation of the intraoperative images with distance distribution (magnitude, up to 95-percentile
distance, in millimetres in a colour code) to surface of the ventricles obtained by registration. This is the distance h(B,A) in Eq. (8). In this case, the Hausdorff distance H(A,B) equals
the distance h(B,A), see Egs. (7)—(9). Note the concentration of misaligment between the registered and intraoperative surfaces in the third ventricle area (indicated by a circle) due

to the differences between preoperative (A) and intraoperative (B) segmentations.
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b) Precompute all other needed quantities/variables such as
the element shape functions, hourglass shape vectors for
under-integrated hexahedral elements, initial volumes of
the elements etc.

¢) Transfer all the needed data to the GPU memory.

2) For every iteration step:

a) Apply current loading (in this study the loading is defined
by prescribing the displacements).

b) Compute the nodal forces F corresponding to the current
displacement u;,.

O Run the GPU kernel that computes the element pressure.
O Run the GPU kernel that computes the nodal pressure.
O For each element type:
- Run the GPU kernel that computes the nodal forces and
saves them in the GPU memory.

¢) Compute the next displacement vector.

O Run the GPU kernel that computes the next displace-
ments using Eq. (4). This kernel also assembles the force
vector and mass matrix.

d) Run the kernel that enforces the contacts.
e) Check for convergence. If the convergence criteria are
satisfied, finish the analysis.
3) Read final displacements from the GPU.
4) Clean up the GPU memory.

2.5. Evaluation of the modelling results accuracy

In image-guided surgery, accuracy of tissue motion prediction is
typically assessed by evaluating the accuracy of alignment between
the registered position of the preoperative image predicted by the
non-rigid registration algorithm and the actual patient position
established by an intraoperative image or navigation system.
Universally accepted “gold standards” for such evaluation have not
been developed yet (Chakravarty et al., 2008). Objective metrics of
the images alignment can be provided by automated methods
using image similarity metrics, such as e.g. Mutual Information
(Viola and Wells 111, 1997; Wells III et al., 1996), Normalised Cross-
Correlation (Rexilius et al., 2001) and Dice similarity coefficient
(Dice, 1945; Zou et al., 2004). From the perspective of validation of
biomechanical models for computing the deformation field within
the brain, one of the key deficiencies of such metrics is that they
quantify the alignment error in terms that do not have straight-
forward geometrical interpretation in terms of Euclidean distance.
Therefore, validation of predictions obtained using biomechanical
models has been often done using landmarks manually selected by
experts in the MRIs (Ferrant et al., 2002; Hu et al., 2007). Although
interpretation of the results of landmarks-based validation is very
straightforward, the method provides accuracy estimation only at
the landmark locations. Furthermore, determining these locations
is typically very time consuming and its accuracy relies on the
experience of an expert (Miga et al., 1999).

When evaluating the accuracy of the predicted brain deforma-
tion, we followed the studies by Archip et al. (2007) and Oguro et al.
(2010) who used 95-percentile Hausdorff distance as the registra-
tion error measure. The Hausdorff distance H(A, B) (Hausdorff,
1957; Fedorov et al. 2008) between set A (in this study: non-
rigidly registered preoperative surface of the ventricles) and set B
(in this study: surface of the ventricles obtained from the intra-
operative image segmentation) is denoted as:

H(A,B) = max{h(A,B),h(B,A)}, (7)

where h(A,B) is the maximum distance from any of the points in set
A to set B, and h(B,A) is the maximum distance from any of the

points in set B to set A. h(A,B), and analogically h(B,A), is calculated
using the following formulae (Fedorov et al., 2008):

h(A,B) = maxaca{d(a, B)}, (8)

where a is a point in set A, and d is the Euclidean distance from
point a to the nearest point b in set B:

d(a,B) = miny_glla - b]. 9)

Fig. 5. The registered (i.e. deformed using the calculated deformation field) preoper-
ative contours of ventricles (white lines) and tumour (black lines) overlaid on the
intraoperative magnetic resonance images. Three transverse image sections are pre-
sented for each case, selected so that the tumour and ventricles are clearly visible. The
images were cropped and enlarged. (A) Case 1; (B) Case 2; (C) Case 3; (D) Case 4; and
(E) Case 5. The sections’ location is explained in Fig. 7. For Case 2 (row B — left-hand-
side figure), note the differences between registered contours and intraoperative
image in the third ventricle area.
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Predicting the tumour’s intraoperative position is one of the
key motivations of image-guided neurosurgery. However, as it is
very difficult to reliably determine tumour boundaries in intra-
operative images, we do not provide Hausdorff distances for
tumour surfaces. From our experience, the segmentation uncer-
tainty dominates this measure and consequently its utility in
assessing tumour registration accuracy would be doubtful.
Instead we provide qualitative evidence of the appropriateness of
our methods by showing detailed intraoperative images with
overlaid contours of tumours and ventricles predicted by our
models.

3. Results

For Cases 1-5, it took between 30 s (Case 1) and 38 s (Case 5) of
computation on a standard personal computer (Intel E6850 dual-
core 3.00 GHz processor, 4 GB of internal memory, Windows XP
operating system) to predict the brain deformations using our
specialised finite element algorithms. The computations using the
NVIDIA CUDA implementation of our algorithms were performed
on an NVIDIA Tesla C870 graphics processing unit, which resulted
in computation times of less than 4 s for all the analysed crani-
otomy cases.

Fig. 6. The registered (i.e. deformed using the calculated deformation field) preoperative contours of ventricles (white lines) and tumour (black lines) overlaid on the intraoperative
magnetic resonance images. Three sagittal image sections are presented for each case, selected so that the tumour and ventricles are clearly visible. The images were cropped and
enlarged. (A) Case 1; (B) Case 2; (C) Case 3; (D) Case 4; and (E) Case 5. The sections’ location is explained in Fig. 7.
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The 95-percentile Hausdorff distance (used here as the registra-
tion error measure) between surface of the ventricles obtained by
registration (i.e. warping using the predicted deformation field) of
the preoperative segmentation and intraoperative surface of the
ventricles determined from the intraoperative image segmentation
was between 0.9 mm (for Case 4) and 2.8 mm (for Case 2), see Table 2.
This compares well with the voxel size (0.86 x 0.86 x 2.5 mm>) of the
intraoperative MRIs. Furthermore, the 75-percentile Hausdorff
distance was at most 1.2 mm which is well within the intraoperative
MRI voxel size. Some of the registration errors reported in Table 2
could be related to the differences in segmentation of the preoper-
ative and intraoperative images. As segmentation is a difficult and
subjective process and quality of the intraoperative images in terms
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of the resolution and contrast is inferior to that of the preoperative
images, some uncertainties are unavoidable. For instance, in Case 2
for which the largest (2.8 mm) 95-percentile Hausdorff distance
between the registered and intraoperative surfaces of ventricles was
observed, the differences between the registered and intraoperative
surfaces are localised in the third ventricle area (Fig. 4B). Comparison
of Fig. 4A and B clearly suggests that this localisation is due to the
differences in ventricles’ segmentation in the preoperative and
intraoperative images rather than actual non-rigid registration error
caused by inaccuracies in predicting the intraoperative deformations.

The conclusions derived using the 95-percentile Hausdorff
distance as the registration error measure are consistent with those
obtained through detailed comparison of the contours of ventricles

Fig. 7. Location of the planes for sections shown in Figs. 5 and 6. (A) Case 1; (B) Case 2; (C) Case 3; (D) Case 4; and (E) Case 5. H1: section shown in the left-hand-side column of
Fig. 5; H2: section shown in the central column of Fig. 5; H3: section shown in the right-hand-side column of Fig. 5; S1: section shown in the left-hand-side column of Fig. 6; S2:
section shown in the central column of Fig. 6; and S3: section shown in the right-hand-side column of Fig. 6. The axes’ coordinates are in millimetres.
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Fig. 8. Case 5, section H3 (for section H3 definition see Fig. 7E): (A) The registered (i.e. deformed using the calculated deformation field) preoperative contours of ventricles (white
lines) and tumour (black lines) overlaid on the intraoperative magnetic resonance images. Note local misregistration in the posterior left horn area. This figure highlights also the
difficulties with reliable tumour segmentation in the intraoperative images (the tumour boundaries are very difficult to distinguish). (B) The segmented preoperative image.
Segmentation of the ventricles is indicated by white lines, and segmentation of the tumour — by black lines. Note appreciable differences in shape and size of the posterior horn of
left lateral ventricle between the intraoperative and preoperative images in the area adjacent to the tumour. The horn is appreciably larger in the intraoperative than preoperative

image, which indicates that it was compressed by the tumour.

in the intraoperative images and the ones predicted by the finite
element brain models developed in this study. The comparison
indicates good overall agreement between the predicted and actual
intraoperative contours (Figs. 5 and 6). However, some local
misalignment between these contours is clearly visible in Fig. 8.
Examples of such misalignment include the third ventricle area in
Case 2 (Figs. 4 and 5B), discussed in the previous paragraph, and the
posterior horn of the left lateral ventricle in the area adjacent to the
tumour in Case 5 (Fig. 8) discussed in detail in the next paragraph.
Six cases of craniotomy-induced brain shift analysed here are
characterised by tumours located in different parts of the brain (for
details see Medical Context section). The results presented in Table 2
exhibit no correlation between the tumour location and registration
errors measured by 95-percentile Hausdorff distance that tends to
estimate the maximum misalignment between the intraoperative
and registered preoperative images. However, comparison of the
preoperative, intraoperative and registered images indicates that
detailed information about anatomical structures required for
building accurate biomechanical models may be difficult to obtain
for tumours that affect geometry of such structures. For instance, in
Case 5, the posterior horn of the left lateral ventricle was
compressed by the tumour. Consequently, large part of the horn
could not be seen in the preoperative images (Fig. 8). This, in turn,
limited the accuracy when simulating the posterior horn of the left
lateral ventricle in the biomechanical model for predicting the brain
deformations in Case 5, which led to local misregistration (Fig. 8).

4. Discussion

In this study, we used finite element meshes consisting of
hexahedral and tetrahedral elements combined with the speci-
alised non-linear (i.e. including both geometric and material non-
linearities) finite element algorithms to predict the deformation
field within the brain for six cases of craniotomy-induced brain
shift. Despite abandoning unrealistic linearisation (i.e. assump-
tions about infinitesimally small brain deformations during
craniotomy and linear stress—strain relationship of the brain
tissues) typically applied in biomechanical models to satisfy real-
time constraints of neurosurgery we were able to predict defor-
mation field within the brain in less than 40 s using a standard
personal computer (with a single 3 GHz dual-core processor) and
less that than 4 s using a graphics processing unit (NVIDIA Tesla

C870) for finite element meshes of the order of 18,000 nodes and
30,000 elements (~ 50,000 degrees of freedom). This computation
times compare well with the times reported in the studies using
linear finite element procedures and advanced computation
hardware. For instance, Warfield et al. (2002) reported the time of
27 s when computing the linear finite element brain model con-
sisting of 43,584 nodes using the Sun Microsystems Sun Fire 6800
workstation with twelve 750 MHz UltraSPARC-III processors.
Similarly, the computation times reported here for the NVIDIA
CUDA implementation of our finite element algorithms, indicate
dramatic improvement in computation speed in comparison to
our previous results obtained using commercial non-linear finite
element solvers: Wittek et al. (2009) reported computation time
of over 1700 s when predicting the brain deformations using
a model with around 50,000 degrees of freedom implemented in
non-linear finite element solver LS-DYNA™,

Despite that we used only very limited intraoperative infor-
mation (deformation on the brain surface exposed during the
craniotomy) when prescribing loading for the models and did not
have patient-specific data about the tissues mechanical properties,
our application of the specialised non-linear finite element algo-
rithms made it possible to obtain a very good agreement between
the observed in the intraoperative MRIs and predicted positions
and deformations of the anatomical structures within the brain
(Figs. 5 and 6, Table 2). This is confirmed by the fact that 95-
percentile Hausdorff distance between surface of the ventricles
obtained by registration and intraoperative surface of the ventricles
determined from the intraoperative images was at most 2.8 mm
which compares well with the voxel size (0.86 x 0.86 x 2.5 mm?>) of
the intraoperative images. As explained in Results section, the
alignment errors (as measured by 95-percentile Hausdorff
distance) reported in Table 2 could be related to the differences in
segmentation of the preoperative and intraoperative images.

In this study, we demonstrated the utility of specialised non-
linear finite element algorithms for soft tissue modelling in real-
time predicting of the deformation field within the brain for six
cases of craniotomy-induced brain shift. Before non-linear biome-
chanical models using state-of-the-art finite element algorithms,
such as those applied in this study, can become a part of clinical
systems for image-guided neurosurgery, reliability and accuracy of
such models must be confirmed against much larger data sample
than six cases of craniotomy-induced brain shift analysed here.
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