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Application of biomechanical modeling techniques in the area of medical image analysis and surgical
simulation implies two conflicting requirements: accurate results and high solution speeds. Accurate
results can be obtained only by using appropriate models and solution algorithms. In our previous papers
we have presented algorithms and solution methods for performing accurate nonlinear finite element
analysis of brain shift (which includes mixed mesh, different non-linear material models, finite deforma-
tions and brain–skull contacts) in less than a minute on a personal computer for models having up to
50,000 degrees of freedom. In this paper we present an implementation of our algorithms on a graphics
processing unit (GPU) using the new NVIDIA Compute Unified Device Architecture (CUDA) which leads to
more than 20 times increase in the computation speed. This makes possible the use of meshes with more
elements, which better represent the geometry, are easier to generate, and provide more accurate results.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The objective of our work is to significantly increase the efficacy
and efficiency of image-guided neurosurgery by including realistic
computation of brain deformations, based on a fully non-linear
biomechanical model, in a system to improve intra-operative
visualisation, navigation and monitoring. The system will create
an augmented reality visualisation of the intra-operative configu-
ration of the patient’s brain merged with high resolution pre-
operative imaging data, including diffusion tensor imaging and
functional magnetic resonance imaging, in order to better localise
the tumor and critical healthy tissues.

The focus of this paper is on problems arising in image-guided
neurosurgery. In this context it is very important to be able to pre-
dict the effect of certain procedures on the position of pathologies
and critical healthy areas in the brain. The most typical example is
the prediction of a displacement field within the brain after open-
ing the skull (so called ‘‘brain shift” estimation). A neurosurgeon is
interested in the final, deformed position of the brain. The dis-
placement field within the brain predicted by a biomechanical
model can be used to morph high quality preoperative images
(usually MRI) in order to show the current (intra-operative)
position of the brain components. The computation must be done
intra-operatively; therefore it is subject to stringent time
constraints, which practically means that the results should be
ll rights reserved.
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available to an operating surgeon in less than one minute [1–4].
The actual deformation computation should take only a fraction
of this time, as there are other activities that need to be done
beforehand (such as the acquisition of the deformed brain surface
in the area of craniotomy and the registration of this surface with
its pre-operative position, leading to the extraction of displace-
ments that are used for driving the deformation of the model) [4].

Some of our previous work focused on developing efficient and
accurate solution algorithms for nonlinear finite element models.
In [5] we have shown how the Total Lagrangian formulation can
be combined with explicit integration in order to obtain a very effi-
cient time stepping algorithm. Because of their numerical effi-
ciency, the linear tetrahedron and the linear under-integrated
hexahedron are the preferred elements when constructing the
mesh. We developed fast algorithms for handling the numerical
problems associated with these elements: an anti-hourglassing
algorithm for the linear under-integrated hexahedron is presented
in [6] and a non-locking linear tetrahedron element is developed in
[7]. We also developed an algorithm for handling the brain–skull
interaction (contact) in [8]. Combining all these algorithms and
using dynamic relaxation for the computation of the steady state
solution, we have been able to perform brain shift simulations on
standard 3 GHz dual-core personal computer in less than a minute
for models having up to 50,000 degrees of freedom [9].

One of the main problems in the development of a biomechan-
ical model is the generation of the mesh. Many algorithms are now
available for fast and accurate automatic mesh generation using
tetrahedral elements, but not for automatic hexahedral mesh
generation [10–12]. Some template based meshing algorithms
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Table 1
Properties of the different device memory spaces.

Memory Access Scope Lifetime

Register Read/write One thread Thread
Local Read/write One thread Thread
Shared Read/write All threads in a block Block of threads
Global Read/write All threads and host Host allocation
Constant Read All threads and host Host allocation
Texture Read All threads and host Host allocation
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can be used for meshing different organs using hexahedrons [13–
15], but these types of algorithms only work for healthy organs.
In case of severe pathologies (such as a brain tumor), such algo-
rithms can not be used, as the shape, size and position of the
pathology is unpredictable. This is one reason why many authors
proposed the use of tetrahedral meshes for their models [1,2,16–
18]. In order to automate the simulation process, mixed meshes
(having both hexahedral and tetrahedral elements) with predomi-
nantly hexahedral elements are the most convenient.

For the same number of nodes, a tetrahedral mesh has about
five times more elements than a hexahedral one. It is therefore
desirable to mesh as much of the volume as possible using hexahe-
dral elements, in order to reduce the computational effort. This,
combined with a limit on the number of elements in the mesh,
usually means manual intervention during the meshing process,
which makes meshing difficult and time consuming.

The possibility to use meshes with increased number of ele-
ments has several advantages: increased percentage of the volume
can be meshed using hexahedral elements, better representation of
the geometry, more accurate results, and easier mesh generation.
This unfortunately leads to an increased computational time,
which means we can no longer satisfy the time constraints associ-
ated with surgery using such models. As the algorithms we devel-
oped are already very efficient and the CPU does not offer sufficient
computation power and memory bandwidth to solve this problem,
we turned our attention to parallel computations on GPUs. GPUs
offer high computation power and increased memory bandwidth
at a relatively low cost.

In the past years there has been an increased interest in using
the power of graphics processing units (GPUs), with their parallel
architecture, for general purpose computations. The GPU is used
as a coprocessor for the CPU for executing sections of the code that
can run in parallel. Before the introduction of CUDA, general pur-
pose computations on GPUs (GPGPU) were done by recasting the
computations in graphic terms and using the graphics pipeline
[19], therefore a scientific or general-purpose computation often
requires a concerted effort by experts in both computer graphics
and in the particular scientific or engineering domain. With the
introduction of CUDA, in November 2006, NVIDIA proposed a
new parallel programming model and instruction set for their
GPUs that can be used for performing general purpose computa-
tions. CUDA comes with a software environment that allows devel-
opers to use C as a high level programming language. A minimum
set of keywords are used to extent the C language in order to: iden-
tify the code that must be run on the GPU as parallel threads, iden-
tify each thread (and the block of threads it belongs to) and to
organize and transfer the data in the different GPU memory spaces.
CUDA also exposes the internal architecture of the GPU and allows
direct access to its internal resources. The programmer has more
control over the internal hardware resources of the GPU, but this
comes at the expense of an increased programming effort com-
pared to a CPU implementation.

An implementation of our basic nonlinear Total Lagrangian Ex-
plicit Dynamics algorithm using the GPGPU framework (the graph-
ics pipeline) has been presented in [20]. The implementation
shows up to 16 times speed gains compared with the correspond-
ing CPU implementation, but it has several limitations: it can only
handle linear locking tetrahedrons, a single material type, and no
contacts, has no time step control and does not compute the steady
state solution.

In this paper we use CUDA to implement a suite of nonlinear
Finite Element algorithms for brain shift computation. The imple-
mentation can handle areas with different non-linear materials,
different element types (linear hexahedron with hourglass control,
linear tetrahedron and non-locking tetrahedron) and contacts be-
tween brain and skull. We present CUDA and the related terminol-
ogy in Section 2. The finite element algorithm, as implemented on
CPU, is presented in Section 3. In Section 4 we discuss the way the
data-parallel parts of the algorithm can be transferred and exe-
cuted on a GPU using CUDA in order to improve the computation
efficiency. A performance evaluation is done in Section 5 and dis-
cussion and conclusions are presented in Section 6.

2. NVIDIA CUDA – a general purpose parallel computing
architecture

The detailed presentation of CUDA is available in the Program-
ming Guide provided by NVIDIA [21]. In this section we only pres-
ent some of the main characteristics and terminology related to
CUDA.

The GPU has a highly parallel, multithreaded, many core proces-
sor architecture. This is well suited for problems that can be ex-
pressed as data-parallel computations with high arithmetic
intensity, where the same program is executed on many data ele-
ments in parallel. CUDA is a general purpose parallel computing
architecture that allows the development of application software
that transparently scales with the number of processor cores in
the GPU. It achieves this scalability by using three key abstractions
– a hierarchy of thread groups, shared memory and barrier syn-
chronization – that are exposed to the programmer as a minimal
set of language extensions. These abstractions guide the program-
mer to partition the problem into coarse sub-problems that can be
solved independently in parallel and then into smaller pieces that
can be solved cooperatively in parallel.

The code executed on GPU is called a kernel. When a kernel is
invoked (from the CPU), it is executed N times in parallel by N dif-
ferent CUDA threads (N is specified during the kernel invocation).
Threads are organized into a grid of blocks, with each block identi-
fied by a block index, while each thread within the block is identi-
fied by a thread index. Threads within a block can cooperate among
themselves by sharing data through some shared memory and syn-
chronizing their execution to coordinate memory accesses. This is
possible because each block of threads runs on the same multipro-
cessor on the GPU. The number of threads per block is restricted by
the limited memory and register resources of a processor core.
Thread blocks are required to execute independently, therefore
they cannot cooperate among themselves.

The CPU running the program that launches the kernels is called
the host, while the GPU acts as a coprocessor running the CUDA
threads, called the device. The host and the device maintain their
own DRAM, referred as the host memory and the device memory
(global, constant, and texture memory are implemented in the de-
vice memory).

CUDA threads may access data from different device memory
spaces during their execution: registers, local, shared, global, con-
stant, and texture memory. The properties of each of these memory
spaces are presented in Table 1. The register and shared memory
are located on chip (on each multiprocessor), allowing very fast ac-
cess, while the other memory spaces are located on the device
memory and have higher latency and lower throughput. The con-
stant and texture memory are read only and cached for faster
access.
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Each device has a compute capability identified by a major
revision number and a minor revision number. The minor revision
number corresponds to incremental improvements to the core
architecture, ranging from support for atomic operations in global
memory (compute capability 1.1) to support for double-precision
floating-point numbers (compute capability 1.3). We performed
our computations on a NVIDIA Tesla C870 computing board,
which has compute capability 1.0. It has 16 multiprocessors with
eight scalar processor cores each and single-precision floating
point operations. Therefore, 128 processor cores can run code in
parallel and can perform fast data exchanges using the device
memory.

The CUDA architecture is built around a scalable array of multi-
threaded streaming processors. The threads of a thread block exe-
cute concurrently on one multiprocessor, in groups of 32 parallel
threads called warps. Individual threads in a warp start together
at the same program address but are otherwise free to branch
and execute independently. Full efficiency is realized when all
threads in a warp agree on their execution path, otherwise the dif-
ferent branches in a warp are executed serially. Because all threads
of a block are run on the same multiprocessor they can exchange
data using the fast on-chip shared memory. A grid of blocks is
executed on the device by executing one or more blocks on each
multiprocessor using time slicing. The number of blocks a multi-
processor can process at once depends on how many registers
per thread and how much shared memory per block are required
for a given kernel.

Because of the hardware implementation, there are a series of
performance guidelines that must be observed when programming
a GPU using CUDA. The most important ones refer to: memory
transfers between host and device, memory latency when access-
ing global and local memory, global memory access pattern (to en-
sure that memory accesses by threads of a half-warp can be
coalesced into a single memory transaction), shared memory ac-
cess patterns (to avoid memory bank conflicts), and execution con-
figuration (number of threads per block and number of thread
blocks specified for a kernel launch). The details on these guide-
lines are included in the CUDA Programming Guide and should
be observed during the software implementation in order to obtain
maximum performance.
3. The finite element algorithms for brain shift computation

In this section we present the main algorithms used for solving
the finite element problem. This is not an exhaustive presentation,
as the details can be found in our previous papers [5–9,22,23].

3.1. Integration of the equations of continuum mechanics

Various spatial discretization schemes are possible while using
the finite element method [24]. In the development of our finite
element algorithms we used the Total Lagrangian formulation,
where all variables are referred to the original configuration of
the system. We use Second-Piola Kirchoff stress and Green–
Lagrange strains, which are appropriate for handling geometric
nonlinearities (finite deformations).

The integration of equilibrium equations in the time domain is
done using explicit methods [25]. By using a lumped (diagonal)
mass matrix, the equations of motion can be decoupled and no sys-
tem of equations must be solved. Computations are done at the
element level eliminating the need for assembling the stiffness ma-
trix of the entire model.

A detailed description of the Total Lagrange Explicit Dynamics
[TLED] algorithm is presented in [5]. The main benefits of the TLED
algorithm are:
� allows pre-computing of many variables involved (e.g. deriva-
tives with respect to spatial coordinates, hourglass control
parameters),
� no accumulation of errors – increase stability for quasistatic

solutions,
� Second-Piola Kirchoff stress and Green strain are used – appro-

priate for handling geometric non-linearities,
� easy implementation of the material law for hyper-elastic

materials using the deformation gradient,
� straightforward treatment of non-linearities,
� no iterations required for a time step,
� no system of equations needs to be solved,
� low computational cost for each time step,
� low internal memory requirements.

3.2. Computation grid: elements used in the finite element mesh

Because of the computation time requirement, the mesh must
be constructed using low order elements that are not computation-
ally intensive, such as the linear tetrahedron or the linear under-
integrated hexahedron. The standard formulation of the linear
tetrahedral element exhibits artificial stiffening, referred to in the
literature as volumetric locking [25] when used for incompressible
(or almost incompressible) continua such as brain and other soft
tissues. To reduce locking special countermeasures must be em-
ployed and therefore hexahedral elements are preferred when
modeling the behaviour of soft organs.

The under-integrated hexahedral elements require the use of an
hourglass control algorithm in order to eliminate the instabilities,
known as zero energy modes, which arise from the one-point inte-
gration [26]. Special algorithms for handling hourglass control for
the hexahedral elements must be implemented.

3.3. Hourglass control

Starting from the algorithm proposed by Flanagan and Bely-
tschko we proved that the Total Lagrangian formulation is also rec-
ommended from the point of view of efficient hourglass control
implementation, as many quantities involved can be pre-com-
puted. We have shown in [6] that the hourglass control forces for
each element can be computed (in matrix form) as:

t
0FHg ¼ k0Y0YT t

0u; ð1Þ

where k is a constant that depends on the element geometry and
material properties, Y is the matrix of hourglass shape vectors
and u is the matrix of current displacements. The notation from
[25] is used, where the left superscript represents the current time
and the left subscript represents the time of the reference configu-
ration, which is 0 for Total Lagrangian. In Eq. (1) all quantities ex-
cept u are constant and can be pre-computed, making the
hourglass control mechanism very efficient from the computational
point of view.

3.4. Non-locking tetrahedral elements

In modeling of incompressible continua, artificial stiffening
(often referred to as volumetric locking) afflicts many standard ele-
ments including the linear tetrahedral element. This phenomenon
occurs also for nearly incompressible materials and therefore
introducing slight compressibility does not solve the problem.

A number of improved linear tetrahedral elements with
anti-locking features have been proposed by different authors
[27–30]. The average nodal pressure (ANP) tetrahedral element
proposed in [27] is computationally inexpensive and provides
much better results for nearly incompressible materials compared
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to the standard tetrahedral element. Nevertheless, one shortcom-
ing of the ANP element and its implementation in a finite element
code is the handling of interfaces between different materials. We
extended the formulation of the ANP element so that all elements
in a mesh are treated in a similar way, requiring no special han-
dling of the interface elements.

The ANP element has the same deviatoric component of the
strain energy as the standard tetrahedral element and a modified
volumetric component. The modified volumetric component of
the strain energy is computed in such a way that the element pres-
sure for an element e is given as the average of the nodal pressures
for the nodes belonging to that element:

�pðeÞ ¼ 1
4

X4

a¼1

pðeÞa : ð2Þ

A weakness of the standard ANP element is that it treats differ-
ent materials separately. Instead of considering different nodal
pressure for different material types we make the assumption that
the nodal pressure is constant over the nodal volume. This assump-
tion derives from the relation that exists between pressure and
stress (p = �rii/3) [31] and from the fact that at the interface be-
tween two different materials the stress in the materials should
be the same. Starting from this assumption, we demonstrated in
[7] that the nodal pressure should be computed as:

pa ¼
Pma

e¼1pðeÞV ðeÞ
Pma

e¼1V ðeÞ
; ð3Þ

where ma is the number of elements surrounding node a. The ele-
ment pressure is computed afterwards in the same manner as for
the standard ANP element, using (2). We will call this element the
improved average nodal pressure (IANP) tetrahedral element.

3.5. Computation of nodal forces

Because we use single-point integration for all the elements in
the mesh (linear tetrahedrons and under-integrated linear hexahe-
drons) for computational efficiency, the nodal forces for each ele-
ment are computed as:
t
0Pint ¼ t

0X � t
0S � B0 � V0; ð4Þ

where Pint is the matrix of nodal forces, B0 is the matrix of shape
function derivatives, S is the Second Piola Kirchoff stress matrix, X
is the deformation gradient and V0 is the initial volume. The matrix
of shape function derivatives B0 and the initial volume V0 are con-
stant and therefore are pre-computed. The stress matrix is com-
puted based on the deformation gradient, using the considered
material law (we use the Neo-Hookean material law in our
computations).

3.6. Modeling of interactions between different organs: contact
algorithm

Many simulations require the treatment of interactions be-
tween different parts of the model. In order to handle the brain–
skull interaction we developed a very efficient algorithm that
treats this interaction as a finite sliding, frictionless contact be-
tween a deformable object (the brain) and a rigid surface (the
skull). The contact type was chosen based on the anatomical prop-
erties of the brain–skull interface.

The main parts of the contact algorithm are: detection of nodes
on the brain surface (also called the slave surface) which have pen-
etrated the skull surface (master surface) and the displacement of
each slave node that has penetrated the master surface to the clos-
est point on the master surface.

The surfaces of the anatomical structures of segmented brain
images are typically discretised using triangles; therefore we
consider the skull surface as a triangular mesh. We will call each
triangle surface a ‘‘face”, the vertices – ‘‘nodes” and the triangle
sides – ‘‘edges”.

We base our penetration detection algorithm on the closest
master node (nearest neighbour) approach [32]. The basic algo-
rithm is as follows:

– For each slave node P:
� Find the closest master node C (global search).
� Check the faces and edges surrounding C for penetration

(local search).
� Check additional faces and edges that might be penetrated

by P (identified in the master surface analysis stage –
because the master surface is rigid this analysis can be done
pre-operatively).

To improve the computation speed, following [32], we imple-
mented the global search phase using bucket sort. A detailed
description of this searching algorithm is given in [33].

3.7. Dynamic relaxation

The basic dynamic relaxation (DR) algorithm is presented in
[34]. The main ideas are the inclusion of a mass proportional
damping in the equation of motion that will increase the conver-
gence speed towards the deformed state and the solving of the ob-
tained damped equation using the central difference method
(explicit integration).

After including the derivatives defined by the central difference
method in the damped equation of motion, the equation that de-
scribes the iterations in terms of displacements becomes:

qnþ1 ¼ qn þ bðqn � qn�1Þ þ aM�1ðf � PðqnÞÞ; ð5Þ
a ¼ 2h2

=ð2þ chÞ; b ¼ ð2� chÞ=ð2þ chÞ; ð6Þ

where h is a fixed time increment, n indicates the nth time incre-
ment, c is the damping coefficient, M is the mass matrix, q is the dis-
placement vector, P is the vector of internal nodal forces and f is the
vector of externally applied forces (volumetric forces, surface forces,
nodal forces as well as forces derived from contacts).

The iterative method defined by Eq. (5) is explicit as long as the
mass matrix is diagonal. As the mass matrix does not influence the
deformed state solution, a lumped mass matrix can be used that
maximizes the convergence of the method.

One very important aspect of any FEM algorithm is the termina-
tion criterion used. If the criterion is too coarse, then the solution
might be too inaccurate and if the criterion is too tight, then time
is lost in unnecessary computations. In [23] we propose a new ter-
mination criterion that gives information about the absolute error
in the solution, particularly suited for our solution method

kqnþ1 � q�k1 6
q

1� q
kqnþ1 � qnk1 6 d; ð7Þ

where q is the spectral radius of a matrix representing the reduc-
tion in error and d is the imposed accuracy. This convergence crite-
rion gives an approximation of the absolute error based on the
displacement variation norm from the current iteration.

The parameters q, c and h are computed to maximize the rate of
convergence to the steady state solution. The algorithms for com-
puting these parameters are presented in [23].

3.8. The complete algorithm

The algorithm we propose for computing the deformed state
using DR can be summarized as follows:
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(a) Initialization:
Table 2
Identifie

Kern

Com
Com
Com
Com
Com

Com
Enfo
� q0 = 0; q1 = 0.
� Compute parameters q, c, h and the mass matrix M that

provide maximum convergence rate.
� Pre-compute all other needed quantities (shape func-

tions, hourglass shape vectors, initial volumes, etc.).

(b) For every iteration step:
(1) Apply current loading (nodal displacements, external
forces).

(2) Compute the nodal forces corresponding to the current
displacements, P(qn):
d ke

el’s f

pute
pute
pute
pute
pute

pute
rce c
� For each non-locking tetra in the mesh:

j Compute the element pressure.
� For each node in the mesh:

j Compute the nodal pressure (corresponding to the

non-locking tetra elements) using (3).

� For each element in the mesh:
j Compute the deformation gradient.
j If the element is a non-locking tetra, compute the

average element pressure using (2) and modify
the deformation gradient.

j Compute the nodal forces using (4).
j If the element is an under-integrated hexahedron,

add the hourglass control forces given by (1).
j Add the nodal forces to the global nodal force

vector P.

(3) For each node in the mesh:

� Compute next displacement vector using (5).
(4) For each slave node:

� Check for penetration of master surface and move the

node if penetration is detected.

(5) Compute displacement variation norm, check conver-
gence criteria and finish analysis if met, using (7).
(6) For each element in the mesh:

� Check the maximum eigenvalue and change the

mass matrix if needed (mass scaling, to ensure
convergence).
The initialization step can be done pre-operatively and there-
fore we are interested in pre-computing as many parameters as
possible in this step. Because the iterative solution is obtained in-
tra-operatively, the computation process must be very efficient.
4. GPU implementation using CUDA

When transforming an application to run on a GPU, first we
have to identify the data-parallel parts of it. In our case, we are
interested in speeding the iteration process (part b of the program),
which has to be performed intra-operatively. The most obvious
data-parallel parts of this code are the ones described above using
phrases such as ‘‘for each element: . . .” or ‘‘for each node: . . .”, as
each element or node can be seen as a data structure on which
rnels and the data they operate on.

unction Data structure to operate on

element pressure Non-locking tetra elements
nodal pressure (Eq. (3)) Mesh nodes
nodal forces (Eq. (4)) Non-locking tetra elements
nodal forces (Eq. (4)) Linear tetra element
nodal forces (Eqs. (1) and (4)) Under-integrated hexahedral

element
new displacements (Eq. (5)) Mesh nodes
ontacts (Section 3.6) Slave nodes
the computations are made. Therefore, the first kernels (code that
should be run on the GPU) we identify are presented in Table 2.

As discussed in Section 2, there are some performance guide-
lines that must be considered when transferring the code on the
GPU. One very important aspect is to minimize the data transfer
between host and device, as these transfers are relatively slow. A
second aspect is to minimize the number of kernels that are used,
as each kernel invocation implies a small hardware and software
overhead. Taking this into consideration, we took the following
measures to increase the speed of the implementation:

� Re-organize portions of the code: the computation of maximum
eigenvalue (step 6), that is done for each element in the mesh, is
done differently for each element type. We moved this code, for
each different element type, at the beginning of the kernels that
compute the nodal forces. This way we eliminated the need for
another three kernel invocations in step 6.
� Minimize data transfers between host and device:
� Application of loads (step 1), which is done for each (loaded)

node, has been moved to the end of the kernel that computes
the new displacements. The loads applied are saved on the
device memory, and only a parameter specifying the per-
centage of the load that should be applied in the next step
is passed as a parameter to the kernel.

� The computation of the displacement variation norm (step
5) is done on the GPU. This avoids the transfer of the com-
plete nodal displacements vector to the CPU at each time
step, as only the final norm needs to be transferred. This
computation is, in fact, a reduction problem, and can not
be solved using just one kernel invocation (because the
thread blocks can not synchronize their execution). There-
fore, in our implementation, the reduction is started in the
kernel that computes the new displacements, where a binary
tree reduction is done in each block of threads and the par-
tial results are saved in memory. The final step of the reduc-
tion is done in the first block of a kernel that computes the
nodal forces, where sequential and parallel reduction are
combined to obtain the final result. The guidelines from
the NVIDIA paper ‘‘Optimizing Parallel Reduction in CUDA”,
which comes with the CUDA development kit, were followed
when implementing the reduction algorithm.

� All the information needed for the computations is trans-
ferred to the GPU in the initialization stage (pre-operatively).

Another point that must be considered when transferring code
on the GPU is that scatter operations can not be safely done on the
GPU (because of the parallel nature of the execution, two threads
might try to write the same memory location). Unless the GPU sup-
ports atomic read-modify-write operations, all scatter operations
must be avoided. Such operations are needed in our code during
the assembly of the nodal force vector or the mass vector. The solu-
tion to this problem is to transform the scatter operations into
gather operations. For example, in case of the nodal force vector
computation, the nodal forces computed for each element are
saved in the device memory and the assembly of the force vector
is done, for each node, in the kernel that computes the new
displacements.

An important difference between the CPU and GPU code is data
organization. While on a CPU the data is usually grouped together
in structures or classes, in the GPU memory the data must be re-or-
ganized in order to obtain maximum memory access perfor-
mances. The data organization and alignment must ensure
coalesced memory access as much as possible, especially for mem-
ory writes. During memory reads, whenever coalesced access is not
possible (for example in case of gather operations) the memory is
accessed using textures.
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The complete algorithm for computing the steady state solution
using the GPU looks as follows:

(a) Initialization:
Table 3
Comput

Defo

Com
Exte
Shea
� q0 = 0; q1 = 0.
� Compute parameters q, c, h and the mass matrix M that

provide maximum convergence rate.
� Pre-compute all other needed quantities (shape func-

tions, hourglass shape vectors, initial volumes, etc.).
� Transfer all needed data to the GPU memory.
(b) For every iteration step:

(1) Compute the nodal forces corresponding to the current

displacements, P(qn):
ation

rmat

press
nsion
r

� Run the kernel that computes the element pressure.
� Run the kernel that computes the nodal pressure.
� For each element type:
j Run the kernel that computes the nodal forces and
saves them in the GPU memory. These kernels also
check the maximum eigenvalue and change the
mass of the element if needed (the mass is saved
in the GPU memory). One of the kernels finalizes
the reduction of the displacement variation norm.
(2) Read the displacement variation norm from the GPU.
(3) Compute next displacement vector:

� Run the kernel that computes the next displace-

ments. This kernel assembles the force vector and
mass matrix, computes the new displacements using
(5) and applies the load for the next time step. It also
computes the displacement variation norm and per-
forms its reduction at block level, saving the interme-
diate results in the GPU memory.
(4) Run the kernel that enforces the contacts.
(5) Check convergence criteria and finish analysis if met,

using (7).

(c) Read final displacements from the GPU.
(d) Clean up GPU memory.

Our implementation allows the use of different materials for
different parts of the brain. Nevertheless, in our application, we
use only one material law (Neo-Hookean). Therefore, the use of dif-
ferent materials is implemented quite easily by saving the different
material coefficients in the constant device memory and accessing
them for each element based on an index that identifies the mate-
rial associated with that element.

When choosing the execution configuration, based on the ad-
vice given in the programming guide, the number of threads per
block should be a multiple of 64. This number is limited by the re-
sources available on the GPU (registers, shared memory) and
should allow enough registers for each thread so that no variables
are placed in the local memory (because of the high latency of local
memory access).

5. Performance evaluation

We evaluated the performance of the GPU implementation by
performing several simulations and comparing the results with
times for GPU and CPU for different element types.

ion No. of
elements

Type of
elements

Computation time (s) Speed
up (x)

CPU GPU

ion 48,000 Hexahedron 172 5.3 32.4
290,000 IANP tetra 1769 17.1 103.4
290,000 Linear tetra 1614 12.6 128
our best CPU implementation of the same algorithms. The purpose
of first three simulations is to evaluate the different parts of the
algorithm specific to different element types. In these simulations
we deformed a cylinder meshed with a different element type for
each simulation and compared the speed and accuracy of the re-
sults against the CPU computations. We used a soft, almost incom-
pressible Neo-Hookean material model for all simulations. The
applied displacements were 20% of the undeformed height of the
cylinder. We performed 3000 time steps for each simulation. The
results are presented in Table 3.

From our experiments we can conclude that the computations
performed using the GPU can be orders of magnitude faster than
the ones on CPU. On the CPU, the computation time varies almost
linearly with the number of elements. The relative GPU perfor-
mance increases with the number of elements. This happens be-
cause the computation time, when the GPU is used, can be split
into two components: an almost constant component, given by
the operations performed on the CPU (program control, kernel
invocations, data transfer between host and device) and a variable
component (computations performed on the GPU – varies almost
linearly with the number of elements). When a low number of ele-
ments are used, the constant component represents a significant
part of the computation time, degrading the relative performance.

The GPU we used supports only single-precision floating point
numbers. The latest generation of GPUs from NVIDIA has support
for double-precision floating point numbers, but the operations
in double precision are around eight times slower than the opera-
tions in single precision, and the memory transfers are two times
slower. Because we use the Total Lagrangian formulation, there is
no accumulation of errors taking place from one time step to an-
other. This is one very important advantage over the Updated
Lagrangian formulation, and it allows us to use single precision
when performing the computations. In order to assess how the
precision of floating point operations impacts on the convergence
of the algorithm, we counted the number of steps needed to reach
a given accuracy (imposed using the convergence criteria) on both
GPU and CPU. From the results (Table 4) we can see that perform-
ing the operations in single precision does not have a high impact
on convergence for the accuracy usually required in our simula-
tions (we used an imposed accuracy d = 1.0E�4). Nevertheless, if
the imposed accuracy is chosen too small, the computation error
could become a significant part of the displacement variation norm
evaluation (Eq. 7), and the convergence criteria might never be sat-
isfied. The maximum difference in nodal displacements between
GPU and CPU results was 1.41E�4, which is within the limits set
by the imposed accuracy (it should be less than 1.7d). The reparti-
tion of the displacement difference over the mesh is presented in
Fig. 1.

In the next experiment we performed a brain shift simulation
using a biomechanical model. A human brain consisting of healthy
brain tissue, a tumor and ventricles is enclosed inside the skull
(Fig. 2). The different parts of the brain (parenchyma, tumor, and
ventricle) are modeled using almost incompressible nonlinear
materials (Neo-Hookean) with different properties, as presented
in Table 5 (for the ventricle the Poisson’s ratio was assumed to
Table 4
Number of steps required for convergence on GPU and CPU for an imposed accuracy
(d = 1.0E�4).

Deformation No. of
elements

Type of
elements

No. of steps Difference in
displacements
(max/mean)

CPU GPU

Compression 48,000 Hexahedron 1457 1250 1.28E�5/6.85E�6
Extension 290,000 ANP tetra 3276 3257 1.41E�4/7.8E�5
Shear 290,000 Linear tetra 1908 1910 3.03E�5/1.8E�5



Fig. 1. Deformation of a cylinder: (a) compression; (b) extension; (c) shear. The color codes represent the difference in nodal displacements between the GPU and CPU results
for an imposed accuracy d = 1.0E�4. All dimensions are in meters.
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be low in order to account for any fluid leakage). The material
model is consistent with our previous work on brain material prop-
erties [35–37].

The brain is meshed using all three types of elements we
considered (hexahedral elements, linear tetrahedral and improved
tetrahedral elements). The hexahedral and tetrahedral elements in
Fig. 2. The mesh used for the brain shift simulation (only the left half of the brain
and skull meshes is shown).
the mesh share the same nodes at the interface. There are no
wedges or pyramids used as a transition layer; therefore the result-
ing mesh is non-conforming (the approximation fields are not al-
ways continuous between elements of different type). We also
performed the simulations on a refined mesh to assess the perfor-
mance of the algorithms on meshes with higher number of ele-
ments. The structure of these two meshes is presented in Table
6. We assume that the initial geometry is known from high quality
pre-operative MRI images and we simulate the brain shift by
applying displacements on the area of the brain visible during cra-
niotomy, where the displacements can be measured intra-opera-
tively (using a laser range scanner [38] or a stereo vision system
[39]). We extracted the required displacements from available in-
tra-operative MRI images. The maximum applied displacement
was 10 mm. A very similar model has been used in previous papers
for brain shift estimation [4,40,41].

We assume the skull to be rigid and the interaction between the
brain and the skull as a frictionless finite sliding contact. All exter-
nal brain nodes except the displaced ones are included in the con-
tact definition.
Table 5
Material properties for different parts of the brain.

Brain part Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio

Brain 1000 2500 0.49
Tumor 1000 7500 0.49
Ventricle 1000 100 0.1



Table 6
Structure of the meshes used.

Mesh Number of nodes Number of elements Skull

Hexa Linear tetras ANP tetras Total elements Number of nodes Number of tria.

Original 12,693 10,596 4831 1398 16,825 1993 3960
Refined 95,669 84,768 32,439 8085 125,292 7945 15,840

The data in bold highlights the overall size of the meshes used in the model.

Table 7
Computation results for brain shift simulation.

Mesh No. of steps required for convergence (d = 1.0E�4) Run time for 3000 steps (s) Speed up (x) Difference in displacements (max/mean)

CPU GPU CPU GPU

Original 1887 2103 79.7 3.54 22.5 1.04E�4/8.98E�6
Refined 3120 3091 543.4 19.95 27.2 4.56E�5/2.02E�5
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The computation results for the CPU and GPU simulations are
presented in Table 7. The simulations need around 2000 steps for
the original mesh and 3000 steps for the refined mesh to reach
the steady state with sub-millimeter accuracy (d = 1.0E�4 m). This
shows that the convergence rate of the solution decreases with the
decrease of the element size, which is a characteristic of the dy-
namic relaxation solution method. This is one more reason why
the computations can no longer be performed in real time on a
CPU for an increased number of elements.

The speed-ups increase with the number of elements in the
mesh, but are not as large as in the case of cylinder deformation
experiments. This happens because the combination of three types
of elements in the same mesh, plus contacts, leads to a higher
number of kernel invocations at each time step, which increases
the constant component of the computation time on GPU. The dif-
ference between the CPU and the GPU in the nodal displacement
values and the number of steps required for convergence shows
that using single-precision floating-point numbers on GPU does
not have a significant impact on the results.
Fig. 3. Brain shift simulation – comparison between the simulation results and the intra-
with 0 on the brain’s most superior vertex, at distances of (a) �45.5 mm, (b) �50.5 mm
In this paper we do not wish to make a validation of the model
used, but to demonstrate the efficiency of our algorithms. Partial
validation of the model was performed in previous papers with
very promising results [4,40,41]. A typical comparison between
the deformation computed using our algorithms, the deformation
computed using a commercial software package (LS-Dyna), and
the deformation extracted from the intra-operative MRI is pre-
sented in Fig. 3. The presented algorithms can, in principle, be used
with any other finite element model that requires the computation
of a steady state solution.

6. Discussion and conclusions

Intra-operative computation of the brain shift using bio-
mechanical models can be used to register high-quality pre-opera-
tive images to the intra-operative position. This can be considered
as a finite element problem for which the steady state solution
needs to be found. We have developed algorithms and solution
methods that allow us to use complex bio-mechanical models
operative MRI. The cutting sections are perpendicular to the superiorly pointing axis,
and (c) �55.5 mm. Grid lines are 5 mm apart.
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(which include geometric and material nonlinearities, finite defor-
mations and contacts) to solve such a problem. These methods al-
low us to find a solution within the intra-operative constraints of
surgery (less than a minute) for models having up to 50,000 de-
grees of freedom on a personal computer.

GPUs offer high parallel computing power at a low cost. With
the release of CUDA, developing general purpose computations
on GPU has become much easier. As the internal organization of
the GPU is revealed, the programmer can take full advantage of
the GPU’s computational power. We use CUDA to transfer the
data-parallel parts of our computations to the GPU. Our implemen-
tation allows us to perform computations more than 20 times fas-
ter than on the CPU using a GPU with compute capability 1.0
(having 16 multiprocessors). We can now use models with an in-
creased number of elements to solve brain shift problems within
the time constrain of the operating room. This also simplifies the
task of meshing such models, as the limitation on the number of
elements in the model is almost removed.

The use of single-precision floating-point numbers on the GPU
does not have a significant impact on the convergence and accu-
racy of our solution method. This happens because we use the To-
tal Lagrangian formulation, which does not exhibit accumulation of
errors during the time stepping procedure.

The evolution of GPU hardware allows these performances to be
enhanced even more. The latest devices, with compute capability
1.3, have more multiprocessors (30 on Tesla C1060), double the
number of registers, support for double-precision floating-point
numbers and concurrent kernel execution with memory transfers
between host and device. These devices are also easier to program,
as some of the restrictions on the coalescing of memory transfers
have been removed.

Although we implemented only linear hexahedral and tetrahe-
dral elements on the GPU, the code can be extended to handle any
other type of finite elements: with a different number of nodes,
higher order shape function or higher number of integration
points. It can also be extended to handle mesh-free methods, such
as the one presented in [42] (integration cells can be processed in
parallel instead of finite elements).
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